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Hydro-Thermal Scheduling (HTS) 

1.0 Introduction 

From an overall systems view, the single most important attribute of 

hydroelectric plants is that there is no fuel cost, therefore production 

costs, relative to that of thermal plants, are very small.  

 

There are three basic types of hydroelectric plants: run-of-river, 

pumped storage, and reservoir systems. We will just introduce the 

first two in this section, and then the remainder of these notes will 

be dedicated to understanding reservoir systems. 

 

Run-of-river 

Here a dam is placed across a river to create a height differential 

between the upstream inlet and the downstream outlet, but without 

creating an expansive reservoir on the upstream side [1]. The turbine 

is rotated simply by the normal flow of the river. These plants run at 

a capacity associated with the natural river current. Figure 1 [2] 

illustrates a number of different run-of-the-river projects. 

 
Fig. 1 [2] 
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Pump-storage 

This kind of hydro plant is a specialized reservoir-type plant which 

has capability to act as both a source and a sink of electric energy. In 

the source or generation mode, it supplies power to the grid using 

the kinetic energy of the water as it falls from higher-lake to lower-

lake as would a typical reservoir plant. In the sink or pumping mode, 

it consumes power from the grid in order to pump water from the 

lower lake to the higher lake. Thus, electric energy from the grid is 

converted into potential energy of the water at the higher elevation.  

The original motivation for pumped storage plants was to valley-fill 

and peak-shave.  

 Valleys: During low-load periods, the plant is used in pumping 

mode, thus increasing overall system load. This is beneficial 

because a decreased number of thermal plants will need to be 

shut-down (avoiding shut-down and start-up costs), and for those 

remaining on-line, they can be used at higher, more efficient 

generation levels. 

 Peaks: During high-load periods, the plant is used in generating 

mode, thus decreasing the overall system load that must be met 

by thermal generation. This is beneficial because it avoids the 

need to start some of the expensive peaking plants.  

Figure 2 [3] illustrates a typical 24 cycle for a northwestern region 

of the US. 
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Fig. 2 [3] 

Of course, the cycle of pumping and generating incurs a net loss. It 

is typical for the efficiency of a round-trip pump storage cycle to be 

about 70%; for every 100 MW used to pump water, only about 70 

MW will be recovered by the grid. The cost of this loss is lessened 

by the fact that the energy is supplied by thermal plants operating at 

higher (and thus more efficient) loading levels because of the 

presence of the pumping. This cost is compensated by the savings 

incurred by avoiding shut-down and start up costs of the thermal 

plants during the valleys and by avoiding the start-up costs of the 

peaking plants during the peaks. 

 

Pump storage has become of even greater interest today because it 

offers a way to store energy that is available from renewable 

resources (wind and solar) during off-peak times so that they can 

then be used during on-peak times. Figure 3 [3] illustrates a situation 

in the BPA region (which is seeing significant wind growth) where 

the wind plants are frequently generating when load is low and not 

generating when load is high.  
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Fig. 3 [3] 

 

Figure 4 indicates the manner in which pumped storage could be 

used with wind over a 24 hour period. 

 
Fig. 4 [3] 

Pump storage also supplies regulation and load following to which 

renewables generally do not contribute.  

 

Figure 5 [4] illustrates a typical pump-storage set-up. 
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Fig. 5 [4] 

 

One pump-storage plant of which I am familiar is called Helms 

pumped storage plant, commissioned in 1984. It consists of three 

units rated at 404 MW (1212 MW total) in the generating mode and 

310 MW (930 MW total) in the pumping mode. Figure 6 [5] 

illustrates the overall setup of Helms which operates between 

Courtright and Wishon Lakes about 50 miles east of the city of 

Fresno California.  

 
Fig. 6 [5] 
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Figure 7 [5] shows the powerhouse for Helms, where one can 

observe that it is underground (at a depth of 1000 ft!).  

 
Fig. 7 [5] 

Figure 8 [5] below shows the typical week-long cycles of Helms. 

Note that unit 2 is typically not used as a result of the fact that the 

region around Fresno has recently become transmission constrained. 

PG&E had to build new transmission to alleviate this problem. 
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Fig. 8 [5] 

In addition to the ability to peak shave and valley fill, Helms is a 

highly flexible plant with operating flexibility characterized by the 

following attributes: 

 Dead stop to full generation in 8 minutes. 

 Dead stop to full pump in 20 minutes. 

 Ramp rate of 80 MW/min per unit (about 20% per minute!) 

This level of operational flexibility is highly desirable for systems 

that have high wind penetration levels.  

 

2.0 US reservoir systems 

 

Reservoir systems are typically created where large water systems 

occur in highly mountainous terrain so that one or a series of 

cascading lakes, either natural or enlarged with dams, form 

reservoirs. Each lake has an associated penstock that runs down the 

mountainside and leads to one or more turbines. Fig. 9 [6] shows the 

10 largest hydroelectric facilities in the US. 
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Fig. 9: Ten largest hydroelectric facilities in the US 

 

The major US reservoir systems are in the states of Washington, 

Nevada, California, and Tennessee. The Colombia River system 

which flows from British Columbia to Washington State to Oregon 

has 14 reservoir dams ranging from 185 MW to 6809 MW (Grand 

Coulee Dam) for a total capacity of 24,149 MW (the overall 

watershed which also includes the Snake River includes more than 

this). Figure 9a shows a map of the Colombia River System [7]. 
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Fig. 10a [7] 

The Colorado River which flows through seven states (Wyoming, 

Colorado, Utah, New Mexico, Arizona, Nevada, and California) 

begins in the Rocky Mountains at an altitude of 9019 feet. Figure 10 

below shows its course. It is one of the most diverted water systems 

in the US, with the major use of the river being to irrigate 4 million 

acres of agricultural land in the US and 500,000 acres in Mexico. In 

addition, it is the water supply for Los Angeles, Las Vegas, Phoenix, 

San Diego, Denver, and Salt Lake City. Hardly any water actually 

reaches the Gulf of California.  

 

The total capacity on the Colorado River is 4166MW. The largest of 

Colorado River dams is Hoover Dam, which when it was built in 

1936 was the largest hydro plant in the world (now it is 36
th

). Its 

capacity is 2080MW. The second largest is Glen Canyon Dam at 

1288MW. There are five other dams with total capacity of 798MW. 
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Fig. 10b 

 

The Tennessee Valley Authority (TVA) operates 29 conventional 

hydroelectric dams throughout the Tennessee River system 

(4050MW), four dams on the Little Tennessee River (1452MW), 

and 8 US Army Corps of Engineers dams on the Cumberland River 

(707MW). These facilities are shown by the red dots in Fig. 11 

below (the yellow dots are thermal plants).   
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Fig. 11 

 

Hoover Dam has a very interesting history that continues today as a 

new bridge across it is nearing completion. The following recent 

photos, although not necessarily pertinent to our class, are worth 

viewing. This new bridge construction was completed in 2010. 
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3.0 Basics of reservoir systems 
Hydro turbines may be of two types: reaction and impulse. Reaction 

turbines are acted on by the water which changes pressure as it 

moves through the turbine and gives up energy. They must be 

encased or fully submerged in the water flow. Kaplan and Francis 

type turbines are both reaction types. Kaplan turbines have 

propellers and are used in very low head (2-40 m) turbines, typically 

where a flat stream or river is dammed, whereas Francis turbines 

may be used for applications where the head is up to 350 m. In 

Kaplan turbines, the water flow is axial, whereas Francis turbines, it 

is radial. 

 For impulse turbines, pressure change occurs only in the nozzles; 

it does not change while flowing across the blades. Impulse turbines 

change the velocity of a water jet and the resulting change in 

momentum causes a force on the turbine blades. In an impulse 

turbine, the water is fired through a narrow nozzle at the turbine 

blades; the blades are bucket-shaped so they catch the fluid and 

direct it off at an angle. Each “catch” of a blade is an impulse, and 

thus the name. Pelton turbines, the most common type of impulse 

turbine, are used for very high head (up to 1300 meter) facilities.  

 Different turbine types are illustrated in Fig. 12a, and their 

application ranges are illustrated in Fig. 12b. Some good 

explanations of the differences between turbine types may be found 

at [8]. 
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Fig. 12a: Reaction and impulse turbines 

 

 

Fig. 12b: Typical application ranges of different hydro turbine types 
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http://upload.wikimedia.org/wikipedia/commons/b/bf/Water_Turbine_Chart.png
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Figure 13 shows a very basic reservoir facility. 

 
Fig. 13 

 

Notice the attention given in Fig. 13 to the effective head. This is a 

very important quantity for any hydro facility, because it is a 

significant influence on the power production capacity of the plant. 

 

A central concept in relation to reservoir plant operation is the 

available power.  We can derive this by considering that the 

potential energy of a mass m of water at height h is given by 

mghE       (1) 

where g is the acceleration due to gravity. Differentiating to get 

power results in 

 mgh
dt

d

dt

dE
P 

     (2) 

 

Now the only thing in (2) that changes with time as water flows 

down the penstock is the mass of the water in the reservoir, and so 

(2) becomes: 
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gh
dt

dm
P 

     (3) 

where dm/dt is the mass flow rate, which is given as the product of 

density ρ (kg/m
3
) and volume flow rate r (m

3
/sec), that is, 

rghP       (4) 

There are some friction losses in the penstock, and there are losses 

in the turbine, and so we are not able to convert all of the power of 

equation (4) to electric energy. This influence is considered via a 

multiplying factor η so that the electric power available from a 

turbine having head h is given by 

rghP       (5) 

Constraints cause the operation of reservoirs to be complex or very 

complex. The different kinds of constraints are listed below. 

 Recreation  

 Navigation 

 Irrigation 

 Environmental (fish kill) 

 Sudden release 

 Downstream water flow limitations 

Another reason why hydro operation can be complex is that it must 

be operated within an overall system which may, and usually does, 

contain thermal generation. This requires coordination between the 

thermal plants and the hydro plants. This coordination is done in 

such a way that the use of hydroelectric power production is 

maximized within the constraints.  

 

Of most importance to us in this context is the recognition that the 

reservoir is a limited energy system, not at all unlike our limited 

energy thermal systems which we have been studying.  
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A final note on hydro operation complexity. The complexity is 

minimized when the system is comprised of only a single power 

plant and a single reservoir. We may refer to this as the uncoupled 

case, i.e., all reservoir levels are independent of each other. Such a 

situation is illustrated in Fig. 14. 

 
Fig. 14 

In contrast, the coupled case can be much more complicated because 

the flow of one reservoir determines the level of another. Such a 

situation is illustrated in Fig. 15a. 

 

 
 

Fig. 15a 

 

 

RESERVOIR 
 

RESERVOIR 
 

RESERVOIR 

 

RESERVOIR 

 

RESERVOIR 



20 

 

4.0 Preliminaries of hydro-thermal scheduling (HTS) 
 

4.1 Taxonomy of problem types 

The goal of reservoir plant scheduling depends on the time frame of 

interest.  

1. Long-range (weeks to year): Here we need the load forecast and 

expected water flow from a rainfall forecast. Then we can predict 

the energy availability from the hydro facilities and compute the 

necessary thermal energy.  

2. Short-range (day to 1 week): Using results from (1) and more 

precise load and water information, we can formulate a problem 

where the solution yields the minimum cost of running the 

thermal plants on an hour-to-hour basis. 

 

In addition, there are 3 basic types of hydro scheduling problems. 

1. All hydro system: Here we want to meet the demand with 

minimum overall decrease in reservoir water level (stored 

energy). For example, if you have two decoupled plants A and B, 

and you run A all the time and never B, then plant B may spill. 

The better approach is to run them both in such a way so that 

neither plant spills. There are not many all-hydro systems in the 

world, Nepal is one. But there are several that are close. 

2. Mostly hydro system: New Zealand is such a system with 60% 

hydro, 32% thermal, and the other 8% from various sources 

(geothermal, wind, and biomass) [9]. Norway and Sweden 

comprise another mostly hydro system with 29GW out of 30.5 

GW being hydro. One of the best examples of a mostly hydro 

system is Hydro Quebec. The Hydro Quebec region is shown in 

Fig. 15b below together with all hydro facilities in the US. 
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Fig 15b 

This system uses hydro for producing over 97% of its energy, as 

indicated in Fig. 15c below. 

 
Fig. 15c 

The below scale is 

has been zoomed 

out so as to read it. 

The largest bubble 

(2000MW & more) 

corresponds to the 

largest bubbles on 

the map. 
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3. Mostly thermal system: Most systems with hydro qualify as this 

type. PG&E in California is an example, as indicated in Fig. 15d. 

  

Fig. 15d 

 

Both (2) and (3) represent hydro-thermal coordination problems.  

 

The table below provides a breakdown of several characteristics that 

we have discussed – a taxonomy of problem types (note that no 

coupling is intended between the different columns). We will study 

a problem characterized by the bolded categories in the table below.  

Plant 

characteristics 

Time frame Coupling Problem types 

Run of river Long range Coupled All Hydro 

Pumped 

storage 
Short-range Decoupled Mostly hydro 

Reservoir   Mostly 

thermal 

 

 

4.2 Terminology 

Some basic terminology is illustrated in Fig. 16a and defined below. 
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Fig. 16a 

 Forebay: A lake or water impoundment (reservoir) before the 

entrance to the power plant. 

 Afterbay: A lake or water impoundment downstream from the 

power plant that receives the water after it has passed through the 

turbines. 

 Penstock: The pipe leading from the water intake to the turbine. 

 Intake: The entrance from the forebay to the penstock.  

 Spillage: releasing water over the dam rather than through the 

penstock. Some dams have spillways, as shown in Fig. 17, which 

allow smolts (adolescent salmon) to pass without transiting 

through the turbines.  

 Fishladders: stepped runways that allow salmon to migrate 

upstream, as shown in Fig. 16b (left). Fig 16b (right) also shows 

the salmon’s amazing jumping ability. 

  
Fig. 16b 

FOREBAY 

AFTERBAY 

INTAKE 

PENSTOCK 

SPILLAGE 

POWERHOUSE 
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Fig. 17 

 

4.0 The mostly-hydro case (Section 7.3.2 in book) 

We assume in our development of this problem that there is one 

thermal plant and one hydro plant. The one thermal plant is not a 

restriction since we can always form a composite cost function 

FS(PS) for our thermal plants. The one hydro plant represents a 

simplification that we will eliminate later. 

 

In the mostly-hydro case, the total rated hydro power is assumed to 

be enough to meet the demand at any one period, but…the total 

hydro energy is not enough to meet the demand over all periods, and 

as a result, we must use the thermal generation.  

 

We define the following nomenclature: 
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 EH: total hydro energy available. It is proportional to the head 

(gives distance water falls) and the volume of water above the 

intake (gives mass of water to fall) or designated “available water 

volume for use” in the time period of interest. Recall from (1): 

mghEH       (1) 

And because m=Vρ, where V is water volume and ρ is the water 

density (about 1000kg/m
3
 at normal temperatures), we have that 

ghVEH      (6) 

We desire to use all of EH in a certain time period TMAX, where  





MAXj

j

jMAX nT
1

     (7) 

Therefore  





MAXj

j

jHjH nPE
1

     (8) 

where PHj is the hydro generation level at time period j. 

 

 ES: total thermal energy used. Then 





MAXj

j

jSjS nPE
1      (9) 

 where PSj is the thermal generation level at time period j. 

 

We will also assume that, in order to avoid start-up and shut-

down costs, we will utilize the thermal generation in only one 

continuous period, that is, we will run the thermal generation for 

the first NS periods and then shut it down, so that total thermal 

run-time is: 

“Available water volume for use:” We can think of EH as a computed volume of water that will 

not draw down the reservoir below a certain level, accounting for the upstream inflow. 
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



SN

j

jS nT
1

     (10) 

At this point, we do not know NS; therefore we do not know TS. 

 

With the last assumption and the definition of NS, we may 

express (9) as: 





SN

j

jSjS nPE
1

     (11) 

Equations (9) and (11) are equivalent, i.e.,  





SMAX N

j

jSj

j

j

jSjS nPnPE
11

 

because, under the last assumption, the thermal generation levels 

PSj, j=NS+1,…,jMAX, will be zero. 

 EL: Total energy used by the load. 





MAXj

j

jLjL nPE
1      (12) 

where PLj is the load during time interval j.  

 

Observe that ES is a known quantity since  

 we know PLj for all j which gives us EL, by (12); 

 if we know the head and the water volume, then we know 

EH from (6); and 

HLS EEE       (13) 
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Our problem is then to minimize the cost of the thermal 

generation subject to the requirement that we must supply an 

amount of thermal energy equal to ES, i.e.,  













S

S

N

j

jSjS

N

j

jSjST

nPE

nPFF

1

1

0

:osubject  t

)(min

    (14) 

The Lagrangian is then 














 



SS

S

N

j

jSjS

N

j

jSjS

SNS

nPEnPF

PP

11

1

0)(

),,...(



L

  (15) 

 

where α is the Lagrange multiplier on the energy constraint. 

 

Applying the first-order optimality conditions, we obtain: 

Sj
Sj

Sj
j

Sj

Njn
P

PF
n

P
,...,1,0

)(












L

  (16) 
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





 SN

j

jSjS nPE
1

0


L

     (17) 

 

From (16), we observe that 

S
Sj

Sj
Nj

P

PF
,...,1,

)(







     (18) 

Equation (18) implies that the thermal unit must be run at the same 

generation level for the entire duration it is on-line, TS. Call this 

power generation level PS*. We need to find this value. W&W 

provide Fig.7.4 in the book, copied below, to illustrate the situation. 

 
 

To do so, first observe that, with PSj=PS* for all j=1,…,NS, where  





SN

j

jS nT
1

     (10) 

then (17) becomes 
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





 SN

j

SSSjSS TPEnPE
1

** 0


L

 (19) 

so that 

*

*

S

S
SSSS

P

E
TTPE 

    (20) 

Let’s now assume that the thermal plant has a cost-rate function 

given by 

2)( SSS CPBPAPF       (21) 

Since (18) requires the generation level to be the same throughout 

the duration TS, the total cost of running the thermal plant is: 

  SSSSST TPCBPATPFF 2*** )()(      (22) 

Now substitute (20) into (22) to obtain  

 

 










 *1*

*

2*** )()(

SSS

S

S
SSSST

CPBPAE

P

E
PCBPATPFF

   (23) 

Equation (23) is of value because, unlike (22) which is a function in 

two unknowns (PS* and TS), (23) is a function in only a single 

unkown, PS*, and it incorporates the equality constraint (19). So we 

have transformed an equality-constrained optimization (14) to an 

unconstrained optimization.  

 

We can solve the unconstrained optimization using basic calculus, 

which requires that the minimum of FT to occur when: 
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  0
2*

*












 
CPAE

P

F
SS

S

T

     (24) 

Manipulating (24) results in 

 
C

P

A

S


2*        (25) 

Solving for PS* results in 

C

A
PS *

       (26) 

Clearly we must have a positive value of generation, therefore 

C

A
PS *

        (27) 

And we have solved our problem.  

However, we should consider our solution – what does it mean? 

 

To gain some insight into what (27) is telling us, recall that a 

thermal plant cost-rate function F is related to its fuel-rate function 

R (units of MBTU/hr) via: 

 SS PKRPF )(       (28) 

where K is the fuel cost in $/MBTU. The fuel-rate function is then  

 
K

PF
PR S

S

)(


      (29) 

Then the (average, not incremental) heat rate of the plant is given by  

 
S

S

S

S
S

KP

PF

P

PR
PH

)()(


      (30) 
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ASIDE (Potential source of confusion): In W&W, both in Chapter 2 

(see pg 8) and in Chapter 7 (see pg 217), they use H for fuel rate and 

therefore H/P is their heat rate, and they use f for fuel cost. In the 

above equations, and in what follows, I am sticking to the same 

notation that I used in my Cost-Curve notes earlier in the semester. 

 

Assuming a quadratic form for F(PS), as we did in (21) above, (30) 

becomes 

 
S

SS
S

KP

CPBPA
PH

2


      (31) 

or 

      SSS PCBPA
K

PH 
11

     (32) 

Differentiating, we obtain 

 
   0

1 2



CPA

KdP

PdH
S

S

S

     (33) 

Solving (33) for PS results in 

2
SCPA         (34) 

which results in 

C

A
PS 

       (35) 

Again, we require positive value of generation, therefore 

C

A
PS 

       (36) 

which is the same result obtained when minimizing cost rate. 

Note the second derivative of (32) is 
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 
  3

2

2

2
1 

 S

S

S PA
KdP

PHd

     (37) 

and this expression must be positive for positive values of PS, 

therefore the extreme point found by (36) must be a minimum, that 

is, we found the value of generation that minimizes the heat rate 

function for the thermal plant.  

 

Now you may recall from our Cost-Curve notes that Heat Rate, with 

units of MBTU/MWHr, is proportional to the inverse of efficiency, 

that is 

 


1
SPH

      (38) 

So if our solution (36) minimizes heat rate, it maximizes efficiency. 

This result provides us with the ability to understand the solution to 

the hydro-thermal coordination problem that we have posed in this 

section, for which we arrived at the same solution. 

 

The implication is that by (13), repeated here for convenience, 

HLS EEE       (13) 

we know the energy required by the thermal plant, our optimal 

solution is to run the thermal plant at its point of maximum 

efficiency for as long as it takes to produce this energy level ES. 

 

Now that we have found this solution, it is hardly a surprise that it 

should be this way, since operating at maximum efficiency is the 

least-fuel usage way of supplying a fixed amount of energy. 

 

Once we know PS*, then TS=ES/PS*, and then 
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











 


k

j

SjS TnkN
1

:min
 

which reads, “NS equals the minimum value of k such that the sum 

of the durations from 1 to k is greater than or equal to TS.” 

 

The hydro levels are then found from 

MAXSLjHj

SSLjHj

jNjPP

NjPPP

,...,1,

,...,1,*





    

  (39) 

5.0 The mostly-thermal case (Section 7.4 in book) 
 

We will again assume one hydro generator and one thermal plant.  

 

Our basic assumption for this problem is that we have a specified 

amount of water energy we want to use over a given time, but we 

never have enough hydro power to supply the entire load. Therefore 

we must use some thermal generation at all times.  

 

Let’s first consider the hydro input/output curve. 

 

We have previously discussed (see notes on cost-curves) the 

input/output (I/O) characteristic for a thermal plant, where we 

plotted fuel input in MBTU/hr as a function of the power output Pg 

in MW. The derivative of the I/O characteristic gives the 

incremental fuel rate, in MBTU/MW-hr
1
. 

 

                                                 
1
 When the I/O curve for a thermal plant is multiplied by the fuel cost in $/MBTU, we 

obtain the cost rate curve in $/hr vs. MW. The derivative of the cost rate curve gives the 

incremental cost rate, in $/MW-hr vs. MW.  

PLEASE WORK THROUGH 

EXAMPLE 7A IN THE TEXT. 
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We can do a similar thing for a hydro plant. In regards to the I/O 

characteristic, the “fuel input” is given as qT, in volume of water/hr. 

In the US, volume of water is often measured in Acre-ft (an Acre is 

a unit of area equal to 4,046.87m
2
 or 43,560 ft

2
). Figure 18a 

illustrates a representation of a hydroelectric plant I/O curve, which 

shows that the power output is directly proportional to the water 

flow rate up to the power rating of the plant, beyond which it 

increases steeply due to increased water friction losses at the higher 

flows. 

 
Fig. 18a 

Figure 18b plots the incremental flow rate dq/dt as a function of P. 

PMIN PRATED PMAX 

q
, 
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Fig. 18b 

We let qj be the water flow in acre-ft/hr for time interval nj. Then  





MAXj

j

jjTOT qnq
1

      (40) 

where qTOT is the total water volume available for the hydro 

generation in units of acre-feet. 

 

Let’s also assume we have an I/O curve given by 

)( HPqq         (41) 

and that it has the following form: 

HH bPaPqq  )(       (42) 

We can now form our problem. 

PMIN PRATED PMAX 
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MAXSjHjLj

j

j
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S

,...,1,0
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)(min

1
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











    (43) 

Recall the fuel scheduling problem (see (5) of FS notes), which was 

















max

max

1

1

max

11

,...,1       ,0

subject to

)(min

j

j

TOTTjj

N

i

TjijRj

N

i

ijij

j

j

j

qqn

jjPPP

PFn

 

This is the exact same problem except in hydro-thermal scheduling 

(HTS) we use composite thermal plant representation, whereas in 

the above stated fuel scheduling (FS) problem, we used individual 

thermal plant representation. 

 

The Lagrangian of our HTS problem is 
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  


























MAX
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1

1

max1max1

)(
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),,...,,,...,(




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    (44) 

  

And applying first-order conditions, we find for each interval that  

Sk

SkSk
k

Hk

Hk
kk

P

PF
n

P

Pq
n











)()(
 

   (45) 

As in the FS problem, we have 

2)( SkSkSkSk CPBPAPF       (46) 

and upon differentiating, we obtain 

Sk
Sk

SkSk CPB
P

PF
2

)(






     (47) 

Substitution into (45) results in 

 
Skk

Sk

SkSk
kk CPBn

P

PF
n 2

)(







  (48) 

from which we obtain 

k

kk
Sk Cn

Bn
P

2





     (49) 

Equation (49) is the same as that which we obtained in the FS 

problem (see (18) of FS notes). 
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There is a small difference in the equation for q (input/output curve, 

MBTU/hr for FS or Acre-ft/hr for HTS), however, because in the 

fuel scheduling problem, the energy constrained unit was thermal, 

and therefore q was quadratic. Here, we use a linear expression for 

q, per (42), repeated here for convenience: 

HH bPaPqq  )(       (42) 

Differentiating, we obtain (compare to (22) of FS notes) 

b
P

q

H






       (50) 

Substitution into (45) results in 

bn
P

Pq
n k

Hk

Hk
kk  

)(
  






   (51) 

from which we obtain 

bnk

k 
      (52) 

Substituting (48) into (52) we obtain 

 
b

CPB

bn

CPBn Sk

k

Skk 22 



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   (53) 

Solving (53) for PSK results in 

C

Bb
PSk 2

 



      (54) 

Equation (54) indicates that the thermal generation should be 

constant across all time periods k=1,…,jmax, The only thing we need 

to choose is γ. How do we choose γ?  
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W&W, pg. 220, states, “This is solved using the same techniques as 

in Chapter 6.” This is true, but in this case, those techniques can be 

considerably simplified because the “fuel” (water) is, in this case, a 

linear function of the corresponding generation PH per (42). Because 

of this, the incremental flow rate of hydro generation is a constant, 

independent of the hydro generation level PH, as indicated in (50). 

This means that the optimality condition of (45) does not directly 

impose any requirement on PH (as it does PS); i.e., PH does not 

appear in (45) since the differentiation with respect to PH is a 

constant. This differs from the fuel-constrained problem where we 

found that the optimality condition did impose a requirement on PT. 

See equations (23) and (24) of the FS notes, which are repeated 

below: 

  02 



TkTTkk

Tk

Pcbn
P


L

 

kT

Tkk
Tk nc

bn
P

 2

 



 
  

We will describe the simplified procedure in what follows. 

However, you should be clear that the simplification arises not 

because of some inherent difference between the hydro scheduling 

problem and the FS problem but rather because we here represent 

the fuel I/O curve as linear instead of quadratic. 

 

As in the fuel scheduling problem, γ may be thought of as a fuel 

(water in this case) price, if we raise it, the supply of the fuel will 

decrease; if we lower it, the supply of fuel will increase.  

 

One can see this directly by substituting (54) into the power balance 

equation 

MAXSjHjLj jjPPP ,...,1,0   

which results in 



40 

 

MAXHjLj jj
C

Bb
PP ,...,1,0
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
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Solving for PHj gives 

MAXLjHj jj
C

Bb
PP ,...,1,

2

 



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 (55) 

Substituting (55) into (42) results in 








 


C

Bb
PbaPqq LjHjj

2

 
)(


    (56) 

Now it must be the case that the total water usage is qTOT according 

to (40), repeated here for convenience: 





MAXj

j

jjTOT qnq
1

      (40) 

Therefore (56) and (40) offer a simple way to solve the problem: 

1. Guess γ 

2. Use (56) to compute qj for all j=1,…,jmax 

3. Compute 





MAXj

j

jj qnQ
1

 

4. If | ΔqTOT|=|qTOT-Q|<ε, stop.  

5. Else, if ΔqTOT>0 (qTOT>Q), decrease γ. If ΔqTOT<0 (qTOT<Q), 

increase γ. 

6. Go to 2.  

Step 5 requires an expression for how much to increase/decrease γ. 

This can be found in a similar way as we did for the FS problem, by 

substituting (56) into (40) and then differentiating ∂qTOT/∂γ, 

approximating as ΔqTOT/Δγ, and solving for Δγ. The result is 

c

Tb

q

c

bn

q TOT

j

j

j

TOT

22

max

2

1

2
max





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



 Observe in the update equation that 

positive ΔqTOT (we have not used 

enough water) results in a price 

decrease; negative ΔqTOT (we have  

used too much water) results in a 

price increase. 
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where 



MAXj

j

jMAX nT
1

 

In comparison to the FS solution approach (see Fig. 2 of FS notes), 

this problem is simpler because it eliminates the need to iterate to 

get PS and PH, which in the FS problem is required by the optimality 

conditions of (45). 

 

Mostly-thermal case with losses (pp 220-222) 

 

W&W also consider representing losses in the problem of the 

mostly-thermal case. In contrast to (43), the lossless problem 
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  (43) 

our problem now becomes 
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j

j
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







 (57) 

The Lagrangian becomes 
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And applying first-order conditions, we find for each interval k that  
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Solving the above for λk and rearranging slightly results in 
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   (60b) 

which are identical to (7.28) and (7.29) in the text, which W&W 

calls the coordination equations. In this case, the loss function Ploss,k 

in (60b) will normally depend on PHk, and so (60b) will contain PHk. 

Therefore we will need to use lambda-iteration to solve (60a) and 

(60b). Figure 7.7 in W&W provides a general algorithm for solving 

the overall HTS problem with losses, copied below. 
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We now consider a series of increasingly complex HTS problems 

for the mostly thermal case. We utilize a gradient approach for the 

solution procedures. 

 

Problem 1: This problem is the same as what we have addressed 

above (mostly thermal case without losses), but we will utilize 

slightly different notation, and we will be more explicit about our 

assumptions, that is: 

 Ignore inflow 

 Starting volume=V0 

 Ending volume=Vjmax 

 Time intervals duration nj, j=1,…,jmax. 

The presence of the starting and ending volume specifies a total 

water volume usage which we will here denote as QTOT=V0-Vjmax. 

 

Solution of this problem using the gradient search approach is given 

below: 

 

 

Note that there are three iterative loops: 

 First (inner) loop: Lambda iteration solves 

the coordination equations for a given time 

interval. Actually, there is another loop here 

which would, after computing lambda (and 

corresponding generation levels) for a given 

value of losses, would recompute losses and 

iterate again. 

 Second loop: Step through all of the time 

intervals j=1,…,jmax. 

 Third (outer) loop: Gamma adjustment to use 

the desired amount of water.  

REVIEW EXAMPLE 7B IN TEXT. 
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Step 1: Obtain starting solution as 


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j

j

TOT
avgk

n

VV

n

Q
qq

1

max0

1

   (61) 

 

Step 2: Obtain the hydro generation level from qHk for each time 

interval k=1,…,jmax, using (this just comes from the linear water rate 

I/O equation (42)): 

b

aq
P k

Hk


      (62) 

Also obtain the thermal generation levels from: 

HkLkSk PPP       (63) 

 

Step 3: Compute γk for all intervals k=1,…, jmax using: 

b

CPB Sk
k

2
      (64) 

which is the same as (53). If all γk are within ε of each other, then 

the algorithm stops. 

 

Step 4: Identify maximum and minimum γk (denoted qj+ and qj-) 

from the computations made in Step 3, and then compute the change 

in the total water released according to: 

  0QQ jj        (65) 

where ∆Q0 is chosen to be relatively small. Note that this relation 

was used in the fuel scheduling notes as well. Justification was 

given there as below: 

The flow chart step “∆q=(γj+-γj-)∆q0 WHERE ∆q0 IS A CHOSEN SMALL 

STEP” is not dimensionally correct as it stands, because gamma 

has units of $/RE, and when multiplied by RE, gives $, consistent 

with the above discussion regarding (43). You can assume, 
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however, that the relation is really ∆q=[(γj+-γj-)/1][∆q0], where the “1” 

has the same units as γ. Then we observe that if Δq0 has units of 

RE, then so will Δq. Basically, this relation is just telling us that 

if we want to correct two intervals j- and j+ for their fuel (or 

water) usage, we should choose an amount of water to shift that is 

proportional to the difference between the two interval’s gamma 

values. 

Step 5: Correct the water flow for intervals j+ and j- according to 


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jj
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qq

     (66) 
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jj
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Q
qq

     (67) 

Once this is done, we return to step 2.  

 

 

Problem 2: This is the same as Problem 1, except we will assume a 

rate of inflow to the reservoir of rk during interval k.  

 

The only change in our previous solution strategy is in Step 1, where 

we now need to include the inflow into our starting solution 

according to 

kj

j

j

j
avgk r

n

VV
qq

MAX







1

max0

   (68) 

This makes sense because an inflow is simply going to increase the 

available outflow by that same amount. 

 

Once this change is made, the procedure may proceed as indicated 

in Problem 1. 
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Problem 3: Now assume that we have problem 2 except we will 

account for limitations on the reservoir level of  

maxmin VVV k       (69) 

We must not violate this constraint in any time period. 

To address this, we first must identify Vk, the water volume in 

period k. This will be given by 

   kkkk VV OutWater InWater 1     (70) 

But the “water in” is the rate of inflow rk times the duration nk, and 

the water out is the water flow rate qk times the duration nk, so that 

(70) becomes: 

  kkkk

kkkkkk

nqrV
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



1

1

      (71) 

Equation (71) is referred to as the hydraulic continuity equation.  

 

Solving (71) for qk results in 

 

k

kk
kk

n

VV
rq


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        (72) 

Now recall that we have constraints on Vk as specified in (69). 

Given a certain water level in the last period Vk-1,  

 Letting Vk go to Vmin will result in the largest possible water flow 

rate qk during interval k. 

 Letting Vk go to Vmax will result in the least possible water flow 

rate qk during interval k. 

Therefore we may write that  

maxmin kkk qqq           (72) 

where  
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so that (72) becomes 
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      (73) 

Note that, in addition to (72) (or (73)), there are also constraints on 

water flow rate qk imposed the physical capabilities of the facilities 

(water intake and penstock), i.e.,  

maxmin qqq k           (74) 

 

 

Now what should be changed in our algorithm? 

 

 

 

Recall Step 5 of our algorithm when we compute new values of qj+ 

and qj-. When considering constraints on water volume, we need to 

check whether a new value of qj+ or qj- is in violation. If so, then the 

water flow rate should be set to its limit. And so step 5 should read 

as follows: 

================================================ 

Step 5: Correct the water flow for intervals j+ and j- according to 


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If qj+>min(qmax, qkmax), then qj+= min(qmax, qkmax). 

If qj-<max(qmin, qkmin), then qj-=max(qmin, qkmin). 

 

Once this is done, we return to step 2.  
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================================================ 

The other change that is necessary is due to the fact that hitting a 

constraint decouples the time intervals so that γ on one side of the 

binding constraint will differ from γ on the other side of the binding 

constraint.   

 

You can think about what this means to our algorithm in two 

different ways. 

1. It makes no sense to try and draw the gamma values closer 

together if they are chosen from separate sides of a binding 

constraint, since there is no reason why they should be the 

same. Therefore we need to choose the gamma values to draw 

closer from the same side of the constraint. 

2. Augmenting water release from two sides of a binding 

constraint will necessarily result in violation of the constraint, 

since the fact that the constraint is binding means it wants 

more release in the direction of the violation. Augmenting 

water release from only one side of the binding constraint will 

necessarily result in no change to the flow rate at its limit, 

since the net change in water release is zero, and since both 

changes occur either before or after the binding constraint, it is 

not possible that the bound flow rate should change. 

 

Therefore the other change that should be made is in Step 4, where 

we define the term “coherent” to include all time intervals for which 

the gamma values should be the same, i.e., there should be no time 

interval included within the chosen range for which a constraint is 

binding.  

 

Step 4 should now read as follows. 

 

================================================ 

Step 4: For a given coherent set of time intervals, identify maximum 

and minimum γk (denoted qj+ and qj-) from the computations made 
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in Step 3, and then compute the change in the total water released 

according to: 

  0QQ jj        (65) 

where ∆Q0 is chosen to be relatively small. 

 

================================================ 
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