PLAN IOWA ENERGY (PIE)

Evaluating & Strengthening Iowa's Power Grid for High Wind/Solar Penetration Levels

Add Maison Bleam of IUB to future meeting announcements (per Sarah Martz).

Project Advisory Board Meeting

Wednesday, March 27, 2024, 10am-noonCT

James McCalley, Colin Christy, Ali Jahanbani,

Investigators

Gustavo Cuello-Polo, Yanda Jiang, Aladdin Adam,

Ph. D. Students

Dut Ajang, M.S. Student Contact info: jdm@iastate.edu; 515-460-5244

PAB Feedback

- Please jot down your questions/comments during my presentation. Or consider to enter them to the chat.
- We do want your feedback! Provide it during discussion 11-12 or else by e-mail to jdm@iastate.edu or phone at 515-294-4844 (v) or 515-460-5244 (cell) at any time after the meeting, but within next 2-3 days.
- Some questions of particular interest:
- 1. Do you see ways to modify our current work or next steps to make this project more valuable to you and/or to lowa?
- 2. Do you find our report #3 useful/informative? Do you have questions related to it?
- 3. Any other questions, comments, suggestions, opinions you have?

2

Meeting Agenda

1. Review key project features & previous work

- Objective, power system design tool
- Visions/uncertainties/futures/plans
- Summary of previous work

2. New report on visions/uncertainties/futures

(see report #3 at https://home.engineering.iastate.edu/~jdm/pie/index.htm)

3. Progress on model development

- Modeling process
- Technology options considered

4. Recent work

- Including resource adequacy
- Including inertial/frequency constraints
- New nuclear
- Providing grid services
- Iowa's preferences
- 5. Next steps
- 6. PAB feedback & discussion (last hour)

Objective:

Identify several 25-year investment plans to position lowa's electric infrastructure to perform well under normal & climateinfluenced extreme events & conditions.

Organization	Person	Title	
STATE AGENCIES			
Iowa Economic Development Authority	Stephanie	Program Manager	
	Weisenbach		
Iowa Utilities Board	Sarah Martz	Board Member	
Iowa Utilities Board	Edgard Verdugo	Utilities Regulatory Engineer	
Iowa Office of the Consumer Advocate	Tim Tessier	Utility Specialist	
Iowa Department of Transportation	Sam Sturtz	Chair, Iowa DOT Resiliency WG	
OTHER AGENCIES			
Iowa Association of Municipal Utilities	Troy DeJoode	Executive Director	
Iowa Association of Elect. Cooperatives	Ethan Hohenadel	Regulatory Affairs Director	
Iowa Utility Association	Chaz Allen	Executive Director	
Iowa Environmental Council	Steve Guyer	Energy Policy Manager	
Iowa Industrial Energy Group	Amanda James	Executive Director	
Iowa State Institute for Transportation	Shauna Hallmark	Director	
REGIONAL TRANSM. ORGANIZATIONS			
Midcontinent Independent Sys Operator	Armando	Sr. Engr., Strategic Assessments	
	Figueroa-Acevedo		
Southwest Power Pool	Sunny Raheem	Manager, Planning Policy&Rsrch	
	Clint Savoy	Manager, Interregional Strategy	
INVESTOR-OWNED UTILITIES			
Alliant Energy	Mike Graves	Lead Engineer	
MidAmerican Energy	<mark>Dehn Stevens</mark>	VP, Transm Planning & Dvlpmnt	
ITC Transmission Midwest	Rob Wells	Supervisor, Planning	
MUNICIPAL UTILITIES			
City of Ames Electric	Don Kom	Director	
Cedar Falls Utilities	Ken Kagy	Principle Transmission Engineer	
Muscatine Power and Water	Ryan Streck	Director, Utility Service Delivery	
COOPERATIVE UTILITIES			
Central Iowa Power Cooperative	Ethan Tellier	Planning engineer	
Corn Belt Power Cooperative	Tyler Baxter	Engineer III	
Dairyland Power Cooperative	Ben Porath	Chief Operating Officer	
Maquoketa Valley Electrical Cooperative	Nik Schulte	Distribution system manager	

Key Power System Design Tool: Adaptive Coordinated Expansion Planning (ACEP) - FUTURE 1

A computer model we have developed:

→Identifies a *plan* (where/when/what/how-much

G, T, D to build) over ~25yrs to minimize NPW

investment costs plus

operational costs
 subject to multiple futures
 and system constraints.

TODAY

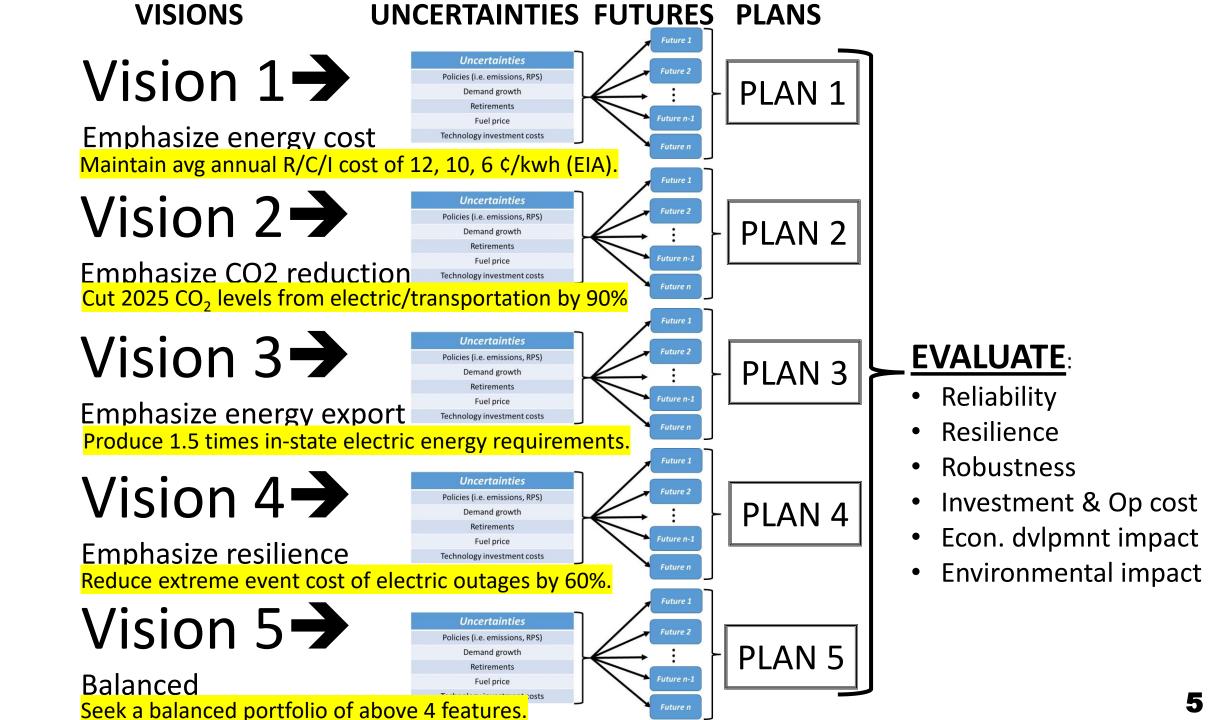
2025

Exploratory, not predictive:

We "point it" in the direction of a particular vision.

We identify several "futures".

-2030


It gives least-cost G,T,D plan for that vision subject to specified futures & sys constraints. 4

2035

2050

FUTURE 2

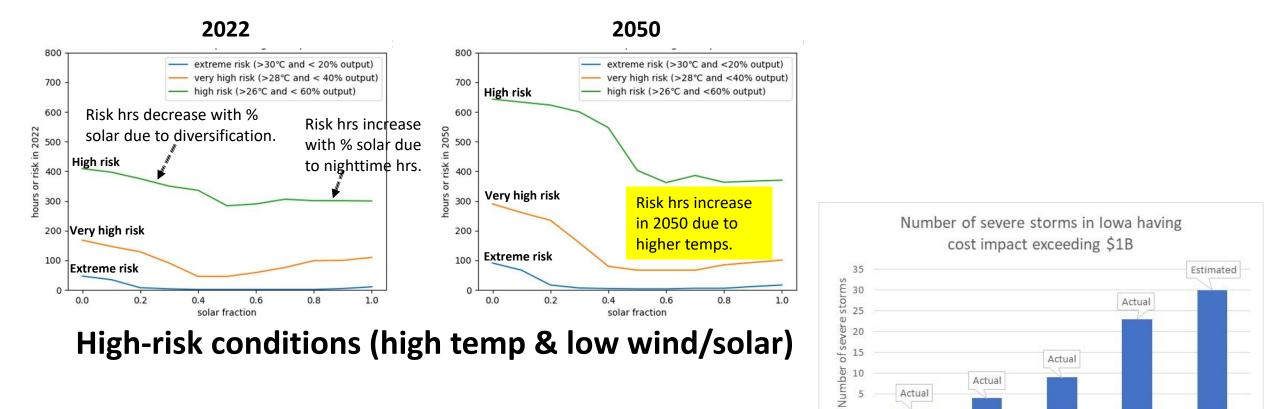
2040

Summary of previous work

- Project Report #1: MISO & SPP planning processes
- Project Report #2: High-risk conditions & events

<u>https://home.engineering.iastate.edu/~jdm/pie/index.htm</u>

1980-1989

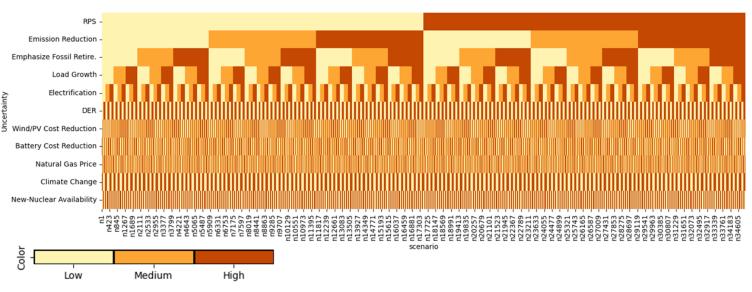

1990-1999

2000-2009

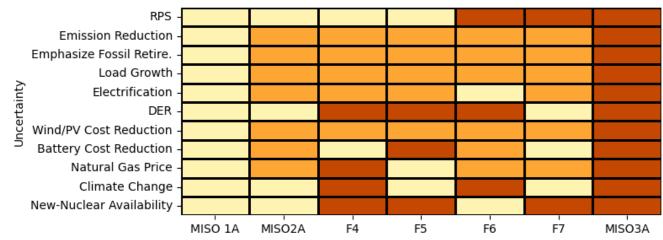
Decade

Extreme events (very high wind)

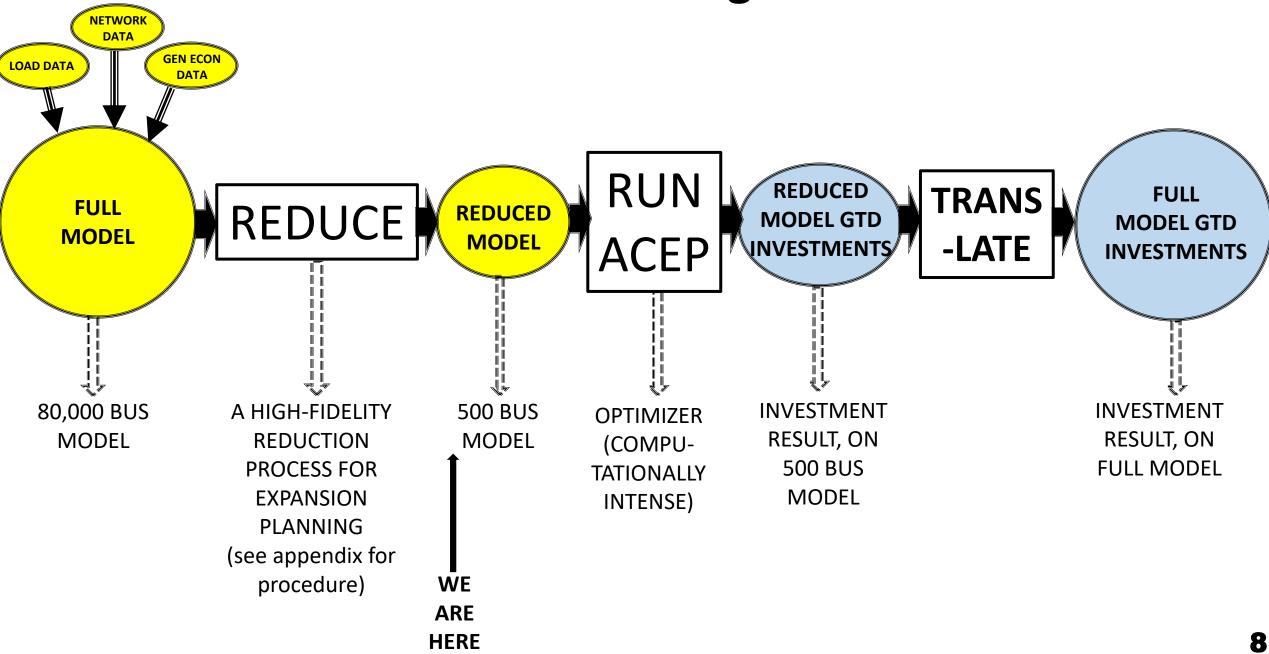
2010-2019


2020-2029

New report on visions/uncertainties/futures


Uncertainties based on MISO Series 1A Futures +

Parameter	No. of values	Value 1	Value 2	Value 3	Uncertain in MISO LRTP Futures?
RPS	2	0		50	<mark>Yes</mark>
Carbon Reduction (%)	3	71	76	80	<mark>Yes</mark>
Load Growth	3	Low	Medium	High	<mark>Yes</mark>
Energy					
(CAGR)		0.63%	1.25%	1.95%	
Demand		0 770/	1 1 4 0/	1 (20)	
(CAGR)		0.77%	1.14%	1.63%	
Electrification	3	2.0	15.2	31.8	<mark>Yes</mark>
(% of total energy growth)					
	3	Low	Medium	High	Yes
Emphasis on Fossil Retirement	Э	LOW	Medium	півн	Tes
DER:	2	Low		High	<mark>Yes</mark>
Wind/PV costs	3	0.75	1	1.25	No
reduction					
Battery Costs	3	Low	Medium	High	No
Reduction					
Natural Gas Price	3	Low	Medium	High	No
		(0.75)	(1.0)	(1.25)	
Climate Change	2	Low		High	No
New-Nuclear	2	Low		High	No
Investible?		(No)		(in 2040)	
Discount Rate	N/A				No


11 Uncertainties yield 34,992 potential futures!

Scenario reduction algorithm to find 7 best.

Network Modeling Process

Technology options considered

Generation resources:

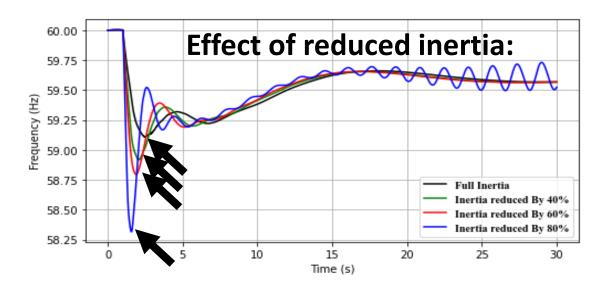
- Wind
- Solar
- Gas-CTs w&w/o CCS
- Gas-NGCC w&w/o CCS
- Coal with CCS
- Nuclear SMR
- Reciprocating ICEs
- DER:
 - Res, Com, Ind rooftop solar
 - Community solar
 - Energy efficiency
 - Demand response

Storage:

- Bulk hydrogen
- Bulk battery
- Distributed battery

Transmission:

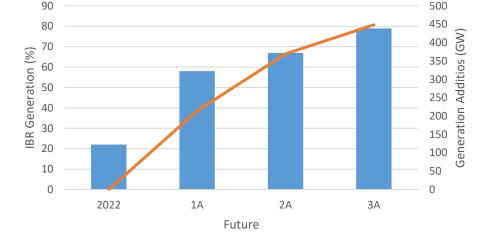
- 230, 345, 765 kV AC
- P2P HVDC overhead
 - ±600 kV
 - ±800 kV
- P2P ±525 HVDC ugnd
- Multi-terminal HVDC

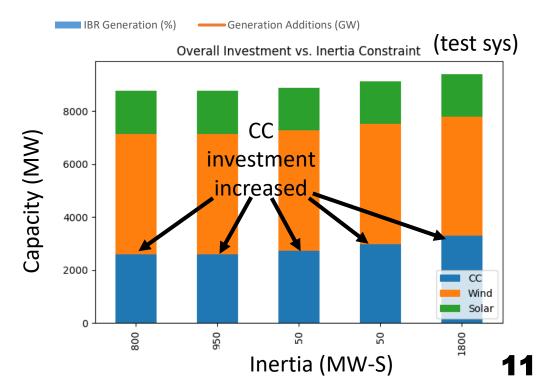

Recent work – resource adequacy (RA)

We desire ACEP result to satisfy RA requirement (LOLE<= 1day in 10 years). Embedding RA calculations within ACEP causes excessive solve times.

Solution: Iteratively run ACEP and externally perform RA, then modify ACEP PRM to correct.

Recent work – inertial constraints


Minimize InvestCost+OpCost


Subject to

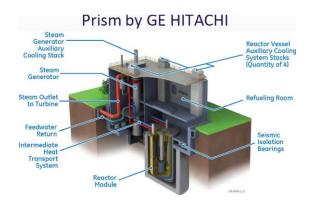
Operational constraints Inertia > minimum inertia

- Inertia comes from synchronous machines.
- It may also come from wind & solar if equipped with inertial emulation.

Future: More IBR, less synch. machines

Recent work – providing grid services

Deviation-based reserves


- Regulation reserves
- Ramping reserves
- Short-term reserves

Product	Requirement (MW)	
Short-Term Reserve		
Market-Wide	~ 3,600	20 Minute Dechence
Sub-Regional	dynamic	30 Minute Response
Local	dynamic	
Ramp		
Up Ramp	0-1,800	10 Minute Deepense
Down Ramp	0-1,800	10 Minute Response
Contingency Reserves		
Spinning Reserve	930	10 Minute Response
Supplemental Reserve	1,105	10 Minute Response
Regulation	400	5 Minute Response
Energy		

Histograms (distributions) on netload deviations widen with increase in wind&solar.
→ We model requirements on deviation-based reserves as a function of wind&solar.
→ Conventional synchronous machines provide reserves; certain load types can as well.

Recent work – new nuclear

N	atrium b	oy Terra	Power	
Reactor Building	Iding RVACS Duets IAC	Reactor Building Refueling Access Are	Fuel Handling	Building
RVACS: Reactor Vessel Auxiliary Cooling IAC: Intermediate Air Cooling	Hot Pipe Cold Pipe		Head Access Area Reactor and Core	Water Pool

SMR-160 by Holtec International

	Natrium by TerraPower [3], [4], [5], [6]	VOYGR by Nuscale [15],[16],[17],[18]	Prism by GE Hitachi [11],[12],[13],[14]	SMR-160 by Holtec International [9],[10],[19]	BWRX-300 by GE Hitachi [1], [2], [8]	ARC-100 by ARC Clean Technology [7]
Reactor Type	Sodium fast Reactor	Pressurized Water-Cooled Reactor	Sodium fast Reactor	Pressurized Water Reactor	Boiling Water Reactor	Sodium Cooled Reactor
Power Output (MWe)	345	308 (4 modules), 462 (6 modules), 924 (12 modules)	311	160	300	100
Overnight Cost (first in class)	\$4 billion	\$9 billion	\$3-4 billion	\$1 billion	\$1 billion	\$ 400 million
Overnight Cost (nth type)	\$1 billion	\$3.6 billion	\$1.5-2 billion	\$1 billion	\$700 million	\$400 million
Estimated Construction Period	36 months	36 months	36 months	36 months	27 months	34 months
Refueling Cycle	18 months	12-24 months	12-24 months	24 months	12-24 months	20 years
Benefit-to-cost Ratio		0.77777778				
Operational Date	2030	2029	2026	2029	2028	2030
Important Features	Thermal energy storage	Passive cooling, scalable output	Modular construction, passive cooling	Air-cooled condensers for flexible deployment in various climates	Natural circulation cooling	Passive Cooling, Cheaper Metallic Fuel
LCOE (\$/MWh)	\$50-\$60	\$64	\$58-60	\$81.50	\$35-50	\$55
Thermal Efficiency	41%	30%	37%	30%	34.50%	38%

Identifying Revenues

Revenue streams from wind & solar

- Land lease payments
- Property taxes

These revenue streams are implicit in the cost data modeled in ACEP. But they are identified explicitly as a function of each ACEP solution.

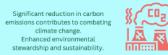
Recent work: 2-step process for learning lowa's preferences

SOCIO-POLITICAL-ECONOMIC DECISIONS TO BE MADE BY IOWANS:

- What CO₂ level should we reach?
- What resilience level should we obtain?
- How much energy should we export?

STEP 1: CONDUCT 16 INTERVIEWS:

- 1. Small farm, no wind farm
- 2. Small farm, wind farm
- 3. Large farm, no wind farm
- 4. Large farm, wind farm
- 5. Industry professional
- 6. Community advocate
- 7. Environmental advocate
- 8. Media energy expert
- 9. Metro county supervisor
- 10. Rural county supervisor
- 11. Mid-size county supervisor
- 12. Local Business Owner
- 13. Young Adult
- 14. Young Adult
- 15. Senior Citizen


16. Senior Citizen

Vision 1: Maintain or reduce from average annual Residential/Commercial/Industrial cost of 14¢, 11¢, and 8¢/kWh

Vision 2: Cut 2025 CO2 levels from electric to 90% of 2005 levels

Vision 3: Produce two times the in-state electricity requirements

- Generates surplus electricity for sale to other regions, creating revenue stream. Creates revenue for residents from property taxes, job development, and lease narments
- Requires substantial upfront investment in generation and transmission infrastructure.
 Potential environmental and community impacts from increased infrastructure.

may increase operational costs

Potential resistance from

Vision 4: Reduce extreme event cost of electric outages by 60%

 Significant reduction in the cost and impact of electric outages during extreme events.
 Enhanced resilience and reliability of energy infrastructure.

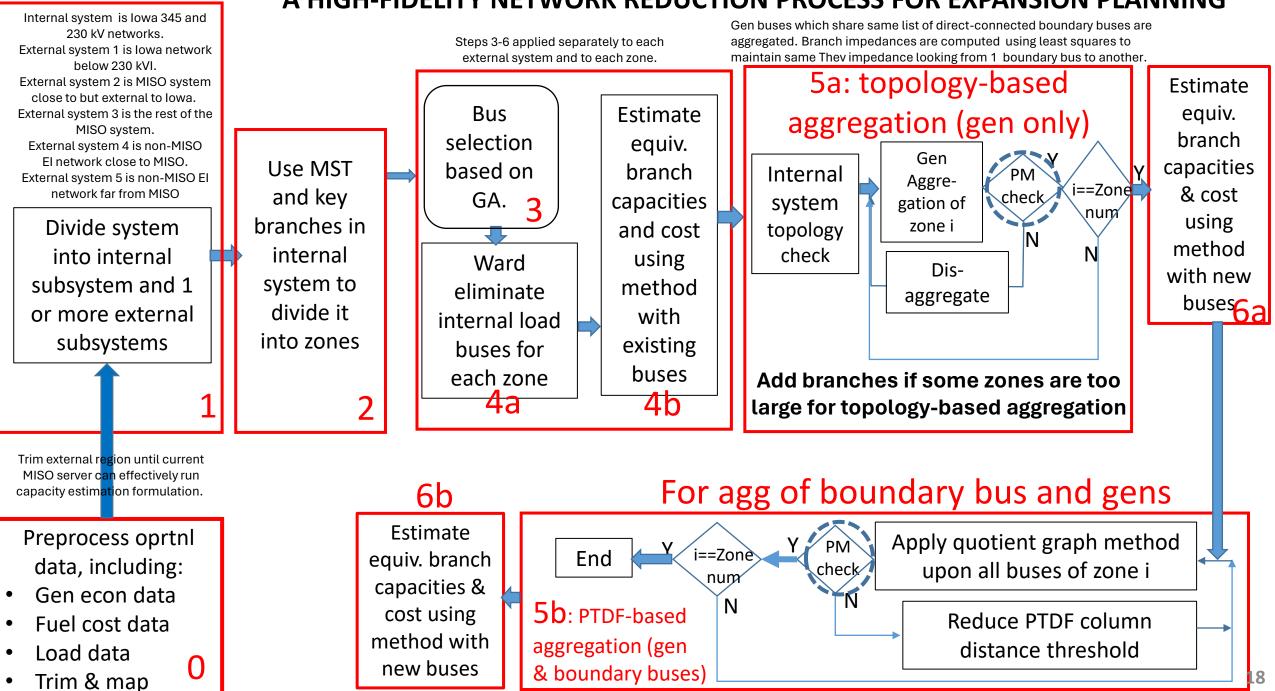
STEP 2: DEVELOP SURVEY BASED ON INTERVIEWS:

→ We will survey 5000

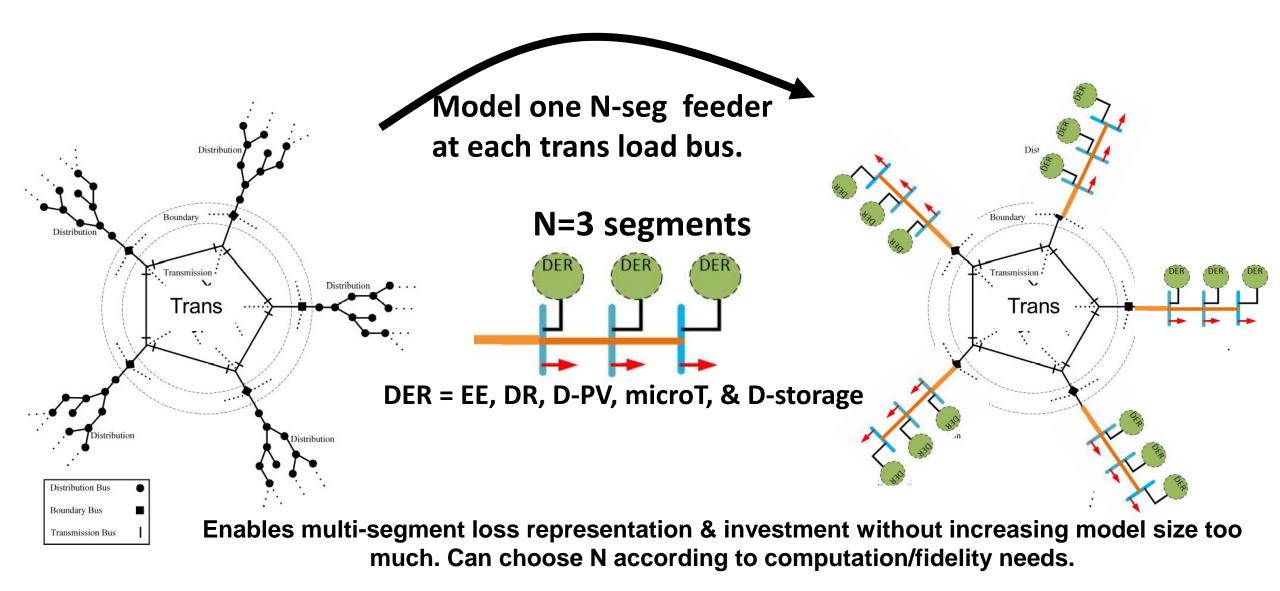
(i) energy-savvy and (ii) wind/-solar-affected Iowans. Survey to be completed by the CyBIZ Lab, Iowa State Universities' student consulting program.

> Cy**BIZ** Lab

Comments:


- Have learned that peer-pressure is important!
- This is not in our PIE project budget. Looking for partners to help offset some of \$6000 cost.

Next Steps


- 1. Generate results from ACEP/GE-MARS work.
- 2. Embed inertial constraints into ACEP.
- 3. Test ACEP reserve modeling functionality, including load provision.
- 4. Complete network model and begin generating ACEP-results.
- 5. Complete 15 interviews, summarize in a report, conduct survey.
- 6. Next PAB meeting: September, 2024.

Appendix

A HIGH-FIDELITY NETWORK REDUCTION PROCESS FOR EXPANSION PLANNING

Modeling – DER Representation

