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Abstract-This is a concise critical survey of the theory and prac-
tice relating to the ordered Gaussian elimination on sparse systems.
A new method of renumbering by clusters is developed, and its prop-
erties described. By establishing a correspondence between matrix
pattems and directed graphs, a sequential binary partition is used to
decompose the nodes of a graph into clusters. By appropriate order-
ing of the nodes within each cluster and by selecting clusters, one at
a time, both optimal ordering and a useful form of matrix banding are
achieved. Some results pertaining to the compatibility between
optimal ordering for sparsity and the usual pivoting for numerical
accuracy are included.

INTRODUCTION

THE ORDER in which the Gaussian elimination is performed
on sparse matrices affects the total number of new nonzero

elements generated in the course of the elimination and hence
the total computation time [1 ], [2]. Power system network prob-
lems involving complex valued matrices of order 2000Ur more are
now becoming common. Obviously it is not practical to store and
process the 8 X 106 elements of these matrices which, typically,
contain only about 6 X 103 nonzero elements. The exploitation of
sparsity cannot be overemphasized in these cases.

Recent investigations of the conservation of sparsity [3]-[161
have considered several practical ordering schemes. The rela-
tive performance of these schemes can be conjectured, but what
remains to be determined are their inherent characteristics which
will aid in making an a priori rating of their respective efficiencies.
Another area of related concern is that of matrix partitioning

into blocks (or submatrices) or, analogously, the problem of net-
work decomposition into clusters [15]- [22]. A practial solution to
this problem for large random matrices (or networks) is still an
open problem. Most researchers, particularly those of diakoptics
[16]-[18], [21], tend to assume that such a decomposition is
known in general, or at least given. Similar assumptions are en-
countered in the decompositions for the solution of the classical
"traveling salesman problem" (TSP) [23], [24], where the method
of diakoptics is also extensively used.

It is observed [211, however, that the overall computational
efficiency also depends on the actual decomposition employed in
any solution. Computational efficiency is generally greatest when
the tearing of networks is carried out at regions of minimum
coupling. This type of tearing is the subject of [201, where an
optimal scheme is described. This scheme assumes, without loss
of generality, that a list of preliminary optimal tearing is
known and then proceeds with an iterative method using
combinational logic to obtain larger clusters. This scheme might
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be quite useful in the packaging of electronic modules where
each module constitutes an optimal tearing. Even then the com-
binatorial logic will render the method impractical for large
systems.

Decomposition into subsystems of tree form is another recent
contribution [22]. This method does not yield minimally inter-
connected subsystems and has little to do with sparsity since
sparsity has never been a problem in Gauss-Seidel iterative
methods. It does show, as observed in [23], that the Gauss-Seidel
convergence is order sensitive, if it converges at all. For iterative
methods like Newton's which is widely accepted now, the tearing
philosophy reported in [22] is not sparsity conserving and may
increase solution times.

Judging from experience in allied problems such as the TSP
[24]-[28] the subject of optimally ordered Gaussian elimination
appears formidable. But to abandon further consideration of this
subject is neither science nor engineering. Consequently, the effort
to obtain practical optimal ordering algorithms must continue.
Although computationally inefficient at face value, they do pro-
vide a standard of performance by which the efficiency of near-
optimal schemes can be judged.
The objective of this paper will have been met if it helps the

reader to 1) select a suitable ordering scheme without further
experimentation, and 2) support his selection with sound,
mathematical, physical, and economic reasoning. The plan of the
paper is guided by the following considerations:

correspondence problem: matrix patterns versus graphs
a survey of existing ordering schemes
network clusters
network decomposition into clusters
a sequential binary partition (SBP) on networks
identification of clusters from SBP
ordering of clusters
optimal ordering
matrix banding schemes
computational results
conclusions.

MATRICES, GRAPHS, AND NETWORKS

In this section a basis is established for discussing indistinguish-
ably 1) the Gaussian elimination on matrices, 2) variable elimina-
tion in a system of algebraic equations, and 3) node elimination
in graphs or electrical networks.

Definition
An incidence matrix M of a matrix Y is defined to have the

following properties:

(1, if and only if yi1# 0
M

, otherwise.
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Since an element yij of a matrix Y ca-n equivalently be regarded as
the traffic (weight) on a path directed from node i to node ] of a
directed graph G, one can also talk of the incidence matrix of a
graph G provided that the reference,node is not included and yii is
the total weight on paths directed away from node i.

Definition
A square matrix Y or a directed graph G is "incidence sym-

metric" if the associated incidence matrix M is symmetric.

Classes of Matrices
For the purpose of the ensuing discussions, two classes of

matrices are recognized, namely:

incidence symmetric
incidence asymmetric.

A special class of incidence-symmetric matrices are the sym-
metric matrices Y for which yij = yji (see Fig. 1).

Node Elimination and Valency
In a connected graph, nodes communicate between one another

through the directed paths. Thus if directed paths exist between
nodes adjacent to a node k such that if k is removed, flow in the
graph is not interrupted, k can be eliminated without affecting
the remaining graph. If no equivalent direct paths existed prior
to elimination, then new ones have to be created. To illustrate
this point, consider the four-node graph of Fig. 2(a) in which
node 1 is to be eliminated. The neighbors of node 1 are 2 and 4.
There is traffic from 4 to 2 through node 1. So if node 1 is elim-
inated, a direct path from 4 to 2 must absorb this traffic. Since
there is no direct path from 4 to 2, a new one must be created as
shown in Fig. 2(b). Since the path 4-1-2 is a one-way path, the
newly created path must also be a one-way path. The elimina-
tion of node 2 in place of node 1 would have the result shown in
Fig. 2(c), while the elimination of 3 in place of 1 or 2 would have
the result shown in Fig. 2(d).

Fig. 3 shows more examples to illustrate the effect of elimi-
nating node 1 in a four-node graph.

Definition
The valency of a node (or a group of nodes) in a graph G is the

number of new paths added among the remaining set of nodes
as a result of the elimination of the node (or the group of nodes).

Definition
The valency of an ordering on a given subset of nodes of a

graph G is the total number of new paths generated in the process
of performing the node elimination in the order specified.
The reader may verify that the valency of the set of all the

nodes in a graph is zero, while the valency of an ordering on the
set of all the nodes of the graph may not necessarily be zero.
This distinction should serve to elucidate the meaning of the
last two definitions.

Lemma 1

There is a one-to-one correspondence between the valency of
a node of a given graph G and the number of new nonzero ele-
ments introduced into the associated incidence matrix by the
Gaussian elimination of that variable, which is associated with
the node, from the system of linear algebraic equations associated
with the graph G.
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Fig. 1. Examples of incidence matrices.
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Fig. 3. Effect of eliminating of node 1.
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Proof: To the matrix Y of the linear system of equations Yv =
c, there corresponds a directed graph Gy such that the coefficient
yij of the variable vj in the ith equation of the system is the
weight or traffic on the path directed from node i to node j of the
graph Gy. Given the graph Gy, the matrix Y can also be con-
structed. There is associated with the matrix Y or the graph Gy,
an incidence matrixM. It is thus sufficient to show that the elimin-
ation of node ] from the graph Gy has the same effect onM as the
elimination of variable vj from the system of equations Yv= c.
When a node j is eliminated, all paths incident on it are re-

moved from the graph. The traffic going through node j must be
redistributed as follows. For each pair of nodes (k,i) which are
neighbors of node , the path k -- i is created, widened, or un-
altered according to whether there existed a directed path k -*j

-, i and the path k -- i did not exist, the path k -Xi existed, or
there did not exist the path k -- j -t i. A similar argument holds
for the path i -, k. Widened and unaltered paths do not affect the
matrix M. But created paths add new nonzero terms in corre-
sponding locations of M.

In a Gaussian elimination, the variable vj is eliminated by
solving for it in equation j in terms of all other variables in equa-
tion j, and then substituting for v; in the lth equation (1 #j).
Now suppose mki = 0 prior to the elimination of vj. As in the pre-
vious paragraph, we seek a condition under which in1 # 0 after
the elimination of vj. Equation j must contain a term in vj and vk;
equation k must contain a term in vj but not in vi. In terms of
neighborhood, we say that equations j and i are neighbors and
also that equations j and k are neighbors. This implies that k and
i must be neighbors of j, and that there is a coupling from k to i
through ] in the absence of a direct coupling from k to i. Similar
reasoning holds if we consider Mik in place of Min. Thus the ele-
ments of the vector v play the role of nodes of a graph while the
coefficients yij of the elements of v play the role of directed paths
of the graph.
Remarks on Lemma 1: This lemma permits us to talk inter-

changeably of graphs and systems of equations in dealing with
ordered Gaussian elimination. If the associated incidence matrix
of a graph is symmetric, the graph may be topologically consid-
ered to be a set of nodes connected by arcs instead of directed
paths. While the use of arcs simplifies an actual computation, it
does not alter the basic logic. Most power network problems lend
themselves to "arc" analysis. In this paper, incidence-symmetric
systems will be assumed. This assumption is also implicit in
most ordering schemes in the current literature.

SURVEY OF EXISTING ORDERING SCHEMES

There are two primary objectives for an ordered Gaussian
elimination. The first and oldest seeks to control numerical ac-
curacy through a pivoting scheme; the second aims at con-
servation of matrix sparsity. In general, these objectives are not
compatible. However, the physical nature of large-scale electrical
networks and the numerical accuracy of modern computers tends
to eliminate the need for pivoting and to enhance the need for
the exploitation of sparsity. Therefore, this survey is restricted
to sparsity-conserving ordering schemes. Although there is ap-
preciable interest and activity in this area, there are few pub-
lished schemes which represent a definite contribution to the
state of the art.

M1atrix-Banding Schemes

The objective of the banding schemes is to restrict the ele-
ments of a matrix to a narrow band about the major diagonal [1 ],
[51 or, alternatively, about the minor (upper-right-to-lower-left)

Fig. 4. Forms
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Fig. 5. Basic networks for comparing banding schemes.

(a) Simple chain. (b) Simple star.

diagonal [13]. The purpose of these schemes is to isolate the non-
zero elements of a matrix into a relatively small region which can
be stored in computer memory in place of the entire matrix.
Fig. 4 illustrates the general pattern of banded matrices.

Definition

Given a set S of nodes of a connected graph G and a subset SI
of nodes, the minimal adjacent cut set (MACS) of Si are nodes
from S not in Si but which are neighbors of nodes in Si.
An algorithm for major-diagonal banding is stated as follows

[1]. Starting with an arbitrary node as number 1, the MACS of
node 1 are assigned the next sequence of numbers; the MACS of
the numbered nodes are subsequently assigned the next sequence
of numbers, and the process is continued until all the nodes of
the network are enumerated. This algorithm is weak because the
choice of the initial node is critical. There is no reason why the
initial node cannot be chosen with discretion as in the next
algorithm.
An algorithm for minor-diagonal banding is as follows [12]:

1) start with a bus having only one line and list it as node 1
2) list the MACS of node 1 as the last-numbered nodes
3) assign the next lower-valued numbers to the MACS of the

numberedl nodes
4) assign the next high-valued numbers to the MACS of the

numbered nodes
5) return to step 3).

This algorithm has a weak initialization because it presupposes
that there always exists a node with only one incident branch.
This weakness can be removed by selecting the node with the
least number of incident branches as the first node. Assuming
that the amended initialization is accepted by the two banding
algorithms described above, then these two algorithms can be
best compared by giving examples of networks for which they
tend to give a characteristically poor result. Consider the simple
chain and the simple star networks of Fig. 5.
The major-diagonal banding performs well for the simple

chain but not for the simple star, while the minor-diagonal band-
ing scheme gives a good result for the star but not for the simple
chain. Thus the minor-diagonal scheme is more suited to radial
networks while the major diagonal scheme is more suited to
cascade networks.
One major drawback of the banding schemes is that the banded

matrix may still be sparse whereas it tends to fill up solidly as
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the elimination process is carried out. Perhaps this obvious dis-
advantage can be reduced by optimal banding which is the
subject of [6]. Optimal banding does not however, appear com-
putationally attractive.

Pseudooptimal Ordering Schemes
Apart from the matrix-banding schemes previously described,

there are three other schemes [71 which aim at optimum con-
servation of matrix sparsity during Gaussian elimination. In
terms of sparsity conservation, these schemes are generally more
efficient than the banding schemes. The usual convention is to
refer to these as Scheme 1, Scheme 2, and Scheme 3 [71, [101.
Scheme 1: Number the rows of a matrix in ascending order of

the number of off-diagonal nonzero terms; if more than one row
has the same number of off-diagonal nonzero terms, select these
rows in any order.
Scheme 2: At each stage of an elimination, select that row

which has the fewest number of off-diagonal elements; if more
than one row has this minimum number, pick any one of them.
Scheme 3: At each stage of an elimination, select that node

which has the smallest valency; if more than one, node has this
property, pick any one of them.
There is, for each of these three schemes, a number of cases

for which optimal ordering is achieved. However, it is also possi-
ble from the specifications of each scheme to construct examples
for which the scheme gives a poor ordering. Such examples serve
to bring out the key characteristics of each scheme. All indica-
tions of relative efficiency can be deduced from these character-
istics except for the actual computation times.

Definition
A network is recognized by an ordering scheme if for any initial

numbering of the nodes of the network the scheme produces
an optimal ordering on the nodes.

An ordering scheme can therefore be considered as an input-
output logic machine, and, according to- the last defini-tion, an
optimal-ordering scheme has the schematic representation shown
in Fig. 6. Fig. 7 shows some elementary networks and the schemes
which recognize them. Either from Fig. 7 or from the definition of
these schemes, one can construct primitive network which are
not recognized by the schemes. Fig. 8 shows these networks.
A primitive network not recognized by Scheme 1 has 5 nodes

and 4 branches. A primitive network not recognized by Scheme 2
has 6 nodes and 10 branches or 7 nodes and 8 branches. A primi-
tive network not recognized by Scheme 3 has 9 nodes and 10
branches.
Judging from the number of nodes and branches in the primi-

tive networks, a hierarchy of the recognizing power of the three
schemes is apparent. Thus, in general, Scheme 1 will be less
optimal (in the sense of sparsity conservation only) than Scheme
3. Exceptions to this rule come from a special class of radial net-
works which are not typical of power networks. Results reported
for typical networks [10] confirm this ranking of the schemes.
A theoretical comparison of the three schemes is complete if

some evaluation of the computation times can be made. In gen-
eral, this will depend on the efficiency of coding and the amount
of storage space available. Scheme 1 should be much faster than
Scheme 2, and Scheme 2 should be much faster than Scheme
3.
The primitive networks which Schemes 2 and 3 do not recognize

are so similar that the sparsity conservation power of Scheme 2
will be expected to be quite close to that of Scheme 3. Thus for

AN
4 1 2 3 SCRAMBLED OPTIMAL 1 2 3 4
*0* *--* _ SCHEME _ * * * T

INPUT ORDERING

Fig. 6. Ordering scheme considered as input-output
logic machine.
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Fig. 7. Simple networks recognized by
schemes 1, 2, 3.

NOT RECOGNIZED
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Fig. 8. Primitive networks not recognized by
schemes 1, 2, 3.

typical power networks, Scheme 2 will be expected to be superior
to Scheme 3 if efficiency is measured in terms of the product of
solution time and the valency of the ordering produced. Typical
results [10] justify this assertion.

NETWORK CLUSTERS
There are a number of situations where it is advantageous to

manipulate subnetworks, one at a time, in place of the entire.
network.

1) There is a data-processing bottleneck, and overlay tech-
niques might be necessary.

2) Relatively small changes are made in parts of a given net-
work, and the effects of these changes are local to those parts
where they are made; for example, the addition or removal of a
transmission line in a power system network.

3) Some operations are to be performed on a large network,
and these operations are known to be more efficient if applied to.
subnetworks in succession; for instance, all optimal ordering
schemes including the algorithms for the solution of the (TSP).
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4) Operations on large sparse matrices involve the use of
operations on small submatrices which are both simple and known
a priori; for instance, the formulation of the economic-dispatch
problem [29] and the static-state estimation problem [30] in such
a way that power-flow solution matrices can be employed.
The definition of a cluster is an open matter and will generally

depend on a particular application. Informally, a cluster can be
defined as a subnetwork whose nodes are more closely related
with one another than with any other node outside the subnet-
work. Sharper definitions are evoked as the need arises.

NETWORK DECOMPOSITION INTO CLUSTERS

Decomposition Criteria
There are four distinct approaches to network partitioning.

These are

1) the method of natural division [5], [151
2) the method of artificial division [5], [15]
3) minimum flow capacity [221
4) minimum physical intertie [20].
The method of natural division tries to group the nodes of a

given network using functional attributes. For instance, sources
may be placed in one group, sinks in another, or perhaps nodes
at which certain constraints are imposed such as fixed voltages or
power-factor angles. The method of artificial division, on the
other hand, may group the nodes in such a way that a value
arrived at on the basis of certain considerations is not exceeded.
For instance, the nodes may be grouped so that each group con-
tains no more nodes than can be handled in a computer memory
using overlay techniques. Because of the admissible variety of
definitions for artificial and natural divisions, these methods are
too imprecise to evaluate.
The method of minimum flow capacity tries to partition the

network in such a way that nodes connected by heavy traffic
(high value of flow) are grouped together. The boundaries for this
kind of partition will vary considerably with the variation in the
birth and death of the sources and sinks. Furthermore, it is
generally not compatible with sparsity conservation. This ob-
servation does not rule out the possibility of the remarkable
effectiveness of this method in certain applications. An algorithm
for this method [22 ] is fast and has no size limitation.
The method of minimum physical intertie tries to reduce the

network into minimally intertied subnetworks. Practical algo-
rithms are lacking, but this criterion is sparsity conserving and,
therefore, is most relevant to the goals of this paper.

Network Forms in Terms of Clusters
For convenience, four types of basic networks are postulated

as shown in Fig. 9. A general network will be a mixed type.

Cluster Identification
The human eye can easily identify clusters from a good layout

of the network. In comparison, the effort expended in identifying
clusters by digital analyses is sometimes disproportionately high.
Thus whenever human judgement can be exercised it should be
fully exploited. Perhaps a hybrid computer consisting of a pat-
tern recognizer and a digital computer may be the final answer
to problems of efficient cluster identification.
Another possibility for cluster identification is by network

solutions using Kirchoff's laws for current and voltage distribu-
tions. These methods should be faster than search techniques

TYPE 1 TYPE 2

TYPE 3 ~~~TYPE 4

Fig. 9. Basic network forms in terms of clusters.

at comparable efficiency. The main drawback to analog schemes
using network solutions is in the choice of reference nodes which
appears critical.
An optimal digital scheme for cluster identification is given in

[20]. This scheme is not computationally efficient since it in-
volves enumeration of all potential grouping pairs. Thus one is
bound to inspect groups in the order of a factorial magnitude.

In the following, a new method is described which not only
identifies clusters but also provides enough information for
optimal ordering of a Gaussian elimination.

A SEQUENTIAL BINARY PARTITION (SBP)
ON NETWORKS

SBP Tableau

In order to facilitate the presentation of the identification
method for clusters in a network XZ, a special tableau which will
be employed in the construction of SBP will now be described.
Suppose we have a connected network T whose nodes are

numbered 1, 2, ..., N. Without loss of generality, we pick node
number 1 as the seed for SBP. The valency of eliminating node 1
is written as a superscript of the number 1. Suppose this valency
is v1, then we enter node 1 together with its valency on the first
line (line 0) of the tableau (see Fig. 10), and we also make the
same entry on line 1, under the heading NZ1. (D1t consists of the list
of nodes under the heading O1.) The adjacent neighbors of Sl are
listed on the second line (line 1) under the heading MACS.
Suppose these neighbors are nodes 5, 7, and 12. Clearly 5, 7, and
12 comprise the MACS of N,. The product of the valency of 9Z1
and the caTdinality of the MACS of 91, is recorded on line 1, under
the heading Index. The entry 3v1 is thus made.
The valency of eliminating 9l together with one of the nodes

in the MACS of It1 is written as a superscript of that particular
node in MACS. Thus we have V5, V7, and v12 as the valency of
eliminating the pairs of nodes {1,5}, {1,7}, and {1,12}, respec-
tively. The node in MACS with the smallest superscript is then
entered on line 2 under the heading eZI, in this case v7 is the small-
est of v5, V7, and v12. The smallest valency need not be unique; the
choice in that case is arbitrary. The construction continues in
this manner until all the nodes of the network are listed in 9l, (see
Fig. 11).

Properties of the SBP Tableau

The SBP tableau so constructed has a number of interesting
properties.

1) The right edge of the array under the heading MACS is a
wavy pattern with at least one peak. The example of Fig. 10 has
only one peak.
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Fig. 13. SBP tableau for network of Fig. 12
using different seed.

2) Each peak is formed by a monotonic rise and fall which,
respectively, indicates the entry into and exit from a strongly
interconnected group of nodes. Figs. 12 and 13 illustrate this
and the previous property. The superscript of valencies has been
omitted for simplicity.

If attention is focused on the rise and fall of the last peak,
one observes the following.

3) The rise and fall of the last peak corresponds to the last rise
and fall of the sequence of indices marked by an arrow.

4) The group of nodes in 9Z, which are subtended by the last
rise and fall in the sequence of indices form a cluster.

5) The interface nodes of a cluster are given by the MACS
preceding the last rise in the sequence of indices; the interior nodes
of the cluster are those nodes which are not interface nodes.

Definition
An initial segment of an optimal ordering is a group of nodes

which have the property that their optimally ordered elimination
followed by an optimally ordered elimination of the remaininlg
nodes of the network constitutes an optimally ordered elimina-
tion of all the nodes of the network.

6) The interior nodes of a cluster constitute an initial segment
of an optimal ordering for Gaussian elimination.

Definition

A cluster is recursively defined as follows:

1) it conforms with property 4),
2) it conforms with property 6).

A group of nodes do not belong to a cluster unless by virtue of
1) and 2).

From the tableaux of Figs. 12 and 13, one deduces that the set
of nodes {14,15,12,13,11,10} belong to a cluster and also that
{9,14,15,12,13,11,10} also belong to a cluster. Clearly, the first
cluster is a proper subset of the second, and these two intersect-
ing clusters were produced by two different seeds. The exclusion
of node {9} from the first cluster is a "seed effect" and could for
certain networks result in partial clusters.

Correction for Seed Effect
To correct for the seed effect, we start with the partial cluster

at the end of the tableau. Each node in the MACS of the partial
cluster is considered as a candidate for inclusion into the partial
cluster. A new partial cluster is created if there exists a node in
the MACS which will result in a decrease of the preentry index of
the cluster as a result of its inclusion into the partial cluster.
This procedure is iterated until there is no further decrease in the
preentry index. It ensures that the cluster picked from the SBP
tableau has all the desired properties of a cluster as defined.
To illustrate the correction procedure, consider the first partial

cluster {14,15,12,13,11,10} given by the first tableau. The MACS
of this partial cluster is { 9 , the set consisting of node 9. If node 9
is included into the partial cluster, we get {9,14,15,12,13,11,10}.
The valency of the complement of {9,14,15,12,13,11,101 is 0,
and hence its index is 0. The entry index of the original cluster
is 12, and the preentry index is 2. Since 0 < 2, node 9 is made part
of the cluster with an entry index 2. Repetition of the procedure
yields an index 0 which is not less than the preentry index 0.
Thus the correction for seed-effect is complete, and the final
cluster is {9,13,15,12,13,11,10} which is the same as the cluster
produced when the seed is node 3.

IDENTIFICATION OF CLUSTERS FROM SBP

As has already been outlined, the identification of the clusters
defined in the last section consists of 1) identifying the partial
cluster from the SBP, and 2) correcting the partial cluster for any
seed effect to obtain a cluster. The cluster is then eliminated from
the network. The construction of the SBP tableau, the identifica-
tion of a cluster, and the elimination of the cluster are repeated
on the remaining network until the residual network is a cluster
by itself, i.e., the SBP curve has only one peak.

This method is very good for tearing a network into two or
more minimally interconnected subnetworks. Networks with large
well-defined clusters are shown in Fig. 14; all the clusters can be
isolated in one pass.
Most electric power networks consists of large clusters con-

taining smaller subelusters. Since a subeluster is a cluster, SBP
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INDEXYIIf MACS

2
2
0
0
0

Fig. 14. Network of three clusters.

will tend to isolate the small subelusters for a given seed. This
tendency renders SBP inefficient for isolating clusters that con-
sist of many small subelusters. However, approximate methods
using SBP appear both promising and practical for tearing
large networks into subnetworks that have small interconnections.
For most networks, the approximate scheme produces the same
results as the exact scheme and is in addition much faster. For the
46-node network of Fig. 14, the approximate method will pro-
duce the same result as the exact method.
The approximate scheme consists of constructing the SBP,

but the index used is the number of nodes in MACS instead of
valency times the number of nodes in MACS. The elimination of
the need to find valencies accounts for the great improvement
in speed. There is also no correction for seed effect.

ORDERING OF CLUSTERS
An ordering of clusters can be achieved by any scheme the

user wishes to employ. In terms of overall efficiency, Scheme 2
has already been recommended, but if the clusters are in the
neighborhood of 100 nodes or less, Scheme 3 may be employed
for better ordering.

OPTIMAL ORDERING
An ordering is optimal if its valency is less than or equal to

that of all other orderings. Since the optimal ordering problem
can be formulated as a TSP (if we define the distance dij of going
from node i to node j as the valency of eliminating node i fol-
lowed by the elimination of node j), it can be solved by such tech-
niques as dynamic programming [31 ] and integer programming
(method of branch and bound [26 ] in particular). But because the
distance matrix of the ordering problem varies with partial order-
ings, the existing algorithms for TSP are not directly applicable.
Furthermore, the existing algorithms are extremely slow and do
not appear practical for anything above 50 nodes.
SBP can be exploited for optimal ordering. Consider the SBP

for the primitive networks, as shown in Fig. 15.

Theorem 1

The following results are true.
1) There exists no network having less than 5 nodes or having

less than 4 branches which is not recognized by Scheme 1.
2) There exists no network having less than 6 nodes or less

than 8 branches which is not recognized by Scheme 2.
3) There exists no network having less than 9 nodes or less

than 10 branches which is not recognized by Scheme 3.

Proof: (Left to the reader.) Hint: pretend that you can reduce
the existing primitive networks by modifying their configurations
and then arrive at a contradiction.

Consider the graph of Index versus the line or row number of
the SBP tableau. Let this be called an index graph. Since the
primitive networks exhibit the essential characteristics of the
ordering schemes (this is how they were constructed in the first
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Fig. 15. Primitive networks and their SBP tableau.
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Nl 1C 1
I

Fig. 16. Decompositions for DI and '.

place) the following conclusion follows from the SBP tableau of
the basic networks: If the index graph has no more than one peak
and the nodes are either less than 9 or have less than 10 inter-
connecting branches, then Scheme 3 will order it optimally. When
there are more than 9 nodes and more than 10 branches then
Scheme 3 must be employed on subgroups of less than 9 nodes
which form initial segments. Variants of this principle also exist.
We have so far shown 1) that the interior nodes of clusters

constitute an initial segment of an optimal ordering and 2) that
networks consisting of exactly one cluster (index graph has one
peak) are recognizable by Scheme 3. It remains to be shown how
the interior nodes of a cluster which is connected to one or more
clusters can be ordered.

Consider a network 91 consisting of connected components Cl
and C2 which are interconnected as shown in Fig. 16. Suppose C2
is identified as a cluster from a SBP tableau. Then let F and I be,
respectively, the interface and interior nodes of C8. (Note that the
seed of the tableau producing C2 must be in Cl, and that by
construction, C1 is connected.)

It is easy to verify that 91' [Fig. 16(c),(d) ] is a one-cluster net-
work and hence can be reordered by Scheme 3. The elimination of
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{1 } in ST' or C1 in OT makes the subnetwork, whose nodes are F, a
complete network. From this fact and the cascade form of O', an
optimal elimination of I is consistent with the optimal ordering of
I 1 } U F U L. Thus the strategy is to order the nodes of DI' op-
timally in the following manner. 1) Select a node by Scheme 3; in
case of conflict give priority to {1}, F, I in that order; if an ele-
ment of I is selected, let it be the one closest to F and call it
I,. 2) Select another element; if an element of F is selected, call it
F1; note that selection of F1 need not occur unless { 1 } has been
selected in 1); if an element of I is selected, call it I2. The final
sequence could thus be (1,F1J,I,J2,F2,F3,J3,14). The optimal order-
ing desired is (I1,12,I,34,F3,F2,F1,1). The original elements of I are
eliminated in the order which they appear in this ordering.

Theorem 2

If for a given network, a particular node is restricted to be last
in an ordering, an optimal ordering subject to this restriction is
also optimal without the restriction.

Proof: Consider that a SBP tableau specifies the decomposition
of a network 9T shown in Fig. 16(b) using the restricted node as
the seed. (Correction for seed effect must be performed.)

If the restricted node is in Cl U F, eliminate I and construct
another tableau using the same node as the seed. If the node is in
I, eliminate the interior nodes of C1 (which is a cluster of clusters)
and construct another tableau using the restricted node as the
seed. If the residual network constitutes one cluster, then we
would have the situation of Fig. 16(e). The elimination of I leaves
node 1 (the restricted node) as the last node in the ordering.
A direct consequence of Theorem 2 is the following generaliza-

tion.

Theorem S

In any graph, the nodes of any complete subgraph can be last
eliminated in an optimally ordered elimination.

Matrix Pivoting
There are situations where a particular node of a given network

is required to be numbered last. According to Theorem 2 and 3,
such a specification is fully compatible with optimal ordering.
This compatibility can be exploited for partial pivoting on ele-
ments of a matrix. At each stage of an elimination one can re-
quire that a certain node be eliminated last; if this node is the
one whose diagonal entry is zero, one can see that by postponing
its elimination the problem of dividing by zero is avoided.
Theorem 3 must be used to determine how many nodes can be
eliminated last.
Example: To illustrate the preceding results, consider the

network of Fig. 17.
The associated index graph has one peak, and consequently,

Scheme 3 recognizes it in the absence of any constraint. Now
suppose we constrain node 1 to be the last-numbered node. Using
Scheme 3, we get the ordering (1,7,3,5,4,2,6). In the tradition of
a/, we would get the ordering (3,5,4,7,2,6,1) representing (I,F,1).

INDEX X MACS 2 3

3 267
9 7 2 64 4
8 4 2 63 5
3 5 2 63
O 6 2 3 6 5

O 2 N'

Fig. 17. Example of one-cluster network W'.

(a) (b) (c)

(d) (e)
Fig. 18. Cluster elimination and matrix banding. (a) Type 1 net-

work. (b) Seed is always in C1 (produces major diagonal banding).
(c) Seed is first in C1, second in C2, third in C2. (d) Type 4 network.
(e) To obtain I2, IS, I4, Is, II, UFi seeds are, respectively, in C4,
F2, F3, F4rF52F .

This algorithm is optimal and is independent of any existing
ordering scheme. Thus the optimal ordering for each set I of
interior nodes may be accomplished by the best method available.
With suitable adjustments, Scheme 3 is found to give optimal
ordering on I.

MATRIX BANDING
The location of the clusters identified from SBP tableaux can

be controlled by sequencing the choice of seeds in a certain
way.
Let C denote a cluster, and let F and I denote its interface and

interior nodes, respectively. Fig. 18 shows the effect of sequenc-
ing seeds for a type 1 network. For a type 4 network the effect
of seed selection is more evident. The type of banding which
postpones the numbering of interface nodes looks like an anchor
and may be described as an anchor banding. It is very desirable
for radial-type systems.

COMPUTATIONAL RESULTS

Fig. 19 demonstrates the application of the optimal-numbering
routine. Its ability to identify clusters for anchor banding of the
associated matrices is evident. The networks shown are not
recognized by Schemes 1, 2, or 3 alone. Computation times are
for CDC 6400 computer.
A 128-node network taken from a real system took 19.070

seconds to renumber.

Optimal-Ordering Algorithm
1) Construct the SBP tableau using any node as the seed.
2) Correct for seed effect.
3) Identify a cluster and construct the associated 9t' network.
4) Eliminate I from an optimal ordering (I,F,1) on OV'.
5) If the remaining nodes consist of { 1 } U F, then add the

ordering of { 1 } U F; otherwise return to 1).

CONCLUSION

What is covered in this paper can be correctly described as the
theory of optimally ordered Gaussian elimination on sparse sys-
tems employing partial pivoting. A critical survey of ordering
conventions, philosophies, and practices indicates that Scheme 2
is the most efficient in terms of computation time and optimality.
However, Scheme 2 does not identify clusters directly. Since
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2, 8, 13,7, 10, 4, 5, 9, 6, 11, 14, 12; 17, 23, 20, 24,
19, 25, 27, 22, 21, 26, 28, 29; 32, 34, 37, 41, 38,

40, 43, 35, 36, 39, 44, 42; 31, 45, 30, 18, 33, 15,
3, 1, 46, 16.

VALENCY 84

TIME .948 S

(a)

12, 10, 9, 8; 18, 16, 15, 14; 24, 22, 21, 20; 5,
17, 13, 2, 7, 11, 6, 3, 4, 19, 23, 1.
VALENCY 15

TIME .302 S

(b)

12, 10, 3; Is, 16, 2; 7, 5, 1; 4, 8, 6,

23, 21, 19, 17,15, 26, 22, 20, 27, 24,

14,25, 11,13, 9.

VALENCY 35

TIME .444 S

(C)
Fig. 19. Computational results (semicolon demarcates

interior nodes).

clusters are shown to be compatible with optimal ordering, ability
to renumber cluster by cluster would be a desirable property of a
renumbering Scheme.
A method of renumbering by clusters is developed which

employs Scheme 3. It is remarkably efficient in identifying well-
defined clusters. It also ensures optimal ordering. Partial pivoting
is shown to be compatible with optimal ordering, and this may be
very useful in situations where the diagonal of matrices tends to
vanish in the course of an elimination.
Although the optimal-ordering algorithm reported in this

paper solves 100-node problems efficiently (less than 20 seconds
in CDC 6400), it is not fast enough to be practical for large sys-
tems. But since the idea of tearing networks into minimally
interconnected subnetworks is still a useful one, a pseudo-
clustering Scheme using Scheme 2 is described. This scheme is
fast and is applicable in a practical sense to a large system.
While there is clear indication that optimal ordering is not yet

practical beyond 200 nodes, the problem of finding fast optimal-
ordering schemes is still pressing. Even the inefficient existing
methods can be used in small-sized systems to test the relative
performance of pseudooptimal schemes.
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Dynamic Storage and Retrieval in

Sparsity Programming
E. C. OGBUOBIRI, MEMBER, IEEE

Abstract-It is shown that sparsity programming is no more than a

substitution of a higher level microcompiler for a basic microcompiler
in the storage retrieval and processing involving elements of linear
and multidimensional arrays. The substitution property of micro-
compilers permits the coding of a program first in a natural language
using formal subscripts and then converting the conventional coding
into a sparsity coding after the conventional coding has been fully de-
bugged. This two-stage process not only preserves coding efficiency
but also will generally shorten the overall program debugging time.
It additionally provides for division of labor between the conven-

tional coder and the sparsity coder. A formal list structuring strategy
which has built-in "garbage collection" for sparsity programming is
described in detail. This strategy constitutes a conversion guide
from conventional to sparsity programming.

INTRODUCTION

M ANY industrial problems tax the memory capacity of
existing computers. Although more and more storage

facilities become available with time, it is well beyond doubt also
that problem sizes grow at a faster rate. For a class of problems
whose solution involves the manipulation of elements of large
but sparse arrays (such as matrices), it has been demonstrated

[1] that storage and processing of only the nonzero elements of
such arrays not only promotes efficient utilization of available
space but also enhances the overall speed with which a solution

Paper 69 TP 2-PWR, recommended and approved by the Power
System Engineering Committee of the IEEE Power Group for pre-
sentation at the IEEE PICA Conference, Denver, Colo., May 18-21,
1969. Manuscript submitted January 13, 1969; made available for
printing August, 1, 1969.
The author is with the Bonneville Power Adninistration, Port-

land, Ore. 97208.

is obtained. Thus, even when one has plenty of space for a given
class of problems, one should also consider sparsity coding in
preference to a conventional coding as a means of reducing com-
puter time.
The author is not immune to the reservations of prospective

sparsity programmers. The idea is always there. The goal is
around the corner. However the path to it is complicated. The
difficulty with sparsity coding in scientific programming appears
to lie in the following:

1) there is more to it than knowledge of FORTRAN language,
2) the program logic is more involved, and hence more de-

bugging time is expected.

Certain applications require that the creator of a problem or
the inventor of an algorithm play the role of a programmer and
vice versa. But this is an ideal combination of talents. Sometimes
the creator knows just enough conventional programming to be
able to code his problemi in a smaller scale. Would it not be help-
ful to find a programmer who does not understand the totality of
the program logic but who has the skill to expand the size of the
existing program. This would, in fact, amount to a division of
labor that does not involve any loss in efficiency.

This paper purports to formalize sparsity programming in such
a way that the subject will become less mysterious to most con-
ventional coders. By introducing and emphasizing a systematic
approach, the task of sparsity programming will be much easier
both conceptually and in practice. Although rectangular arrays
are implied in the text, the extension to higher dimensional
arrays is obvious. In the interest of the majority of users, the
FORTRAN language is assumed throughout the text. The works of
Byrnes [2], Randell and Kuehner [3], and Jodeit [4] are very
inspiring.
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