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Production Costing (Chapter 8 of W&W) 

 

1.0 Introduction 

 

Production costs refer to the operational costs 

associated with producing electric energy. The most 

significant component of production costs are the fuel 

costs necessary to run the thermal plants.  

 

A production cost program, also referred to as a 

production cost model, is widely used throughout the 

electric power industry for many purposes: 

 Long-range system planning: Here, it is used to 

simulate a single future year following the planned 

expansion. For example, the Midwest ISO used a 

production cost program to understand the effect 

on energy prices of building HVDC from the 

Midwest US to the East coast.  

 Fuel budgeting: Many companies run production 

cost programs to determine the amount of natural 

gas and coal they will need to purchase in the 

coming weeks or months. 

 Maintenance: Production cost programs are run to 

determine maintenance schedules for generation. 

 Energy interchange: Production cost programs are 

run to facilitate negotiations for energy interchange 

between companies. 



 2 

There are two essential inputs for any production cost 

program: 

1. Data characterizing future load 

2. Data characterizing generation costs, in terms of: 

a. Heat rate curves and 

b. Fuel costs 

All production cost programs require at least the 

above data. Specific programs will require additional 

data depending on their particular design. 

 

The information provided by production costing 

includes the annual costs of operating the generation 

facilities, a cost that is dominated by the fuel costs 

but also affected by the maintenance costs. 

Production costing may also provide more time-

granular estimates of fuel and maintenance costs, 

such as monthly, weekly, or hourly, from which it is 

then possible to obtain annual production costs. 

 

A simplified way to consider a production cost 

program is as an hour-by-hour simulation of the 

power system over a duration of T hours, where at 

each hour,  

 The load is specified; 

 A unit commitment decision is made; 

 A dispatch decision is made to obtain the 

production costs for that hour 
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The total production costs is then the sum of hourly 

production costs over all hours 1,…,T. 

 

Some production programs do in fact simulate hour-

by-hour operation in this manner. An important 

characterizing feature is how the program makes the 

unit commitment (UC) and dispatch decisions.  

 

The simplest approach makes the UC decision based 

on priority ordering such that units with lowest 

average cost are committed first. Startup costs are 

added when a unit is started, but those costs do not 

figure into the optimization. 

 

The simplest approach for making the dispatch 

decision is referred to as the block loading principle, 

where each unit committed is fully loaded before the 

next unit is committed. The last unit is dispatched at 

that level necessary to satisfy the load. 

 

Greater levels of sophistication may be embedded in 

production cost programs, as described below: 

 Unit commitment and dispatch: A full unit 

commitment program may be run for certain blocks 

of intervals at a time, e.g., a week. 

 Hydro: Hydro-thermal coordination may be 

implemented. 
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 Network representation: The network may be 

represented using DC flow and branch limits. 

 Locational marginal prices: LMPs may be 

computed. 

 Maintenance schedules: Maintenance schedules 

may be taken into account. 

 Uncertainty: Load uncertainty and generator 

unavailability may be represented using 

probabilistic methods. This allows for computation 

of reliability indices such as loss of load 

probability (LOLP) and expected unserved energy 

(EUE). 

 Security constraints may be imposed using LODFs. 

 

Below are some slides that Midwest ISO uses to 

introduce production cost models. 
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What is a Production Cost Model?

 Captures all the costs of operating a fleet of 
generators

• Originally developed to manage fuel inventories 
and budget in the mid 1970’s

 Developed into an hourly chronological 
security constrained unit commitment and 
economic dispatch simulation

• Minimize costs while simultaneously adhering to 
a wide variety of operating constraints.

• Calculate hourly production costs and location-
specific market clearing prices.
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What Are the Advantages of 
Production Cost Models?

 Allows simulation of all the hours in a year, not just 
peak hour as in power flow models.

 Allows us to look at the net energy price effects 
through

• LMP’s and its components.

• Production cost.

 Enables the simulation of the market on a forecast 
basis

 Allows us to look at all control areas simultaneously 
and evaluate the economic impacts of decisions.
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Disadvantages of Production 
Cost Models

 Require significant amounts of data

 Long processing times

 New concept for many Stakeholders

 Require significant benchmarking

 Time consuming model building process

• Linked to power flow models

 Do not model reliability to the same extent 
as power flow
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Production Cost Model vs. 
Power Flow

 Production Cost Model  Power Flow

 SCUC&ED:    
very detailed

 Hand dispatch (merit 
Order)

 All hours  One hour at a time

 DC Transmission  AC and DC

 Selected security 
constraints

 Large numbers of 
security constraints

 Market analysis/ 
Transmission 
analysis/planning

 Basis for transmission 
reliability & 
operational planning

 
2.0 Commercial grade production costing tools 
 

We will describe in more detail the construction of 

production costing programs later. Here we simply 

mention some of the commercially available 

production costing tools.  

 

The Ventyx product Promod incorporates details in 

generating unit operating characteristics, transmission 

grid topology and constraints, unit commitment/ 

operating conditions, and market system operations. 

Promod can operate on nodal or zonal modes 

depending on the scope, timeframe, and simulation 

resolution of the problem. Promod is not a 

forecasting model and does not consider the price and 

availability of other fuels.  
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The ADICA product GTMAX, developed by 

Argonne National Labs, can be employed to perform 

regional power grade or national power development 

analysis. GTMax will evaluate system operation, 

determine optimal location of power sources, and 

assess the benefits of new transmission lines. GTMax 

can simulate complex electric market and operating 

issues, for both regulated and deregulated market.  

 

The PowerCost, Inc. product GenTrader employs 

economic unit dispatch logic to analyze economics, 

uncertainty, and risk associated with individual 

generation resources and portfolios. GenTrader does 

not represent the network.  

 

PROSYM is a multi-area electric energy production 

simulation model developed by Henwood energy Inc. 

It is an hourly simulation engine for least-cost 

optimal production dispatch based on the resources’ 

marginal costs, with full representation of generating 

unit characteristics, network area topology and 

electrical loads. PROSYM also considers and 

respects operational and chronological constraints; 

such as minimum up and down times, random forced 

outages and transmission capacity. It is designed to 

determine the station generation, emissions and 
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economic transactions between interconnected areas 

for each hour in the simulation period. 

 

ABB produced the software called “GridView,” 

illustrated below [1]. 

 
 

PLEXOS, from Plexos Solutions, is a versatile 

software system that performs production cost 

simulation and other functions.  

 

It is interesting to note that Global Energy Solutions 

(GES) in 2002 purchased Henwood Associates 

(owner of Prosym), then Ventyx (owners of Promod) 

purchased GES in 2008, then ABB (owners of 

Gridview) purchased Ventyx. At some point, Mark 

Henwood went to work for Plexos Solutions (see 

[2]). Energy Exemplar now owns Plexos. 
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3.0 Probability models 

Key to use of production cost models is the ability to 

represent uncertainty in load and in generation 

availability.  

 

3.1 Load duration curves 

A critical issue for planning is to identify the total 

load level for which to plan. One extremely useful 

tool for doing this is the so-called load duration 

curve, which is formed as follows. Consider that we 

have obtained, either through historical data or 

through forecasting, a plot of the load vs. time for a 

period T, as shown in Fig. 3 below. 
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Fig. 3: Load curve (load vs. time) 

 

Of course, the data characterizing Fig. 3 will be 

discrete, as illustrated in Fig. 4. 
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Fig. 4: Discretized Load Curve 

 

We now divide the load range into intervals, as 

shown in Fig. 5. 
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Fig. 5: Load range divided into intervals 

 

This provides the ability to form a histogram by 

counting the number of time intervals contained in 

each load range. In this example, we assume that 

loads in Fig. 5 at the lower end of the range are “in” 

the range. The histogram for Fig. 5 is shown in Fig. 

6. 
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Fig. 6: Histogram 

 

Figure 6 may be converted to a probability mass 

function, pmf, (which is the discrete version of the 

probability density function, pdf) by dividing each 

count by the total number of time intervals, which is 

23. The resulting plot is shown in Fig. 7. 
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Fig. 7: Probability mass function 

 

Like any pmf, the summation of all probability values 

should be 1, which we see by the following sum:  

0.087+0.217+0.217+0.174+0.261+0.043=0.999 

(It is not exactly 1.0 because there is some rounding 

error). The probability mass function provides us 

with the ability to compute the probability of the load 

being within a range according to: 
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 
Range in L

LLoadRange)  within(Load )Pr(Pr   (2) 

We may use the probability mass function to obtain 

the cumulative distribution function (CDF) as: 





Value  L

LLoadValue) (Load )Pr(Pr    (3) 

From Fig. 7, we obtain: 
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Plotting these values vs. the load results in the CDF 

of Fig. 8. 
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Fig. 8: Cumulative distribution function 

 

The plot of Fig. 8 is often shown with the load on the 

vertical axis, as given in Fig. 9. 
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Fig. 9: CDF with axes switched 

 

If the horizontal axis of Fig. 9 is scaled by the time 

duration of the interval over which the original load 
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data was taken, T, we obtain the load duration curve. 

This curve provides the number of time intervals that 

the load equals, or exceeds, a given load level. For 

example, if the original load data had been taken over 

a year, then the load duration curve would show the 

number of hours out of that year for which the load 

could be expected to equal or exceed a given load 

level, as shown in Fig. 10a. 
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Fig. 10a: Load duration curve 

Load duration curves are useful in a number of ways. 

• They provide guidance for judging different 

alternative plans. One plan may be satisfactory 

for loading levels of 90% of peak and less. One 

sees from Fig. 10a that such a plan would be 

unsatisfactory for 438 hours per year (5% of the 

time).  

• They identify the base load. This is the value that 

the load always exceeds. In Fig. 10a, this value is 

5 MW. In Fig. 10b, which shows the LDC for 

the 2003 MISO region, the value is 40GW. 
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Fig. 10b: MISO LDC for 2003 

 

 

• They provide convenient calculation of energy, 

since energy is just the area under the load 

duration curve. For example, Fig. 11 shows the 

area corresponding to the base load energy 

consumption, which is 5MWx8760hr=43800 

MW-hrs. 
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Fig. 11: Area corresponding to base load energy 

consumption 

 

• They allow illustration of generation 

commitment policies and corresponding yearly 

unit energy production, as shown in Fig 12, 

where we see that the nuclear plant and coal 

plant #1 are base loaded plants, supplying 26280 

MWhrs and 17520 MWhrs, respectively. Coal 

plant #2 and NGCC plant #1 are the mid-range 

plants, and CT #1 is a peaker.  
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Fig. 12: Illustration of Unit commitment policy 
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Load duration curves are also used in reliability and 

production costing programs in computing different 

reliability indices, as we will see in Sections 4 and 5. 

 

3.2 Generation probability models 

 

We consider that generators obey a two-state model, 

i.e., they are either up or down, and we assume that 

the process by which each generator moves between 

states is Markov, i.e., the probability distribution of 

future states depends only on the current state and not 

on past states, i.e., the process is memoryless.  

 

In this case, it is possible to show that unavailability 

(or forced outage rate, FOR) is the “steady-state” (or 

long-run) probability of a component not being 

available and is given by  

 




 qU       (4) 

and the availability is the long-run probability of a 

component being available and is given by 






 pA       (5) 

where λ is the “failure rate” and μ is the “repair rate.”  

See www.ee.iastate.edu/~jdm/ee653/U16-inclass.doc 

for complete derivation of these expressions. 

http://www.ee.iastate.edu/~jdm/ee653/U16-inclass.doc
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Substituting λ=1/MTTF and μ=1/MTTR, where 

MTTF is the mean time to failure, and MTTR is the 

mean time to repair, we get that  

MTTRMTTF

MTTR
qU


      (6) 

MTTRMTTF

MTTF
pA


      (7) 

The probability mass function representing the 

outaged capacity (8a) or available capacity (8b) 

corresponding to unit j is then given as fDj(dj), 

expressed as 
)()()( jjjjjjDj Cdqdpdf      (8a) 

)()()( jjjjjjDj Cdpdqdf      (8b) 

and illustrated by Fig. 13 (we will use them both). 

 

Aj=pj 

fDj(dj) 

Outaged capacity, dj Cj 0 

Uj=qj 
Uj=qj 

fDj(dj) 

Available capacity, dj Cj 0 

Aj=pj 

Fig. 13: Two state generator outage model 

Unavailability U expresses the fraction of time (not 

including maintenance time) the generator has been 

forced out of service. Availability A is the fraction of 

time (not including maintenance time) the generator 

is available for service. U+A=1. 
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4.0 Preliminary definitions 

Let’s characterize the load shape curve with t=g(d), 

as illustrated in Fig. 14. It is important to note that the 

load shape curve characterizes the (forecasted) future 

time period and is therefore a probabilistic 

characterization of the demand. 

 

t 

t=g(d) 

T 

dmax 

Demand, d (MW) 
 

Fig. 14: Load shape t=g(d) 

Here: 

 d is the system load 

 t is the number of time units in the interval T for 

which the load equals or exceeds d and is most 

typically given in hours or days 

 t=g(d) expresses functional dependence of t on d 
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 T represents, most typically, a year but can be any 

interval of time (week, month, season, years). 

The cumulative distribution function (cdf) is given by 

T

dg

T

t
dDPdFD

)(
)()(    (9) 

One may also compute the total energy ET consumed 

in the period T as the area under the curve, i.e., 

   (10) 

The average demand in the period T is obtained from 


maxmax

00

)()(
11 d

D

d

Tavg
dFdg

T
E

T
d   (11) 

Now assume the planned system generation capacity, 

i.e, the installed capacity, is CT, and CT<dmax. This is 

an undesirable situation, since we will not be able to 

serve some demands, even when there is no capacity 

outage! Nonetheless, it serves well to understand the 

relation of the load duration curve to several useful 

indices. The situation is illustrated in Fig. 15. 

  

max 

0 

) ( 

d 

T 
dλ  g E 



 21 

 

t 

tC 

CT 

t=g(d) 

T 

dmax 

Demand, d (MW) 
 

Fig. 15: Illustration of Unserved Demand 

Then, under the assumption that the given capacity 

CT is perfectly reliable, we may express three useful 

reliability indices: 

 Loss of load expectation, LOLE: the expected 

number of time units that load will exceed capacity 

)(
TC

CgtLOLE
T

    (12) 

 Loss of load probability, LOLP: the probability that 

the demand will equal or exceed capacity during T: 

)()( TDT CFCDPLOLP    (13) 

We note that the condition D=CT is assumed here 

to represent a loss of load situation, which would 

be a conservative assumption.  
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One may think that, if dmax>CT, then LOLP=1. 

However, if FD(d) is a true probability distribution, 

then it describes the event  D>CT with uncertainty 

associated with what the load is going to be, i.e., 

only with a probability. One can take an alternative 

view, that the load duration curve is certain, which 

would be the case if we were considering a 

previous year. In this case, LOLP should be 

thought of not as a probability but rather as the 

percentage of time during the interval T for which 

the load equals or exceeds capacity.  

It is of interest to reconsider (9), repeated here for 

convenience: 

T

dg

T

t
dDPdFD

)(
)()(    (9) 

Substituting d=CT, we get: 

T

Cg

T

t
CDPCF T

TTD

)(
)()(    (*) 

By (12), g(CT)=LOLE; by (13), P(D>CT)=LOLP, 

and so (*) becomes: 

TLOLPLOLE
T

LOLE
LOLP   

which expresses that LOLE is the expectation of 

the number of time units within T that demand will 

exceed capacity. 
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 Expected demand not served, EDNS: If the average 

(or expected) demand is given by (11), then it 

follows that expected demand not served is:  


max

)(
d

C
D

T

dFEDNS     (14) 

which would be the same area as in Fig. 15 when 

the ordinate is normalized to provide FD(d) instead 

of t. Reference [3]  provides a rigorous derivation 

for (14). 

 Expected energy not served, EENS: This is the 

total amount of time multiplied by the expected 

demand not served, i.e.,  


maxmax

)()(
d

C

d

C
D

TT

dgdFTEENS   (15) 

which is the area shown in Fig. 15. 

4.1 Effective load approach 

The notion of effective load is used to account for the 

unreliability of the generation, and it is essential for 

understanding the view taken in [3].  

The basic idea is that the total system capacity is 

always CT, and the effect of capacity outages are 

accounted for by changing the load model in an 

appropriate fashion, and then the different indices are 

computed as given in (12), (13), (14), and (15). 
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A capacity outage of Ci is therefore modeled as an 

increase in the demand, not as a decrease in capacity! 

We have already defined D as the random variable 

characterizing the demand. Now we define two more 

random variables: 

 Dj is the random increase in load for outage of unit i. 

 De is the random load accounting for outage of all 

units and represents the effective load. 

Thus, the random variables D, De, and Dj are related: 




N

j
je

DDD
1

   (16) 

It is important to realize that, whereas Cj represents 

the capacity of unit j and is a deterministic value, Dj 

represents the increase in load corresponding to 

outage of unit j and is a random variable. The 

probability mass function (pmf) for Dj is assumed to 

be as given in Fig. 16 below, i.e., a two-state model. 

We denote the pmf for Dj as fDj(dj). It expresses the 

probability that the unit experiences an outage of 0 

MW as Aj, and the probability the unit experiences an 

outage of Cj MW as Uj. 
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Fig. 16: Two state generator outage model 

Recall from probability theory that the pdf of the sum 

of two independent random variables is the 

convolution of their individual pdfs, that is, for 

random variables X and Y, with Z=X+Y, then 









 dfzfzf YXZ )()()(
   (17) 

Similarly, we obtain the cdf of two random variables 

by convolving the cdf of one of them with the pdf (or 

pmf) of the other, that is, for random variables X and 

Y, with Z=X+Y, then 









 dfzFzF YXZ )()()(
  (18) 

Let’s consider the case for only 1 unit, i.e., from (16),  

je
DDD      (19) 

Then, by (18), we have that: 
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 




 dfdFdF
jee

DeDeD
)()()( )0()1(   (20) 

where the notation )()( j

D
F  indicates the cdf after the 

jth unit is convolved in. Under this notation, then, (19) 

becomes 

j

j

e

j

e
DDD   )1()(    (21) 

and the general case for (20) is: 

 








 dfdFdF
jee

De

j

De

j

D
)()()( )1()(  (22) 

which expresses the equivalent load after the jth unit 

is convolved in.  

Since fDj(dj) is discrete (a pmf), we rewrite (22) as 






 
j

jee

d

jDje

j

De

j

D dfddFdF )()()( )1()(

  (23) 

From an intuitive perspective, (23) is providing the 

convolution of the cdf )()1( j

D
F  with the set of 

impulse functions comprising fDj(dj). When using a 2-

state model for each generator, fDj(dj) is comprised of 

only 2 impulse functions, one at 0 and one at Cj. 

Recalling that the convolution of a function with an 

impulse function simply shifts and scales that 

function, (23) can be expressed for the 2-state 

generator model as: 

)()()( )1()1()(

je

j

Dje

j

Dje

j

D
CdFUdFAdF

eee

   (24) 
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So the cdf for effective load, following convolution 

with capacity outage pmf of the jth unit, is the sum of  

 the original cdf, scaled by Aj and 

 the original cdf, scaled by Uj, right-shifted by Cj. 

Example 1: Fig. 17 illustrates the convolution process 

for a single unit C1=4 MW supplying a system having 

peak demand dmax=4 MW, with demand cdf given as 

in plot (a) based on a total time interval of T=1 year. 
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Fig. 17: Convolving in the first unit 
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Plots (c) and (d) represent the intermediate steps of 

the convolution where the original cdf )()0(

eD
dF

e

 was 

scaled by A1=0.8 and U1=0.2, respectively, and right-

shifted by 0 and C1=4, respectively. Note the effect of 

convolution is to spread the original cdf.  

Plot (d) may raise some question since it appears that 

the constant part of the original cdf has been 

extended too far to the left. The reason for this 

apparent discrepancy is that all of the original cdf, in 

plot (a), was not shown. The complete cdf is 

illustrated in Fig. 18 below, which shows clearly that 

1)()0( 
eD

dF
e

 for de<0, reflecting the fact that 

P(De>de)=1 for de<0. 

 

)()0(
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r
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Fig. 18: Complete cdf including values for de<0 

Let’s consider that the “first” unit we just convolved 

in is actually the only unit. If that unit were perfectly 

reliable, then, because C1=4 and dmax=4, our system 

would never have loss of load. This would be the 
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situation if we applied the ideas of Fig. 15 to Fig. 17, 

plot (a). 

However, Fig. 17, plot (e) tells a different story. Fig. 

19 applies the ideas of Fig. 15 to Fig. 17, plot (e) to 

show how the cdf on the equivalent load indicates 

that, for a total capacity of CT=4, we do in fact have 

some chance of losing load. 

 

CT=4 
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Fig. 19: Illustration of loss of load region 

The desired indices are obtained from (12),(13), (14): 

yearsCFTCgtLOLE
TDTeC

rT

2.02.01)4()( 

A LOLE of 0.2 years is 73 days, a very poor 

reliability level that reflects the fact we have only a 

single unit with a high FOR=0.2. 

The LOLP is given by: 

2.0)()( 
TDeTe

CFCDPLOLP  

and the EDNS is given by: 


max,

)(
e

T

d

C
De

dFEDNS   
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which is just the shaded area in Fig. 19, most easily 

computed using the basic geometry of the figure, 

according to:  

MW5.0)2.0)(3(
2

1
)1(2.0   

The EENS is given by 


max,max,

)()(
e

T

e

T

d

C
e

d

C
De

dgdFTEENS   

or TEDNS=1(0.5)=0.5MW-years,  

or 8760(0.5)=4380MWhrs. 

 

Example 2: This example is from [4].  

A set of generation data is provided in Table 5.  

Table 5 

 
The 4th column provides the forced outage rate, 

which we have denoted by U. The two-state 
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generator outage model for each unit is obtained from 

this value, together with the rated capacity, as 

illustrated in Fig. 20, for unit 1. Notice that the units 

are ordered from least cost to highest cost. 

 

Aj=0.8 

fDj(dj) 

Outage load, dj Cj=200 0 

Uj=0.2 

 
Fig. 20: Two-state outage model for Unit 1 

 

Load duration data is provided in Table 6 and plotted 

in Fig. 21. 

 

Table 6 
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Fig. 21 

 

We now deploy (24), repeated here for convenience, 

)()()( )1()1()(

je

j

Dje

j

Dje

j

D
CdFUdFAdF

eee

   (24) 

to convolve in the unit outage models with the load 

duration curve of Fig. 21. The procedure is carried 

out in an Excel spread sheet, and the result is 

provided in Fig. 22. In Fig. 22, we have shown 

 Original load duration curve, F0; 

 Load duration curve with unit 1 convolved in, F1. 

 Load duration curve with all units convolved in, F9 

We could, of course, show the load duration curves 

for any number of units convolved in, but this would 

be a cluttered plot.  
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Fig. 22 

We also show, in Table 7, the results of the 

calculations performed to obtain the series of load 

duration curves (LDC) F0-F9. Notice the following: 

 Each LDC is a column FO-F9 

 The first column, in MW, is the load.  

o It begins at -200 to facilitate the convolution for 

the largest unit, which is a 200 MW unit. 

o Although it extends to 2300 MW, the largest 

actual load is 1000 MW; the extension is to 

obtain the equivalent load corresponding to a 

1000 MW load with 1300 MW of failable 

generation. 

 The entries in the table show the % time the load 

exceeds the given value. 

 LOLP is, for a particular column, the % time load 

exceeds the total capacity corresponding to that 

column, and is underlined. 
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For example, one observes that LOLP=1 if we only 

have units 1 (F1, CT=200) or only units 1 and 2 (F2, 

CT=400). This is because the capacity would never 

be enough to satisfy the load, at any time. And 

LOLP=0.6544 if we have only units 1, 2, and 3 (F3, 

CT=600). This is because we would be able to supply 

the load for some of the time with this capacity. And 

LOLP=0.012299 if we have all units (F9, CT=1300), 

which is non-0 (in spite of the fact that CT>1000) 

because units can fail. 

Table 7 
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5.0 Production cost modeling using effective load 

 

The most basic production cost model obtains 

production costs of thermal units over a period of 

time, say 1 year, by building upon the equivalent load 

duration curve described in Section 5. 

 

To perform this, we will assume that generator 

variable cost, in $/MWhr, for unit j operating at Pj 

over a time interval t, is expressed by  

Cj(Ej)=bjEj 

where Ej=Pjt is the energy produced by the unit 

during the hour and bj is the unit’s average variable 

costs of producing the energy (we omit fixed costs 

because we are only trying to quantify production 

costs here).  

 

The production cost model begins by assuming the 

existence of a loading (or merit) order, which is how 

the units are expected to be called upon to meet the 

demand facing the system. We assume for simplicity 

that each unit consists of a single “block” of capacity 

equal to the maximum capacity. It is possible, and 

more accurate, to divide each unit into multiple 

capacity blocks, but there is no conceptual difference 

to the approach when doing so. 
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Table 5, listed previously in Example 2, provides the 

variable cost for each unit in the appropriate loading 

order. This table is repeated here for convenience. 

Table 5 

 
The criterion for determining loading order is clearly 

economic. Sometimes it is necessary to alter the 

economic loading order to account for must-run units 

or spinning reserve requirements. We will not 

consider these issues in the discussion that follows. 

 

To motivate the approach, we introduce the concept 

of a unit’s observed load as the load “seen” by a unit 

just before it is committed in the loading order. Thus, 

it will be the case that all higher-priority units will 

have been committed.  

 

If all higher-priority units would have been perfectly 

reliable (Aj=1), then the observed load seen by the 
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next unit would have been just the total load less the 

sum of the capacities of the committed units. 

 

However, all higher-priority units are not perfectly 

reliable, i.e., they may fail according to the forced 

outage rate Uj. This means we must account for their 

stochastic behavior over time. This can be done in a 

straight-forward fashion by using the equivalent load 

duration curve developed for the last unit committed.  

 

In the notation of (24) unit j sees a load characterized 

by )()1(

e

j

D dF
e


. Thus, the energy provided by unit j is 

proportional to the area under )()1(

e

j

D dF
e


 from  xj-1 to 

xj, where 

 xj-1 is the summed capacity over all previously 

committed units and 

 xj is the summed capacity over all previously 

committed units and unit j.  
But unit j is only going to be available Aj% of the 

time. Also, since )()1(

e

j

D dF
e


 is a probability function, 

we must multiply it by T, resulting in the following 

expression for energy provided by unit j [5]: 

 dFTAE

j
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e
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)()1(

    (25) 

where  
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



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,  
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1

j

i

ij Cx
    (26) 

Referring back to Example 2, we describe the 

computations for the first three entries. This 

description is adapted from [4]. 

 

For unit 1, the original load duration curve F0 is 

used, as forced outages of any units in the system do 

not affect unit l's observed load. The energy 

requested by the system from unit 1, excluding unit 

l's forced outage time, is the area under )()0(

eD dF
e

 over 

the range of 0 to 200 MW (unit 1 's position in the 

loading order) times the number of hours in the 

period (8760) times A1. The area under )()0(

eD dF
e

 from 

0 to 200, illustrated in Fig. 23 below, is 200. 

 
Fig. 23 
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Therefore,  
MWhrs 1,401,6002008.087601 E  

For unit 2, the load duration curve F1 is used, as 

forced outage of unit 1 will affect unit 2's observed 

load. The energy requested by the system from unit 2, 

excluding unit 2's forced outage time, is the area 

under )()1(

eD dF
e

 over the range of 200 to 400 MW (unit 

2 's position in the loading order) times the number of 

hours in the period (8760) times A2. The area under 

)()1(

eD dF
e

 from 200 to 400, illustrated in Fig. 24 below, 

is 200. 

  
Fig. 24 

Therefore,  
MWhrs 1,401,6002008.087602 E  
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For unit 3, the load duration curve F2 is used, as 

forced outage of units 1 and 2 will affect unit 3's 

observed load. The energy requested by the system 

from unit 3, excluding unit 3's forced outage time, is 

the area under )()2(

eD dF
e

 over the range of 400 to 600 

MW (unit 3 's position in the loading order) times the 

number of hours in the period (8760) times A3. The 

area under )()2(

eD dF
e

 from 400 to 600, illustrated in Fig. 

25, is calculated below Fig 25. The coordinates on 

Fig. 25 are obtained from Table 7, repeated on the 

next page for convenience. 

 
Fig. 25 

The area, indicated in Fig. 25, is obtained as two 

applications of a trapezoidal area (1/2)(h)(a+b), as 

(500,0.872) 

(600,0.616) 
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1684.746.93

)616.872)(.100(
2

1
)872.1)(100(

2

1




    

onRightPortinLeftPortio  

Therefore, 
MWhrs 1,324,5121689.087603 E  

 

Table 7 

 
Continuing in this way, we obtain the energy 

produced by all units. This information, together with 

the average variable costs from Table 5, and the 

resulting energy cost, is provided in Table 8 below. 
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Table 8 
Unit MW-hrs Avg. Variable 

Costs, $/MWhr 

Energy Costs, 

$ 

1 1,401,600 6.5 9,110,400 

2 1,401,600 6.5 9,110,400 

3 1,324,500 27.0 35,761,500 

4 734,200 27.0 19,823,400 

5 196,100 58.1 11,393,410 

6 117,400 58.1 6,820,940 

7 64,100 58.1 3,724,210 

8 33,400 58.1 1,940,540 

9 16,400 113.2 1,856,480 

Total ET= 

5,289,300 

 99,541,280 

 

It is interesting to note that the total energy supplied, 

ET=5,289,300 MWhrs, is less than what one obtained 

when the original load duration curve is integrated. 

This integration can be done by applying our 

trapezoidal approach to curve F0 in Table 7. Doing 

so results in E0=5,299,800 MWhrs. The difference is 

E0-ET=5,299,800-5,289,300=10,500 MWhrs.  

 

What is this difference of 10,500 MWhrs? 

To answer this question, consider: 
 The total area under the original curve F0, integrated 

from 0 to 1000 (the peak load), is 5,299,800 MWhrs, as 

shown in Fig. 26. This is the amount of energy provided 

to the actual load if it were supplied by perfectly reliable 

generation having capacity of 1000 MW. As indicated 

above, we will denote this as E0. 
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Fig. 26 

 The total area under the final curve, F9, integrated 

from 0 to 1300 MW (the generation capacity) is 

E1300=6,734,696 MWhrs, as shown in Fig. 27. This 

is the amount of energy provided to the effective 

load if it were supplied by perfectly reliable 

generation having capacity of 1300 MW.  

 
Fig. 27 

 

E0=8760*this area 

=5,299,800 MWhrs 

E1300= 8760*this area 

=6,734,696 MWhrs 
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The energy represented by the area of Fig. 27, 

which is the energy provided to the effective load if 

it were supplied by perfectly reliable generation 

having capacity of 1300 MW, is greater than the 

energy provided by the actual 1300 MW, that is 

E1300>ET 

because E1300 includes load required to be served 

when the generators are outaged, and this portion 

was explicitly removed from the calculation of 

Table 8 (ET). One can observe this readily by 

considering a system with only a single unit. 

Recalling the general formula (25) for obtaining 

actual energy supplied by a unit per the method of 

Table 8: 

 dFTAE
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    (25) 

and applying this to the one-unit system, we get: 

 dFTAEE

C
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e
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11 )(

   (27) 

In contrast, the energy Ee obtained when we 

integrate the effective load duration curve 

(accounting for only the one unit) is 
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Recalling the convolution formula (24),  
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and for the one-unit case, we get 
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Substituting (29) into (28) results in 
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Breaking up the integral gives 
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Comparing (31) with (27), repeated here for 

convenience: 

 dFTAEE

C
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e


1

0

)0(
11 )(     (27) 

we observe the expressions are the same except for 

the presence of the second integration in (31). This 

proves that Ee>ET, i.e.,  
effective energy demanded > energy served by generation 
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 Now consider computing the energy consumed by 

the total effective load as represented by Fig. 28 

(note that in this figure, the curve should go to zero 

at Load=2300 but does not due to limitations of the 

drawing facility used).  

 
Fig. 28 

Using the trapezoidal method to compute this area 

results in E2300=6745200 MWhrs, which is the 

energy provided to the effective load if it were 

supplied by perfectly reliable generation having 

capacity of 2300 MW. This would leave zero 

energy unserved.  

 The difference between  
o E2300, the energy provided to the effective load if it were 

supplied by 2300 MW of perfectly reliable generation and 

o E1300, the energy provided to the effective load if it were 

supplied by 1300 MW of perfectly reliable generation  

is given by: 

E2300-E1300=6,745,200-6,734,696=10,504 MWhrs 

E2300= 8760*this area 

=6,745,200 MWhrs 
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This is the expected energy not served (EENS), 

sometimes called the expected unserved energy 

(EUE).  

 

We observe, then, that we can obtain EENS in two 

different approaches. 
1. E0-ET=5,299,800-5,289,300=10,500 MWhrs 

2. E2300-E1300=6,745,200-6,734,696=10,504 MWhrs 

 

Approach 1 may be computationally more 

convenient for production costing because ET is 

easily obtained as the summation of all the energy 

values. 

 

Approach 2 may be more convenient conceptually 

as it is simply the area under the effective load 

curve from total capacity (I call it CT) to infinity. 

 

6.0 Comments on W&W approach 

 

W&W, in section 8.3.2, refers to the “unserved load 

method.” It is somewhat different from the “effective 

load method” described above. 

 

The main difference can be observed by comparing 

equation (8.2) in your text with equation (24) used 

above. 
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   (24) 

 

)()()( CxpPxqPxP nnn     (8.2) 

 

Both left-hand expressions are the “new” cdf after 

“convolving in” a unit.  

Specifically, the nomenclature relates as follows: 

 de=x (value of equivalent load) 

 Cj=C (capacity of unit j) 

 Aj=p (availability of unit j) 

 Uj=q (unavailability of unit j) 

One observes that the two equations are almost the 

same, with two exceptions: 

1. Shift: Whereas the “shift” on the second term of 

(24) is a “right-shift” by an amount C, the “shift” 

on the second term of (8.2) is a left-shift by an 

amount C. 

2. Aj and Uj: Whereas the “unshifted” (first) term of 

(24) is multiplied by Aj=p, the “unshifted” (first) 

term of (8.2) is multiplied by Uj=q. 

 

The difference should be understood.  
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Whereas  

 the “effective load” method  

o extends or increases the load to 

probabilistically account for generator 

unavailability,  

o and uses total capacity under assumption of 

perfect reliability to assess metrics 

 the “unserved load” method 

o reduces or decreases the load to 

probabilistically account for generator 

availability, 

o and uses zero capacity to assess metrics. 

 

6.0 W&W (unserved load) method 

 

We will maintain the notation used in describing the 

effective load method. The differences in notation 

relative to W&W are described in the previous 

section.  

Define D as the random variable characterizing the 

demand. Now we define two more random variables: 

 Dj is the random decrease in load for (probabilistic) 

availability of unit j. 

 De is the random load accounting for the 

(probabilistic) availability of all units and represents 

the unserved load. 
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Thus, the random variables D, De, and Dj are related: 





N

j

je DDD
1

   (25) 

Whereas Cj represents the capacity of unit j and is a 

deterministic value, Dj represents an effective 

decrease in load corresponding to (probabilistic) 

availability of unit j and is a random variable.  

The probability mass function (pmf) for Dj is 

assumed to be as given in Fig. 29, i.e., a two-state 

model. We denote the pmf for Dj as fDj(dj). It 

expresses the probability that the unit experiences an 

outage of 0 MW as Aj, and the probability the unit 

experiences an outage of Cj MW as Uj. 

 

Aj 

fDj(dj) 

Available capacity, dj Cj 0 

Uj 

 

Fig. 29: Two state generator availability model 

We saw in the above notes that the pdf of the sum of 

2 independent random variables is the convolution of 

their individual pdfs, that is, for random variables X 

and Y, with Z=X+Y, then 
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
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which can also be written as: 
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Likewise, the pdf of the difference of 2 independent 

random variables is also a convolution, that is, for 

random variables X and Y, with Z=X-Y, then 



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 dzfzfzf YXZ )()()(
   (26) 

In addition, it is true that the cdf of the difference 

between 2 random variables can be found by 

convolving the cdf of one of them with the pdf (or 

pmf) of the other, that is, for random variables X and 

Y, with Z=X-Y, then 


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Let’s consider the case for only 1 unit, i.e., from (25),  

je DDD     (28) 

Then, by (27), we have that: 
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where the notation )()( j

D
F  indicates the cdf after the 

jth unit is convolved in. With this notation, (28) is 
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and the general case for (29) is: 






 


 ddfFdF eD

j

De

j

D jee
)()()( )1()(

 (30) 

which expresses the equivalent load after the jth unit 

is convolved in, considering the (probabilistic) 

availability of unit j and all lower numbered units. 

Since fDj(dj) is discrete (a pmf), we rewrite (30) as 
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From an intuitive perspective, (31) is providing the 

convolution of the cdf )()1( j

D
F  with the set of 

impulse functions comprising fDj(dj). When using a 2-

state availability model for each generator, fDj(dj) is 

comprised of only 2 impulse functions, one at 0 and 

one at Cj. Recalling that the convolution of a function 

with an impulse function simply shifts and scales that 

function, (31) can be expressed for the 2-state 

generator model shown in Fig. 23 as: 
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 (32) 

So the cdf for the effective load, following 

convolution with capacity outage pmf of the jth unit, 

is the sum of  

 the original cdf, scaled by Uj and 

 the original cdf, scaled by Aj, left-shifted by Cj. 

W&W say this (p. 287):  

 The first term is the probability that new capacity 

Cj is unavailable times the probability of needing 

an amount of power de or more; 

 The second term is the probability Cj is available 

times the probability de+Cj or more is needed. 

Example 3: Fig. 30 illustrates the convolution process 

for a single unit C1=4 MW supplying a system having 

peak demand dmax=4 MW, with demand cdf given as 

in plot (a) based on a total time interval of T=1 year. 
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Fig. 30: Convolving in the first unit (not perfectly 

reliable) 

 

Plots (d) and (c) represent the intermediate steps of 

the convolution where the original cdf )()0(

eD
dF

e

 was 

scaled by U1=0.2 and A1=0.8, respectively, and left-

shifted by 0 and C1=4, respectively. Note the effect of 

convolution is to shift the original cdf to the left.  
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Plot (c) may raise some question since it appears that 

the constant part of the original cdf has been 

extended too far to the left. The reason for this is that 

all of the original cdf, in plot (a), was not shown. The 

complete cdf is illustrated in Fig. 31 below, which 

shows clearly that 1)()0( 
eD

dF
e

 for de<0, reflecting the 

fact that P(De>de)=1 for de<0. 

 

)()0(

eD
dF

r

 1.0 

1    2      3     4     5      6     7      8 de 

0.8 

0.6 

0.4 

0.2 

 

Fig. 31: Complete cdf including values for de<0 

Let’s consider that the “first” unit we just convolved 

in is actually the only unit. If that unit were perfectly 

reliable, then, because C1=4 and dmax=4, our system 

would never have loss of load. In this case, with 

A1=1 and U1=0, the convolution process above would 

have resulted in Fig. 32 below. The fact that the final 

load duration curve FD
(1)(de) shows Pr(de>0)=0 means 

that there is no chance we will encounter a load 

interruption for this system! 
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Fig. 32: Convolving in the first unit (perfectly 

reliable) 

 

However, Fig. 30, plot (e) tells a different story. The 

fact that there is some part of the load duration curve 

to the right of de=0 is an indication that there is a 

possibility of load interruption.  



 57 

Observe that positive de may be thought of as 

unserved load; negative de may be thought of as 

served load. In other words, Fig. 32 tells us  

 Pr(unserved load > 0 MW) = 0 

 Pr(unserved load > -4 MW)=1.0 

 Pr(served load < 4 MW)=1.0 

 

Fig. 30 applies the ideas of Fig. 15 to Fig. 30, plot (e) 

to show how the cdf on the equivalent load indicates 

that, for a total capacity of CT=0, we do in fact have 

some chance of losing load. 

 

)()1(

eD
dF

r
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Fig. 33: Illustration of loss of load region 

The desired indices are obtained from (12),(13), (14): 

yearsCFTCgtLOLE TDTeC rT
2.02.01)0()( 

A LOLE of 0.2 years is 73 days, a very poor 

reliability level that reflects the fact we have only a 

single unit with a high FOR=0.2. 

The LOLP is given by: 
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2.0)()(  TDeTe CFCDPLOLP  

and the EDNS is given by: 


max,

)(
e

T

d

C
De

dFEDNS   

which is just the shaded area in Fig. 33, most easily 

computed using the basic geometry of the figure, 

according to:  

MW5.0)2.0)(3(
2

1
)1(2.0   

The EENS is given by 


max,max,

)()(
e

T

e

T

d

C
e

d

C
De

dgdFTEENS   

or TEDNS=1(0.5)=0.5MW-years,  

or 8760(0.5)=4380MWhrs. 

Example 4: This example is from [6].  

A set of generation data is provided in Table 8.  

Table 8 
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Observe the units are ordered from least to highest 

cost. The 4th column provides the forced outage rate 

(FOR), which we have denoted by U. The two-state 

generator outage model for each unit (obtained from 

the FOR), together with the rated capacity, is 

illustrated in Fig. 34, for unit 1.  

 

Aj=0.8 

fDj(dj) 

Available capacity, dj Cj 0 

Uj=0.2 

 
Fig. 34: Two-state outage model for Unit 1 

 

Load duration data is provided in Table 9 and plotted 

in Fig. 35. 

Table 9 
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Fig. 35 

 

We now deploy (32), repeated here for convenience, 

)()()( )1()1()(

je

j

Dje

j

Dje

j

D CdFAdFUdF
eee

 

 (32) 

to convolve in the unit outage models with the load 

duration curve of Fig. 35. The procedure is carried 

out in an Excel spread sheet, and the result is 

provided in Fig. 36. In Fig. 36, we have shown 

 Original load duration curve, F0; 

 Load duration curves with unit j convolved in, Fj, 

j=1,…,9. 
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Fig. 36 

We also show, in Table 10, the results of the 

calculations performed to obtain the series of load 

duration curves (LDC) F0-F9. Notice the following: 

 Each LDC is a column FO-F9 

 The first column, in MW, is the load.  

o It begins at -1400, an arbitrarily chosen large 

negative number to ensure each LDC begins 

from the left with an ordinate of 1.0 (we really 

only need to extend to -900). 

o The largest actual load is 1000 MW; the 

extension is to obtain the equivalent load 

corresponding to a 1000 MW load with 1300 

MW of failable generation. 

 The entries in the table show the % time the 

unserved load exceeds the given value. 

 LOLP is, for a particular column, the % time load 

exceeds the total capacity corresponding to that 

column, and is underlined. 
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For example, one observes that LOLP=1 if we only 

have units 1 (F1, CT=200) or only units 1 and 2 (F2, 

CT=400). This is because the capacity would never 

be enough to satisfy the load, at any time. And 

LOLP=0.6544 if we have only units 1, 2, and 3 (F3, 

CT=600). This is because we would be able to supply 

the load for some of the time with this capacity. And 

LOLP=0.012299 if we have all units (F9, CT=1300), 

which is non-0 (in spite of the fact that CT>1000) 

because units can fail. 

Table 10 
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9

0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.05

0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.95

200 200 200 200 100 100 100 100 100

Load (MW) Fraction of time load exceeds given load

-1400 1 1 1 1 1 1 1 1 1 1

-1300 1 1 1 1 1 1 1 1 1 1

-1200 1 1 1 1 1 1 1 1 1 1

-1000 1 1 1 1 1 1 1 1 1 1

-900 1 1 1 1 1 1 1 1 1 1

-800 1 1 1 1 1 1 1 1 1 0.935377

-700 1 1 1 1 1 1 1 1 0.931976 0.774008

-600 1 1 1 1 1 1 1 0.924417 0.765694 0.592168

-500 1 1 1 1 1 1 0.916019 0.748058 0.583035 0.397986

-400 1 1 1 1 1 0.906688 0.729395 0.5647 0.388247 0.248591

-300 1 1 1 1 0.89632 0.709696 0.5464 0.368641 0.241241 0.134512

-200 1 1 1 1 0.68896 0.528256 0.34889 0.227085 0.128894 0.069428

-100 1 1 1 0.8848 0.5104 0.32896 0.213551 0.117984 0.066298 0.02979

0 1 1 1 0.6544 0.3088 0.200728 0.107366 0.060556 0.027869 0.012299

100 1 1 0.872 0.4688 0.18872 0.096992 0.055354 0.024237 0.01148 0.004146

200 1 1 0.616 0.2704 0.0868 0.050728 0.02078 0.010062 0.00376 0.001281

300 1 0.84 0.424 0.1576 0.04672 0.017452 0.008871 0.003059 0.00115 0.00033

400 1 0.52 0.232 0.0664 0.0142 0.007918 0.002414 0.000938 0.000287 7.04E-05

500 0.8 0.32 0.128 0.0344 0.00722 0.001802 0.000774 0.000215 5.9E-05 1.25E-05

600 0.4 0.16 0.048 0.0084 0.0012 0.00066 0.000152 4.17E-05 1.01E-05 1.62E-06

700 0.2 0.08 0.024 0.0042 0.0006 0.000096 2.94E-05 6.54E-06 1.18E-06 1.31E-07

800 0.1 0.02 0.004 0.0004 0.00004 0.000022 0.000004 5.8E-07 7.6E-08 5.7E-09

900 0.05 0.01 0.002 0.0002 0.00002 0.000002 2E-07 2E-08 2E-09 1E-10

1000 0 0 0 0 0 0 0 0 0 0 
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7.0 Production cost modeling using unserved load 

 

The most basic production cost model obtains 

production costs of thermal units over a period of 

time, say 1 year, by building upon the procedures 

described in Section 7. 

 

The production cost model begins by assuming the 

existence of a loading (or merit) order, which is how 

the units are expected to be called upon to meet the 

demand facing the system. We assume for simplicity 

that each unit consists of a single “block” of capacity 

equal to the maximum capacity. It is possible, and 

more accurate, to divide each unit into multiple 

capacity blocks, but there is no conceptual difference 

to the approach when doing so. 

 

Table 5, listed previously in Examples 2 and 4, 

provides the variable cost for each unit in the 

appropriate loading order. This table is repeated here 

for convenience. 
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Table 5 

 
The criterion for determining loading order is clearly 

economic. Sometimes it is necessary to alter the 

economic loading order to account for must-run units 

or spinning reserve requirements. We will not 

consider these issues in the discussion that follows. 

 

To motivate the approach, we introduce the concept 

of a unit’s observed load as the load “seen” by a unit 

just before it is committed in the loading order. Thus, 

it will be the case that all higher-priority units will 

have been committed.  

 

If all higher-priority units would have been perfectly 

reliable (Aj=1), then the observed load seen by the 

next unit would have been just the total load less the 

sum of the capacities of the committed units. 
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However, all higher-priority units are not perfectly 

reliable, i.e., they may fail according to the forced 

outage rate Uj. This means we must account for their 

stochastic behavior over time. This can be done in a 

straight-forward fashion by using the equivalent load 

duration curve developed for the last unit committed.  

 

In the notation of (32) unit j sees the unserved load 

characterized by )()1(

e

j

D dF
e


. Thus, the energy provided 

by unit j is proportional to the area under )()1(

e

j

D dF
e


 

from 0 to Cj, where Cj is the capacity of unit j.  

 

In our example 4 above, Unit 1 sees the entire load, 

characterized by )()0(

eD dF
e

, illustrated as the white area 

in Fig. 37.  

 
Fig. 37 

 

 



 66 

Unit 2, however, will see the load after unit 1 has 

been convolved in (resulting in F1), which will have 

the effect of reducing the unserved load, illustrated in 

the white area in Fig. 38 (which is less area than the 

white area in Fig. 37). 

 

 

Fig. 38 

 

We want to compute the cost of running each of the 

various units j. 

 

We assume that generator cost rate, in $/hr, for unit j 

operating at Pj, is linearized, expressed by  

Jj=Jj0+Jj1Pj     (33) 

where  

 Jj0 is the unit’s no-load cost rate, $/hr and  

 Jj1 is the unit’s cost of energy production, $/MWhr. 

We also assume that unit j has capacity Cj.  

 



 67 

We obtain the cost associated with scheduling unit j 

according to (33). Consideration of the no-load costs 

is easy, because we will incur them for every hour the 

unit is scheduled. Let’s assume that the unit will be 

scheduled for the entire time period, T hours, where T 

is the number of hours characterized by the CDF 

)()1(

e

j

D dF
e


. Therefore the no-load costs is (in $):  

NoloadCosts=Jj0T    (34) 

The variable (fuel) costs could be computed (in $) as: 

VariableCosts=Jj1PjT 

However, this would require that the unit runs at Pj 

for all T hours. That may not happen. A better way to 

compute variable costs results from recognizing that 

Jj1, with units of $/MWhr, is the cost per unit of 

energy. Therefore, if we can get the energy supplied 

by unit j, Ej, then this will allow us to compute the 

cost of supplying it from  

VariableCosts=Jj1Ej    (35) 

The energy supplied by unit j can be computed from 

the CDF )()1(

e

j

D dF
e


 according to the following: 




j

e

C

j

Dj dFTE
0

)1( )( 
    (36) 

In our example, for unit 1 (a 200 MW unit), this 

would correspond to the area denoted by the hatched 

region in Fig. 39. 
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Fig. 39 

In this particular case, the integration of (36) provides 

the same answer as PjT, but this is because this unit is 

base-loaded and does in fact run all time at capacity. 

 

And so the total cost of scheduling unit j can be 

evaluated as the sum of the no-load and variable 

costs, which is: 

 

TotalCosts=NoloadCosts+VariableCosts=Jj0T+ Jj1Ej 

(37) 

where Ej is given by (36). 

 

There is just one problem with (37)… 
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Once we commit a unit, we do intend that it will be 

scheduled for all T hours, However, because the unit 

has an availability of Aj, we can only expect that the 

unit will be available for a number of hours equal to 

AjT, i.e., unit j is only going to be available Aj% of 

the time. Therefore, we need to modify (37) to be 

TotalCosts=AjJj0T+ AjJj1Ej    (38) 

where, as before, Ej is given by (36). 

 

Referring back to Example 4, we describe the 

computations for the first three entries. This 

description is adapted from [4]. 

 

For unit 1, the original load duration curve F0 is 

used, as forced outages of any units in the system do 

not affect unit l's observed load. The energy 

requested by the system from unit 1 is the area under 

)()0(

eD dF
e

 over the range of 0 to 200 MW (unit 1’s 

capacity) times the number of hours in the period 

(8760) times A1=0.8. The area under )()0(

eD dF
e

 from 0 

to 200, has already been illustrated in Fig. 37 above, 

and is 200. 

Therefore,  
MWhrs 1,401,6002008.087601 E  

and the total cost of unit 1 is 
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For unit 2, the load duration curve F1 is used, as 

forced outage of unit 1 will affect unit 2's observed 

load. The energy requested by the system from unit 2 

is the area under )()1(

eD dF
e

 over the range of 0 to 200 

MW (unit 2’s capacity) times the number of hours in 

the period (8760) times A2=0.8. The area under 

)()1(

eD dF
e

 from 0 to 200, illustrated in Fig. 40 below, is 

200. 

  
Fig. 40 

Therefore,  
MWhrs 1,401,6002008.087602 E  
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For unit 3, the load duration curve F2 is used, as 

forced outage of units 1 and 2 will affect unit 3's 

observed load. The energy requested by the system 

from unit 3 is the area under )()2(

eD dF
e

 over the range 

of 0 to 200 MW (unit 3’s capacity) times the number 

of hours in the period (8760) times A3=0.9. The area 

under )()2(

eD dF
e

 from 0 to 200, illustrated in Fig. 41, is 

calculated below. The coordinates on Fig. 41 are 

obtained from Table 10, repeated on the next page for 

convenience. 

 
Fig. 41 

The area, indicated in Fig. 41, is obtained as two 

applications of a trapezoidal area (1/2)(h)(a+b), as 

1684.746.93

)616.872)(.100(
2

1
)872.1)(100(

2

1




    

onRightPortinLeftPortio  

(100,0.872) 

(20,0.616) 
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Therefore, 
MWhrs 1,324,5121689.087603 E  

Table 10 
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9

0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.05

0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.95

200 200 200 200 100 100 100 100 100

Load (MW) Fraction of time load exceeds given load

-1400 1 1 1 1 1 1 1 1 1 1

-1300 1 1 1 1 1 1 1 1 1 1

-1200 1 1 1 1 1 1 1 1 1 1

-1000 1 1 1 1 1 1 1 1 1 1

-900 1 1 1 1 1 1 1 1 1 1

-800 1 1 1 1 1 1 1 1 1 0.935377

-700 1 1 1 1 1 1 1 1 0.931976 0.774008

-600 1 1 1 1 1 1 1 0.924417 0.765694 0.592168

-500 1 1 1 1 1 1 0.916019 0.748058 0.583035 0.397986

-400 1 1 1 1 1 0.906688 0.729395 0.5647 0.388247 0.248591

-300 1 1 1 1 0.89632 0.709696 0.5464 0.368641 0.241241 0.134512

-200 1 1 1 1 0.68896 0.528256 0.34889 0.227085 0.128894 0.069428

-100 1 1 1 0.8848 0.5104 0.32896 0.213551 0.117984 0.066298 0.02979

0 1 1 1 0.6544 0.3088 0.200728 0.107366 0.060556 0.027869 0.012299

100 1 1 0.872 0.4688 0.18872 0.096992 0.055354 0.024237 0.01148 0.004146

200 1 1 0.616 0.2704 0.0868 0.050728 0.02078 0.010062 0.00376 0.001281

300 1 0.84 0.424 0.1576 0.04672 0.017452 0.008871 0.003059 0.00115 0.00033

400 1 0.52 0.232 0.0664 0.0142 0.007918 0.002414 0.000938 0.000287 7.04E-05

500 0.8 0.32 0.128 0.0344 0.00722 0.001802 0.000774 0.000215 5.9E-05 1.25E-05

600 0.4 0.16 0.048 0.0084 0.0012 0.00066 0.000152 4.17E-05 1.01E-05 1.62E-06

700 0.2 0.08 0.024 0.0042 0.0006 0.000096 2.94E-05 6.54E-06 1.18E-06 1.31E-07

800 0.1 0.02 0.004 0.0004 0.00004 0.000022 0.000004 5.8E-07 7.6E-08 5.7E-09

900 0.05 0.01 0.002 0.0002 0.00002 0.000002 2E-07 2E-08 2E-09 1E-10

1000 0 0 0 0 0 0 0 0 0 0 
 

Continuing in this way, we obtain the energy 

produced by all units. This information, together with 

the average variable cost for each unit from Table 5, 

and the resulting variable cost for each unit, is 

provided in Table 11 below. Observe that in Table 

11, the no-load costs are all zero, and so the total 

costs are the same as the variable costs. 
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Table 11 
Unit 

i 

No-load 

cost 

coefficient 

J0i  

($/hr) 

No-load 

costs  

 

J0i*T 

($) 

Energy Ei  

 

 

 

(MW-hr) 

Variable 

cost 

coefficient 

J1i 

($/MWhr) 

Variable 

Cost 

 

J1iEi 

($) 

Total costs,  

J0i*T+ J1iEi 

($) 

1 0 0 1,401,600 6.5 9,110,400 9,110,400 

2 0 0 1,401,600 6.5 9,110,400 9,110,400 

3 0 0 1,324,500 27.0 35,761,500 35,761,500 

4 0 0 734,200 27.0 19,823,400 19,823,400 

5 0 0 196,100 58.1 11,393,410 11,393,410 

6 0 0 117,400 58.1 6,820,940 6,820,940 

7 0 0 64,100 58.1 3,724,210 3,724,210 

8 0 0 33,400 58.1 1,940,540 1,940,540 

9 0 0 16,400 113.2 1,856,480 1,856,480 

Total 0 0 ET= 

5,289,300 

 99,541,280 99,541,280 

 

It is interesting to note that the total energy supplied, 

ET=5,289,300 MWhrs, is less than what one obtains 

when the original load duration curve is integrated. 

This integration can be done by applying our 

trapezoidal approach to curve F0 in Fig. 37, repeated 

here for convenience, to obtain the white area shown 

in the figure. 
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Fig. 37 

 

Doing so results in E0=5,299,800 MWhrs. The 

difference is 

E0-ET=5,299,800-5,289,300=10,500 MWhrs. 

 

What is this difference of 10,500 MWhrs? 

 

To answer this question, consider the load duration 

curve after the last unit has been convolved in, curve 

F9, as shown in Fig. 42. 

 

 The total area under the original curve F0, 

integrated from 0 to 1000 (the peak load), is 

5,299,800 MWhrs, as shown in Fig. 37. This is the 

amount of energy provided to the actual load if it 

were supplied by perfectly reliable generation 

having capacity of 1000 MW. As indicated above, 

we will denote this as E0. 

E0=8760*this area 

=5,299,800 MWhrs 
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 The total area under the final curve, F9, integrated 

from -1300 (the total served load) to 0 (the 

generation capacity) is Ees=6,734,696 MWhrs, as 

shown in Fig. 42. This is the amount of energy 

provided to the effective load if it were supplied by 

perfectly reliable generation having capacity of 

1300 MW. It is the served load. 

 

Fig. 42 

 

The energy represented by the area of Fig. 42, 

which is the energy provided to the effective load if 

it were supplied by perfectly reliable generation 

having capacity of 1300 MW, is greater than the 

energy provided by the actual 1300 MW, that is 

|Ees| >|ET| 

because Ees includes load required to be served 

when the generators are outaged, and this portion 

was explicitly removed from the calculation of 

Table 11 (ET). One can observe this readily by 

Ees= 8760*this area 

=6,734,696 MWhrs 
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considering a system with only a single unit. 

Combining the relations (36) and (38), we can 

obtain the actual energy supplied by a unit (same as 

method of Table 11): 

 dFTAE

j

e

C

j

Djj 


0

)1( )(
    (39) 

and applying this to the one-unit system, we get: 

 dFTAEE

C

DT
e


1

0

)0(
11 )(

   (40) 

In contrast, the energy served Ees obtained when 

we integrate the effective load duration curve 

(accounting for the one unit) is 

 dFTE
C

Des e
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0

)1(

1

)(
    (41) 

Recalling the convolution formula (32),  
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 (42) 

and for the one-unit case, we get 
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Substituting (43) into (41) results in 
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Breaking up the integral gives 
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Reversing the order of integration and multiplying 

by -1 provides: 
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Comparing (46) with (40), repeated here for 

convenience: 

 dFTAEE

C

DT
e


1

0

)0(
11 )(

   (40) 

we observe the expressions are the same except for 

the presence of the second integration in (45). This 

proves that |Ees| >|ET| 

 Now consider computing the energy consumed by 

the total effective load, which includes the 

unserved load, as represented by Fig. 43. 



 78 

 

Fig. 43 

 

Using the trapezoidal method to compute this area 

results in EeT=6745200 MWhrs, which is the energy 

provided to the effective load if it were supplied by 

perfectly reliable generation having capacity of 2300 

MW. This would leave zero energy unserved.  

 The difference between  
o Total effective load, EeT: the energy provided to the 

effective load if it were supplied by 2300 MW of perfectly 

reliable generation and 

o Effective load served, Ees: the energy provided to the 

effective load if it were supplied by 1300 MW of perfectly 

reliable generation  

is given by: 

EeT-Ees=6,745,200-6,734,696=10,504 MWhrs 

This is the expected energy not served (EENS), 

sometimes called the expected unserved energy 

(EUE).  

 

EeT = 8760*this area 

=6,745,200 MWhrs 
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We observe, then, that we can obtain EENS in two 

different approaches. 
1. E0-ET=5,299,800-5,289,300=10,500 MWhrs where 

 E0 is the total energy demanded by the actual load as 

computed from the original load duration curve; 

 ET is the energy served to the actual load by the 1300 

MW of generation accounting for each unit’s 

potential to fail. 

2. EeT-Ees=6,745,200-6,734,696=10,504 MWhrs where 

 EeT is the total energy demanded by the effective 

load as computed from the complete effective load 

duration curve; 

 Ees is the energy served to the effective load by the 

1300 MW of generation, assuming the 1300 MW is 

perfectly reliable. 

 

Approach 1 may be computationally more 

convenient for production costing because ET is 

easily obtained as the summation of all the energy 

values. 

 

Approach 2 may be more convenient conceptually 

as it is simply the area under the effective load 

curve from 0 to total capacity (we can call it CT). 
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8.0 Additional W&W comments of interest 
A few other comments about the W&W text: 

 Pg. 283: In reality, EENS is energy that would not 

be “not served” but rather provided via expensive 

interconnection or emergency backup (providing 

energy via interconnection was the original 

motivation behind interconnecting control areas).  

 Pg. 286: An alternative method of handling EENS is 

to place “emergency sources” of very large capacity 

and high cost at the end of the priority list, so that 

they only get used if no other capacity is available. 

 Pg. 284: Mentions NERC’s database. It is called 

“GADS” (Generating Availability Data System). 

There is also a “TADS” (Transmission Availability 

Data System) and a “DADS” (Demand Response 

Availability Data System). 

 Pg. 284: For very large systems, the convolution 

method described above can be computationally 

intensive. An alternative method is called the 

“method of cumulants.” 

 Pg. 318: All of what we have described also applies 

when generators are modeled as multi-state devices. 

This can account for the possibility of de-rating a 

unit which sometimes occurs when the unit requires 

a forced reduction in output due to some particular 

part of the plant becoming dysfunctional (e.g., one 

out of 6 boiler feedpumps goes down). 
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9.0  Industry-grade commercial production cost 

models  
In the previous notes, we reviewed a relatively simple 

production cost model (PCM). This PCM required 

two basic kinds of input data: 

 Annual load duration curve 

 Unit data: 

o Capacity 

o Forced outage rate  

o Variable costs  

 

It then computes load duration curves for effective 

load (which accounts for the unreliability of the 

generators supplying that load) through a convolution 

process and provides the following information: 

 Reliability indices: LOLP, LOLE, EDNS, EENS 

(EUE) 

 Annual energy produced by each unit 

 Annual production costs for each unit 

 Total system production costs 

Another approach to PCMs is to simulate each hour 

of the year. This allows much more rigorous models 

and more refined results, which comes with a 

significant computational cost. Promod is one such 

model which you will hear about. I will describe the 

conceptual approach to such PCMs. 
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9.1  A refined production cost model 

This PCM consists of the following loops: 

1. Annual loop: Most PCMs have only one annual 

loop, i.e., the annual simulation is deterministic. 

But it is conceivable to make multiple runs 

through a particular year, each time selecting 

various variables based on probability distributions 

for those variables. Such an approach is referred to 

as a Monte Carlo approach, and it requires many 

loops in order to “converge” with respect to the 

average annual production costs. 

2. UC loop: The program must have a way for 

deciding, in each hour, which units are committed. 

A UC program could be implemented within the 

PCM on a weekly basis, a 48 hour basis, or a day-

ahead basis. The latter seems to be the preferred 

approach today because it is consistent with the 

fact that most electricity market structures today 

depend on the day-ahead using the security-

constrained unit commitment. 

3. Hourly loop: A security constrained optimal power 

flow (SCOPF) is implemented to dispatch 

available units. In addition, it is within the hourly 

loop that reliability indices are computed. There 

are two ways of doing this. Both ways depend on 

the fact that the load is deterministic during the 

hour and so is represented by a single number. The 

only randomness is in regards to the status of 
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committed generators and whether they are in 

service or out of service due to a forced outage. 

 Monte Carlo: Status of each committed generator 

is identified via random draw of a number 

between 01. If a number between 0 and the 

probability of the unit being down (e.g., 

00.03) is chosen, the unit is outaged. If a 

number between probability of unit being down 

& 1 is chosen (e.g., 0.031), the unit is in up. 

 Analytic: A convolution method similar to our 

effective load duration approach is employed to 

compute reliability indices for the hour. The 

method is simpler because the load is 

deterministic. The method is referred to as a 

capacity outage table approach; I can provide 

you with notes on this method if you want them. 

 Network flows: This approach can also handle 

probabilistic treatment of transmission. 

Comment: It is important to use outage replacement 

rate (ORR) as the probability of the unit being down, 

rather than the forced outage rate (FOR). The ORR is 

the probability that the unit will go down in the next 

hour given it is up at the beginning of the hour. 

9.2 A reported model 

A model is reported in [7] which captures some of 

the above attributes. I have lifted out two of the flow 

charts from this reference to illustrate. 
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10.0 MISO’s use of Production Costing  

 

Below are a few more slides that characterize how 

MISO utilizes production costing. 

30

Background

 PROMOD is a Production Cost Model 
developed by Ventyx (Formerly known as 
NewEnergy Associates, A Siemens 
Company).

 Detailed generator portfolio modeling, with 
both region zonal price and nodal LMP 
forecasting and transmission analysis 
including marginal losses 

 

31

Report Agent

Visualization & Reporting

COH - Firm Requirements and Supply
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Access, Excel, Pivot Cube…

PSS/E™

Common

Data Source

Common API

- Easy-to-use interface

- Powerful scenario management

- Complete NERC data with solved 

powerflow cases

- Detailed unit commitment and 

dispatch

- Detailed transmission simulation

- Asset Valuation with 

MarketWise

- FTR Valuation with TAM

How PROMOD Works - PROMOD Structure
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How PROMOD Works –
Input and Output of PROMOD

 Generation Data: heat 
rate, different costs, 
etc.

 Demand & Energy

 Fuel Forecasts: Gas, 
Coal, Oil

 Environmental Costs: 
Sox, Nox, Mercury

 Power Flow Case

 Monitored Flowgates

 Other Information: 
reserve requirement, 
market territory, etc.

PROMOD

 Hourly LMP of buses 
and hubs, include 
energy, loss and 
congestion 
components.

 Hourly unit generation 
and production cost

 Hourly binding 
constraints and 
shadow prices

 Hourly line flows

 Hourly company 
purchase/sale

 Environmental 
emissions.

 Fuel consumptions.

 etc.
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Magnitude of the Challenge

Real System Dimensions –

MTEP 08 PROMOD Cases

 Footprint: East interconnection excluding FRCC

 Generators: ~ 4,700

 Buses: ~ 47,500

 Branches: ~ 60,000

 Monitored Lines: ~ 1,500

 Contingencies: ~ 500 

 Run Time: 60-90 Hrs (for one year 8760 hours)
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Data in PowerBase

Generation

 Demand & Energy

 Transmission Network Data

 Fuel Forecasts

• Coal, Uranium, Gas, Coal, Oil

 Environmental Effluent and Costs

• CO2, Sox, Nox, Mercury
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PROMOD input files

 PFF file 

• Main input file, includes units, fuels, environmental and 
transmission data, pool configuration, reserve requirement, 
run option switches, etc.

 Load data file

• Hourly load profiles for each company for a selected study 
period. 

• Based on the 8760 hour load shape and each year’s peak 
load and annual energy for each company defined in 
PowerBase.

 Gen Outage Library and automatic maintenance 
schedule

• Same outage library and maintenance schedule used by all 
cases
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PROMOD input files

 Event files

• Define the monitored line/contingency pairs 
which are the transmission constraints

• Combine MISO and NERC Book of Flowgates

• Modify existing events or add new events 
according to member’s comments. 

• Create new events which have the potential of 
overflow using PAT tool 
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PROMOD Assumptions

 Study Footprint

• East interconnection excluding Florida

• Hourly fixed transactions modeled to include the 
influence of external areas to the study footprint

SETRANS sale to Florida 
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40

PROMOD Assumptions (Cont’)

Pool Definition

 a group of companies in which all its generators 
are dispatched together to meet its loads.

 Hurdle rates are defined between pools to allow 
the energy exchange between pools.

 Hurdle rates are based on the filed transmission 
through-and-out rates, plus a market inefficiency 
adder.

 In current MISO cases, 11 pools are defined: 
MISO, PJM, TVA, MRO, East Canada, SPP, IMO, 
MHEB, ISONE,NYISO,SERC
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PROMOD Assumptions (Cont’)

 Loss Calculation

• Option1: Load is equal to actual load plus loss.  Loss and 

LMP loss component are not calculated.

• Option 2: Load is equal to actual load plus loss.  Loss is 

not  calculated while LMP loss component is calculated 
using an approximation method – Single Pass Loss 
Calculation.

• Option 3: Load is equal to actual load.  Loss and LMP 

loss component are calculated – Multi Pass Loss 
Calculation. Run time is 4 times of Option 2.

Option 2 is used in MISO PROMOD cases.
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PROMOD Assumptions (Cont’)

Wind Units – fixed load modifier transactions

Set at a same capacity factor for every hour (~ 
33%);

Set different capacity factors for different months 
(15% for summer months, and 20% for winter 
months);

Set hourly profile for each unit to capture 
geographical diversity.

 Smelter Loads modeled as transactions
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PROMOD Output

 LMPs (include the energy, loss and 
congestion components):

 Hourly LMP of selected buses, defined hubs.

 Hourly Load Weighted and Gen Weighted LMP 
of defined zones.

 Constraints:

 Hourly shadow price;

 Number of hours at Pmax, total shadow price at 
Pmax; 

Number of hours at Pmin, total shadow price at 
Pmin; 
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45

PROMOD Output (Cont’)

Generators:

 Hourly generation

 Hourly production cost (sum of fuel, variable 
O&M, environmental cost) 

 Hourly fuel consumption, BTU consumption

 Hours on line, hours of startup, hours at margin, 
Hours profitable.

 Monthly variable O&M cost, fuel cost, emission, 
and emission cost.
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PROMOD Output (Cont’)

 Fuel:

 Hourly fuel consumption.

 Power Flow:

 Hourly flow for selected lines, interfaces, and DC 
lines.

 Monthly transmission losses (only for marginal 
loss calculation option)

 Company:

 Hourly purchase/sale.

 Hourly dump and emergency energy.
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Economic Benefit

 To capture the economic benefit of transmission 
upgrade: run two PROMOD cases, one with 
transmission upgrade, one without. For each case, 
calculate (for each region):

• Load Cost = Load LMP * Load

• Adjusted Production Cost = Production Cost + Import * Load 
Weighted LMP (or) - Export *Gen Weighted LMP

 Economic Benefit:

• Load Cost Saving: Load Cost difference between two cases;

• Adjusted Production Cost Saving: Adjusted Production Cost 
difference between two cases

• RECB II Benefit = sum over all regions (30%* Load Cost 
Saving + 70%*Adjusted Production Cost Saving) 
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Example: 
5 Bus Power Network

d

2

200 MW

Load

4

300 MW

Load

3

100 MW

Load

1

5

600 MW unit 

@$30

400 MW unit 

@$15     

Region 1

Region 2

 

RECB: 

Regional 

expansion 

criteria and 

benefits 
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50

Region 1:
Import: 150 MWH

Load Weighted LMP =

(-3,000+4,500)/(100+200)

=5$/MWH

Load Cost = -3,000 + 4,500 

= 1,500$

Adjusted Production Cost =

2,250$+150MWH*5$/MWH

=3,000$

5 Bus Power Network (Original) 
– PROMOD result

50 MW

2

Load: 200 MW

LMP: -15$/MWH

Load Cost: -3,000$

43

1

5

Gen: 150 MW 

LMP: 15$/MWH 

Prod. Cost: 2,250$    

Gen: 450 MW

LMP: 30$/MWH 

Prod. Cost: 13,500$    
Load: 100 MW

LMP: 45$/MWH

Load Cost: 4,500$

Load: 300 MW

LMP: 75$/MWH

Load Cost: 22,500$

Line is binding

Region 2:
Export: 150 MWH

Gen Weighted LMP        

=30$/MWH

Load Cost = 22,500$

Adjusted Production 

Cost = 13,500$ 

- 150MWH*30$/MWH

=9,000$
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Region 1:
Export: 100 MWH

Gen Weighted LMP =

=30$/MWH

Load Cost = 6,000 + 3,000 

= 9,000$

Adjusted Production Cost =

6,000$-100MWH*30$/MWH

=3,000$

5 Bus Power Network (After upgrade) 
– PROMOD result

47 MW

2

Load: 200 MW

LMP: 30$/MWH

Load Cost: 6,000$

43

1

5

Gen: 400 MW 

LMP: 30$/MWH 

Prod. Cost: 6,000$    

Gen: 200 MW 

LMP: 30$/MWH 

Prod. Cost: 6,000$    
Load: 100 MW

LMP: 30$/MWH

Load Cost: 3,000$

Load: 300 MW

LMP: 30$/MWH

Load Cost: 9,000$

Region 2:
Import: 100 MWH

Load Weighted LMP        

=30$/MWH

Load Cost = 9,000$

Adjusted Production 

Cost = 6,000$+ 

100MWH*30$/MWH

=9,000$

New Line
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5 Bus Power Network  
– New Transmission RECB II Benefit

Original Case Case with New Line

Load Cost

Adjusted 

Production

Cost

$1,500

$3,000$3,000

$9,000

Saving

$-7,500

$0

RECB II Benefit = 70% * 0 +30% * (-7,500+13,500) = $1,800

Load Cost

Adjusted 

Production

Cost

$22,500

$9,000$9,000

$9,000 $13,500

$0

R
e

g
io

n
 1

R
e

g
io

n
 2

 
Joint Coordinated System Plan Overlay
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20% Wind Energy Scenario

Without and With the JCSP

Overlay

Annual Generator Location Marginal Prices
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2

Value-based Planning Process at Midwest ISO

•Step 1 – Multi-Future Regional 

Resource Forecasting

•Step 4 – Test Conceptual 

Transmission for Robustness

•Step 7 - Cost Allocation 

Analysis

•Step 3 – Design Conceptual 

Trans. Overlays by Future

•Step 2 – Site Generation and 

Place in Powerflow Model

•Step 5/6 – Core Conceptual 

Transmission Development

•Step 5/6 – Perform Reliability 

Assessment on Overlays
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