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Prerequisite Competencies:

1. Basic electric power engineering knowledge 

(electric circuits and electromagnetic concepts)

2. Interest in the development of HVDC technology

Module Objectives:

1. Present historic expose of the development of HVDC

2. Introduce objectives and components of HVDC systems

3. Characterize principal types of HVDC configurations

Prerequisites and Objectives
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High voltage direct current (HVDC) transmission provides a 

highly flexible and efficient method of transmitting large 

quantities of electric power over long distances.

Development of HVDC transmission can be traced back to 

the early development of direct current and alternating 

current technologies, including the ‘war of currents.’ 

OBJECTIVE

To provide an introduction to HVDC with either line 

commutated converter (LCC) or voltage source converter 

(VSC) technology; with focus on LCC technology. 

Introduction
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Early History

Invention of electric battery (voltaic pile) by Italian physicist 

and chemist Alessandro Volta around 1800. 

Invention of solenoid by French physicist and mathematician 

André-Marie Ampère in the first part of the 19th century.

English physicist and chemist Michael Faraday, developed 

conceptual models for the electrical generator, motor, and 

transformer. Travelled to continental Europe, where he met 

with Alessandro Volta and André-Marie Ampère. 

Historic Expose
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André-Marie Ampère is together with Danish 

physicist Hans Christian Ørsted are considered 

‘founders’ of understanding of electromagnetism. 

The phenomenon of electromagnetism was further developed and 

described by Scottish physicist and mathematician James Clerk Maxwell 

in the publication ‘A Treatise on Electricity and Magnetism’ in 1873.

Historic Expose
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In October 1879, American invertor Thomas Alva Edison successfully 

tested an incandescent light bulb.

In August 1880, Edison filed the patent application ‘System of Electric 

Lighting’ - Term ‘central station’ was adopted from railway terminology.

Pearl Street station started generating electricity on September 4, 1882, 

with six 100 kW dc dynamos, initially serving 400 lamps at 82 customers. 

Pearl Street
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Longer distance transmission of electric power using alternating 

current became feasible first with the development of transformers for 

stepping-up or stepping-down voltages. The American inventor and 

engineer William Stanley developed first practical transformer in 1886.

In November of 1887, Serbian American engineer and inventor Nikola 

Tesla filed a series of seven US patents in the field of polyphase ac 

motors, power transmission, generators, transformers, and lighting. 

AC vs. DC
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During the early 1890s, American mathematician, engineer, 

and philosopher Charles Proteus Steinmetz developed 

mathematical understanding of ac power systems.

The Russian Mikhail Dolivo-Dobrovolsky, the American 

Nikola Tesla, the Italian Galileo Ferraris, and the Swede 

Jonas Wenström pioneered polyphase ac power systems.

Abstract
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In the late 1880s and early 1890s there was a competition 

between Thomas Edison’s direct current (dc) and George 

Westinghouse’s (based on Nikola Tesla’s inventions) 

alternating current (ac) electric power transmission systems, 

sometimes referred to as ‘the war of currents.’

1893 Chicago World’s Fair, a.k.a. the Columbian Exposition, 

turned the exhibit into a ‘city of light,’ and demonstrating that 

ac power systems were both practical and available.

 

War of the Currents
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While alternating current prevailed in the ‘war of currents,’ the direct 

current option was never really abandoned. 

Swiss engineer René Thury pioneered dc transmission using series 

connection of multiple dc generators, in the 1890s which continued to be 

in service for more than 30 years. Genoa's Thury dc power system was 

upgraded to finally serve 630 kW at 14 kV over 120 km. 

After rotary converters, mercury-arc valves were invented, developed, 

and used to convert between ac and dc. During the 1940s experimental 

high power dc transmission based on mercury-arc valve technology were 

developed and came into existence in Germany, Sweden, and the U.S. 

Early HVDC Development
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All HVDC systems since the 1940s use electronic (static) converters.

In 1928, Uno Lamm, was assigned the problem of solving 

the so-called arc-back (or backfire) of mercury-arc valves.

Application of mercury-arc valves were at that time limited to 

1,500 V, and used e.g., in the electrochemical industry. 

Uno Lamm has often been referred to as the ‘Father of 

High Voltage Direct Current’ power transmission. 

In Sweden, a 60 km 6.5 MW 90 kV experimental HVDC link 

between Mellerud and Trollhättan was energized in 1946.

Uno Lamm
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Long-term industrial relationship, resulting in an intimate collaboration 

between a large state customer (Vattenfall) and a large manufacturing 

company (ASEA) has been referred to as a ‘development pair.’

The collaboration during the first half of the 1900s was important factor 

during the development of both alternating current and direct current for 

electric bulk power system applications. 

During this period Vattenfall built a laboratory for testing of mercury-arc 

valves. Vattenfall provided the laboratory facility, electric power for the 

experiments, and operational staffing while ASEA provided experimental 

equipment, measurement equipment, and technical expertise. 

No monetary transactions took place between the two entities.

Vattenfall and ASEA



18National Grid | Tufts University Module 1a Introduction to HVDC Technology

The world’s first commercial HVDC transmission was built between the 

Swedish mainland the island of Gotland – 100 kV ~90 km underwater cable 

and development of the converter in three phases: 10, 20, and 40 MW. 

Gotland
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In May 1957, British Electricity Authority (BEA) and Electricité de France 

(EdF) signed a letter of intent to purchase a HVDC system from ASEA. 

In 1961, English Electric Company UK signed an agreement with ASEA 

for the design and manufacturing of mercury-arc valves. 

The first HVDC Cross-Channel scheme (IFA1) 160 MW at ±100 kV with 

a 45 km undersea cable went into service in 1961. 

International Project

Mercury-arc valves were used for the initial HVDC 

projects. In May 1967, a thyristor prototype was 

installed for testing in the Gotland HVDC scheme.

[Thyristor valves in foreground and mercury-arc valves in background]
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Power semiconductors can be classified based on their controllability: 

• Diodes where on and off states are controlled by the power circuit; 

• Thyristors which are switched on by a control signal but must be 

turned off by the power circuit; and 

• Controllable switches which can be turned on and off by control 

signals.

Semiconductor devices have during the decades been evolving from 

low power devices to high power electronics devices. 

While mercury-arc valves are not semiconductors, they are static 

converters, i.e., a forerunner to the use of thyristors. Mercury-arc 

valves were in the 1970s replaced with thyristors in HVDC application.

Semiconductors
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First thyristor devices were released commercially in 1956. 

First HVDC scheme completely based on thyristors, Eel River in 1972. 

• Volgograd-Donbass system, 720 MW, ±400 kV (1965) 

• Sardinia–Corsica–Italy (SACOI) started 1965, third terminal 1992 

• Pacific Intertie 1,440 MW,±400 kV, 1,362 km (1970)

• Cahora Bassa 1,920 MW, ±533 kV, 1,456 km (1979)

• Vyborg back-to-back 1,070 MW (1981-1983, decommissioned 2022)

• Itaipu HVDC 3,150 MW, ±600 kV, 780 km (1985-1987)  

• Quebec-New England 2,000 MW, ±450 kV, 1,514 km 3-terminal (1990)

Thyristor Projects
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Insulated-gate bipolar transistors (IGBTs), gate turn-off thyristors (GTOs), 

and integrated gate-commutated thyristors (IGCTs) have been used in 

motor drive applications since the 1980s. Higher rated devices allowed for 

development of voltage source converters (VSCs) for HVDC applications.

First experimental HVDC scheme with voltage source converters was a 

3 MW, ±10 kV scheme between Hällsjön and Grängesberg (Sweden). 

First (non-back-to-back) VSC HVDC scheme in the United States was the 

Cross Sound Cable, 330 MW, ±150 kV, 40 km bipolar cable between 

New Haven, CT and Shoreham, on Long Island, NY (2002-2003). 

Insulated-Gate Bipolar Transistors
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Early development of HVDC was characterized by 

development of the markets and its applications in 

parallel with product development.

It was acknowledged that “it will cost more than 

expected and take more time, but the market is a 

lot bigger than we first thought,” which created a 

positive, technology-friendly environment. 

Reduced Right-of-Way 

(ROW) requirements, 

i.e., reduced land-owner 

impact – and if cable … 

Technology-Friendly Environment

[Module 7a]
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Characteristics of HVDC Transmission be separated into:

• Controllable - Power injected where needed

• Facilitates integration of remote diverse resources

• Higher power capacity rating with fewer lines

• Less expensive lines

• No stability distance limitation

• Long cables, in particular undersea cables

• Reactive power demand limited to terminals, i.e., 

independent of distance

• Lower losses

• No limit to underground or sea cable length

• Asynchronous, ‘firewall’ against cascading outages

Characteristics of HVDC
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Investment Cost as Function of Distance for HVAC and HVDC Links 

AC vs. DC Considerations

While building of converter stations are 

more expensive than comparable HVAC 

substations, the overhead line or cable 

costs less and the losses are lower. 

Hence, there is a break-even distance.

The final decision of HVAC vs. HVDC 

depends on many economic, technical, 

and environmental considerations.
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Monopolar vs. Bipolar HVDC LCC schemes  HVDC VSC scheme

HVDC Topologies

There are also back-to-back HVDC schemes which can be used to 

provide ‘bridges’ between non-synchronous ac power systems.

HVDC transmission schemes can be constructed based on number of 

different dc-side topologies, depending on factors such as technical, 

economic, redundancy, availability, and environmental impact, and 

required power transmission capacity. 
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Electrical Configurations 

for Asymmetric Monopole 

HVDC Topologies

Electrical Configurations 

for Symmetric Bipole  
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Three-Phase Six-Pulse Line Commutated Converter

Waveforms - 1
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Three-Phase 12-Pulse Line Commutated Converter

Waveforms - 2

Note: Delta-winding, i.e., with 30° 

phase shift from the Y-winding.
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Three-Phase 12-Pulse Line Commutated Converter

AC-Side Harmonics

Y/Y Six-Pulse Line Commutated Converter

𝑖 𝑡 =
2 3

𝜋
𝐼𝑑 sin 𝜔𝑡 +

1

5
sin 5𝜔𝑡 +

1

7
sin 7𝜔𝑡 +

1

11
sin 11𝜔𝑡 +

1

13
sin 13𝜔 − ⋯

Y/Δ Six-Pulse Line Commutated Converter

𝑖 𝑡 =
2 3

𝜋
𝐼𝑑 sin 𝜔𝑡 −

1

5
sin 5𝜔𝑡 −

1

7
sin 7𝜔𝑡 +

1

11
sin 11𝜔𝑡 +

1

13
sin 13𝜔 − ⋯

12-Pulse Line Commutated Converter

𝑖 𝑡 =
2 3

𝜋
2 𝐼𝑑 sin 𝜔𝑡 +

1

11
sin 11𝜔𝑡 +

1

13
sin 13𝜔 +

1

23
sin 23𝜔𝑡 +

1

25
sin 25𝜔𝑡 + …



Voltage Source 
Converters

07



35National Grid | Tufts University Module 1a Introduction to HVDC Technology

Self-commutating semiconductors:

• Insulated gate bipolar transistors (IGBTs) 

• Gate turn-off thyristors (GTOs) 

• Integrated gate-commutated thyristors (IGCTs)

Converter topologies:

• Two-level VSCs

• Three-level VSCs 

• Modular multilevel converters (MMCs)

Voltage Source Converters

Three-phase active power

𝑃 =  𝑉𝑑𝐼𝑑 = 3 𝑉𝐿𝐿 𝐼𝐿 cos 𝜙

and reactive power

𝑄 = 3 𝑉𝐿𝐿 𝐼𝐿  sin 𝜙
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Atlantic Off-Shore Wind

Transmission Expansion Planning Models 

TenneT

Standardized 2 GW 525 kV (cable) design

VSC Applications

| Tufts University Module 1a Introduction to HVDC Technology



37National Grid | Tufts University Module 1a Introduction to HVDC Technology

Some characteristics of HVDC LCC vs. VSC technology 

LCC vs. VSC Technology

Technology/Capability LCC VSC

Semiconductor Thyristor IGBT

Controllability Turn on Turn on/Turn off

Power Control Active Active and Reactive

Converter Losses Low Higher

AC Filter Requirements Yes No

Blackstart capability No Yes
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Converters: 

Converters provide connection between ac and dc-sides of HVDC scheme. 

Terminology: ac-to-dc converter = rectifier & dc-to-ac converter = inverter

Transformers: 

Used to align ac system voltages with the dc voltage of converter design. 

Conductors: 

Bipolar HVDC schemes requires two lines between the converter stations, 

while high voltage alternating current transmission requires three lines.

Protection and Control: 

HVDC schemes require communication between terminals.

P&C systems are often integrated into computers at HVDC terminals.

Major Equipment Categories
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• Valve hall

o Converters (one if monopolar and two is bipolar)

o Valve Control Equipment

o Pole Control Equipment

o Valve Cooling Equipment

o Valve Cooling Control Equipment

o DC Bus Equipment

• Converter Transformers 

o Load Tap Changers

• DC Lines

o Overhead Line, or 

o Cables (underground or undersea) 

o Neutral Conductor (if applicable) 

• AC Switchyards

o AC Filter Banks

o AC Shunt Capacitor Banks

o AC Bus Equipment

o AC Circuit Breakers

o AC Switchgear

o Shunt Reactors (optional)

o Electrode Line Equipment (if applicable)

o Control and Protection Systems

o Power Line Carrier (PLC) Filters (if applicable)

• DC Switchyards

o DC Smoothing Reactors 

o DC Filter Banks

o DC Switchgear

Line Commutated Converters

| Tufts University Module 1a Introduction to HVDC Technology
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Bipolar HVDC LCC system [Module 7a]

HVDC LCC Scheme
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Skagerrak (Denmark – Norway)

#1&2 500 MW (1976-77) → #4 1,700 MW (2015)

HVDC LCC Scheme - Example
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• Valve hall

o Converters 

o Converter Control Equipment

o Valve Cooling Equipment

o Valve Cooling Control Equipment

o DC Bus Equipment

• Converter Transformers (most installations) 

o Load Tap Changers (optional)

• DC Lines

o Cables (underground or undersea; common) 

o Overhead Line

• AC Switchyards

o AC Filter Banks (optional)

o AC Bus Equipment

o AC Circuit Breakers

o AC Switchgear

o Control and Protection Systems

• DC Switchyards

o DC Link Capacitors

o DC Switchgear

o DC Circuit Breakers (optional; future) 

Voltage Source Converters

| Tufts University Module 1a Introduction to HVDC Technology
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Symmetric Monopolar HVDC VSC system [Module 7a]

HVDC VSC Scheme
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The development of alternating current in the beginning of the 20th 

century greatly influenced development of the electrical industry and 

our society as a whole. Today, high voltage direct current technology 

is experiencing a renaissance based on the on-going electrification 

and associated need to build out electric energy generation capacity.

This rapid development of HVDC technology is a testament to the 

growing need for efficient and reliable power transmission systems.

Module 1a is concluded with a set of questions and problems for the 

user to review and reinforce main learning points from this module.

Summary
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The introduction of commercial high voltage direct current 

(HVDC) technology allowed and made way for transmission of 

large quantities of power and interconnection of non-synchronous 

networks. HVDC is economically advantageous in case of long-

distance power transmission, in particular where cables have to 

be used, e.g., for longer water crossings. The objective of this 

module is to introduce HVDC technology, based on either line 

commutated converter (LCC) or voltage source converter (VSC) 

technology. This module will provide basic understanding of 

technical aspects of high voltage direct current vs. high voltage 

alternating current (HVAC) transmission as well as examples of 

installed HVDC schemes. While introducing basic concepts, main 

components, and configurations for both LCC and VSC HVDC 

systems, this introductory model will focus on aspects of HVDC 

schemes based on LCC technology. 

Abstract
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North America            South America



51National Grid | Tufts University Module 1a Introduction to HVDC Technology

China     Europe
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Problem 15: Calculate average dc-side voltage and plot 

voltage waveforms for a three-phase full-bridge thyristor (six 

pulse) line commutated converter, assuming it supplies 10 

kW of power with ac line side reactance Ls = 0 and ac three-

phase (line-to-line voltage VLL = 480 V (rms) at 60 Hz. 

a. The delay angle α = 0°
b. The delay angle α = 30°
c. The delay angle α = 150°

Solution: Use formula for V_dα in Section 1a-7.1 to calculate 

average dc-side voltage. Voltage (and current) waveforms 

can be found in many textbooks on HVDC, e.g., Chapter 3 in 

Kimbark’s book ‘Direct Current Transmission,’ Volume 1.

Problem #15
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Rectifier operation     Inverter operation

Problem #15

E.W. Kimbark, ‘Direct Current Transmission,’ Volume 1, Wiley Interscience, 1971 (Chapter 3, Fig. 6) 
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