AGENDA, July 11, 2024 Bridgeport Meeting

- 1. Introductions All
- 2. HVDC-Learn project overview McCalley
- 3. Objective of this meeting and next steps McCalley
- Bridgeport overview Chadwick Schroeder, Bridgeport Sustainability Manager
 - Chadwick's background
 - General overview of Bridgeport
 - Sustainability management/activities in Bridgeport

Project team

Power Systems

Hantao Cui, Assist. Prof., Oklahoma State
Xin Fang, Asst. Prof., Mississippi State
Eric Hines, Prof. of Practice, Tufts
Fran Li, Chaired Prof., U. Tenn.-Knox.
Per-Anders Lof, Lecturer, Tufts;
Principal Engr, National Grid
James McCalley, Chaired Prof., Iowa State

<u>Power Electronics</u>

Leon Tolbert, Chaired Prof., U. Tenn-Knox. Alex Stankovic, Chaired Prof., Tufts Ali Mehrizi-Sani, Assoc. Prof., Virginia Tech Johan Enslin, Chaired Prof., Clemson Moazzam Nazir, Rsrch Scientist, Clemson

High Voltage Engineering

David Wallace, Asst. Clin. Prof. Miss. State

List of PAB Members

Project board:

- 17 US industry organizations
- 3 European industry organizations
- 1 international organization
- 4 US community/vocational colleges
- 1 US university;
- 1 US vocational school;
- 4 European universities;
- 1 DEIA expert
- 1 envrnmntl justice advocacy grp

Hitachi Energy, Jiuping Pan GE Vernova, Carl Barker Nexans in Charleston, Gregory M. Smith HVDC Centre Scotland, Simon Marshall. Ben Gomersall Electric Power Research Institute (EPRI), Ram Adapa **Duke Energy** Dominion, Kevin Jones Mitsubishi, David Roop Jr **Energy System Integration Group (ESIG)**, James Okullo National Grid, Jim McGrath Eversource, Oluwaseyi Olatujoye Southern Company, Jason Autrey, Glenn Wilson National Renewable Energy Lab (NREL), Ben Kropowski ISONE, Xiaochuan Luo WindGrid, Ervin Spahic. Dennis De Decker Global Power System Transformation (G-PST) Mark O'Malley New York Power Authority (NYPA), Bruce Fardenesh Midcontinent Independent System Operator (MISO), Armando Figueroa American Electric Power (AEP), Kamran Ali PJM, Paul McGlynn, Kenneth S. Seiler Southwest Power Pool (SPP), Antoine Lucas

Bristol Community College, MA, Yashwant Sinha Trident Technical Community College, Tom Fulford Northern Virginia Community College, John Sound Centura College, Joel English Mid-Atlantic Maritime Academy, Raymond Blanchet Farmingdale State College, Jeff Hung KU Leuven, Dirk Van Hertem Strathclyde, Lie Xu KTH, Lina Bertling Imperial College, London, Balarko Chaudhuri Tufts University, Samantha Fried Salem Alliance for the Environment (SAFE) Betsy Frederick, Bonnie Bain

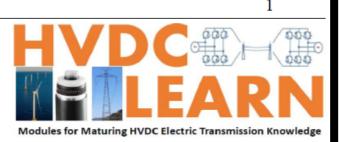
3

iustice

DEIA & env

HVDC-LEARN Project objective

HVDC-LEARN: Develop/deploy 35 modules to elevate the electric power community's (engineering, regulatory, policy) awareness/understanding of HVDC domain & increase HVDC presence as a transmission solution, for both onshore and offshore applications.


- Enable <u>ongoing</u> resource development
- Reflect integrated academic & industry expertise

What is a module?

- → A "mini-textbook"
- Self-contained
- 5-30 pages
- Address an HVDC feature/issue
- **Clear learning objectives**
- **Both on/offshore applications**
- Targets
 - university engineering courses
 - industry-focused short courses
 - community colleges
 - Regulatory & policy groups
 - individual learning.

Module 7a Point to Point HVDC Configurations

Module 7a Point-to-Point HVDC Configurations

Primary Author: Email Address: jdm@iastate.edu Co-author: March 31, 2024 Last Update: Prerequisite Competencies:

Module Objectives:

James D. McCalley, Iowa State University

- 1. Motivating needs for high-capacity electric transmission
- 2. HVDC converter types and operations as found in Modules 1a, 1b, 1c.
- 1. Identify features of point-to-point HVDC transmission
- 2. Distinguish from multi-terminal HVDC systems.
- 3. Identify point-to-point applications and describe implementations of each

7a.1 Introduction

High voltage direct current (HVDC) transmission has seen applications since the early 1950s. The first such line for commercial purposes was installed in 1954 to interconnect the Swedish mainland 98 km (61 miles) to the island of Gotland in the Baltic Sea; a monopole design employing mercury-arc valves, its capacity was 20 MW at a voltage level of 100 kV [1]. The

MODULE LIST

(yellow to be completed year 1; blue in year 2; white in year 3)

(1) Introductory/Overview Coverage;

- (2) Station components;
- (3) Converters;
- (4) Control;
- (5) HVDC Protection;
- (6) HVDC Line and Cable Technologies;
- (7) Point-to-Point HVDC Configurations;
- (8) Multi-Terminal HVDC Networks;
- (9) Planning and Design;
- (10) HVDC System Simulation and Analysis;
- (11) Regulatory Permitting Processes/Procedures; (12) Energy Equity and Environmental Justice.

• •		•			-				
Mod #	Lead-auth /Lead-rvwr	Module title	# of 1-h lectures	Comp date	Mod #	Lead-auth /Lead-rvwr	Module title	# of 1-h lectures	Comp date
1. INTRODUCTORY/OVERVIEW COVERAGE, Li					5d	UT2/M2	Protection: ability to ride	3	Q9
1a	T2/UT1	Intro to HVDC technology	3	Q4		0.2,2	through faults in HVDC	Ŭ	4.5
1b	UT1/T2	Application Guide for	3	Q2	5e	V1/UT1	Cybersecurity in HVDC	3	011
		HVDC Transmission				•1/0/1	systems	Ŭ	411
1c	M1/T1	Intro to HVDC for	3	Q2	6. HV	DC LINE &	CABLE TECHNOLOGIES, Wall	ace	
		offshore wind			6a	M2/C1	Insulation - HVDC cables	5	Q10
1d	T1/C1	HVDC for executives	2	Q9	7. PO	-	INT HVDC CONFIGURATIONS	6. McCalley	-,
2. STATION COMPONENTS, Cui					7a	11/UT1	Onshore & offshore apps	2	Q3
2a	V1/01	HVDC reactive power,	4	Q3			NAL HVDC NETWORKS, Tolb	ert	
		EMI, and filter design			8a	UT2/01	Design/operation of	3	Q12
2b	01/C1	VSC-HVDC converter	3	Q4		0.2,02	multiterminal HVDC grids		
		station technologies			9. PLA		ID DESIGN, McCalley		
3. CONVERTERS, Enslin					9a	T2/01	HVDC in pwr sys.;	3	Q8
3a	C2/C1	Interoperability between	3	Q12			meshed HVDC systems		
		different HVDC converter			9b	11/T1	Processes for planning &	3	Q2
		technologies/vendors					building offshore HVDC		
3b	V1/M1	Power electronics 101:	3	Q5	9c	11/T1	Expansion planning for	5	Q6
		Fundamentals of					offshore HVDC, topology/		
		switching pwr conv+EMT					capacity design for HVDC		
3c	M1/UT2	Operation of thyristors &	4	Q7			interregional transmission		
		IGBTs in converters			9d	I1/M1	Macrogrid & HVDC	4	Q8
3d	UT2/M1	Modular multilevel	3	Q3			offshore networks		
		converter as HVDC cnvrtr			9f	UT1/T2	A long-term planning	4	Q8
		interface and its control					study of offshore HVDC		
4. CONTROL, Mehrizi-Sani					10. H	VDC SYSTE	M SIMULATION & ANALYSIS	, Fang	
4a	UT2/01	Cnvtr cntrl fundamentals	4	Q6	10a	01/C2	Hardware-in-the-loop	3	Q12
4b	V1/C2	Dynamic modeling/cntrl	4	Q8			electromag transient sim		
		of HVDC converters and			10b	I1/T3	Large-sys analysis of	4	Q10
		grid-forming functions					multiterminal HVDC grids		
4c	01/V1	Control of multiterminal	4	Q8	10c	V1/M1	Frequency-dependent	4	Q12
		HVDC networks					representation of AC syst		
4d	C2/C1	Offshore HVDC cnvrtr grid	3	Q4	10d	M1/01	Modeling of HVDC grids	6	Q11
		forming controller design			10e	T3/I1	Reactive power &	6	Q8
		for black start capability					harmonics		
5. HVDC PROTECTION, Nazir					11. REGULATORY/PERMITTING PROCESSES & PROC, McCalley				
5a	M2/UT2	HVDC fault management	6	Q4	11a	T1/T2	Offshore transmission	3	Q5
		& protection systems					development processes		
- 1	V1/UT1	HVDC measurements,	3	Q9	11b	11/UT1	HVDC right-of-way	3	Q12
5b		faults, and misoperation			12 EN	ERGY FOL	JITY & ENVIRONMENTAL JUS	TICE, Hines	
					12. LI	LINOT LOCO		,	
5b 5c	C1/C2	Protection for multi- terminal HVDC networks	3	Q7	12. Li	T1/V1	Effects of HVDC on enrgy	3	Q11

Three other project features

- HVDC short courses: 1 per year, using modules.
- Multi-school (17!) design projects
 - All schools perform a part of a high-level energy-related problem
 - Each year, for 3 yrs, teams at each school maintain websites on their progress; all students benefit from info posted by current & past student teams.
- Engagement with Bridgeport, CT.

Engagement with Bridgeport

- 1. Objective: In partnership w/ Bridgeport,
 - identify ways to decrease energy burden (energy cost/income)
 - while enhancing sustainability & mitigating environmental impacts.
- 2. Follow four-thrust strategy to accomplish the objective.
 - i. Characterize existing conditions (energy resources, demand characteristics, previous and current efforts)
 - ii. Identify choices: onshore local, distributed, or distant (with transmission); offshore; battery/hydrogen storage; demand-side.
 - iii. Understand and speak to community concerns
 - iv. Develop useful materials:
 - Value to project team identify local needs/interests, reflect in modules
 - Value to Bridgeport info xfer during discussions; access to all modules; engage in multi-school design projects.
- 3. Objective of this meeting: gain insight towards 2-i, 2-ii.
- 4. Next steps: Distribute meeting slides/summary, collect/send further comments. 8