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EDC3 

1.0 Introduction 
 

In the last set of notes (EDC2), we saw how 

to use penalty factors in solving the EDC 

problem with losses. In this set of notes, we 

want to address two closely related issues.  

 What are, exactly, penalty factors?  

 How to obtain the penalty factors in 

practice? 
 

2.0 What are penalty factors? 

 

Recall the definition: 
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In order to gain intuitive insight into what is 

a penalty factor, let’s replace the numerator 

and denominator of the partial derivative in 

(1) with the approximation of ΔPL/ΔPGi, so: 
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Multiplying top and bottom by ΔPGi, we get: 
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What is ΔPGi? It is a small change in 

generation. But that cannot be all, because if 

you make a change in generation, then there 

must be a change in injection at, at least, one 

other bus. Let’s assume that a compensating 

change is distributed throughout all other 

load buses according to a fixed percentage 

for each bus. By doing so, we are embracing 

the so-called “conforming load” assumption, 

which indicates that all loads change 

proportionally.  

 

Therefore ΔPGi=ΔPD. But this will also 

cause a change in losses of ΔPL, which will 

be offset by a compensating change in swing 

bus generation ΔPG1. So,  
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LDGGi PPPP  1    (4) 

where we see generation changes are on the 

left and load & loss changes are on the right. 

Solving for ΔPGi-ΔPL (because it is in the 

denominator of (3)), we get 
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Substituting (5) into (3), we obtain: 
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Recognize that ΔPG1 in (6a) reflects the 

losses, we have 
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So from (6b), we extract the following 

interpretation of the penalty factor: It is the 

amount of generation at unit i necessary to 

supply ΔPD, as a percentage of ΔPD-ΔPL. 

This depends on how the load is changed 

(which is why we use the conforming load 

assumption). If the change increases losses 

(ΔPL>0), then Li>1. If the change decreases 

losses(ΔPL<0), then Li<1.  
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An example will illustrate the significance 

of (6a) & (6b). Consider Fig. 1. Observe that 

the flows given on the circuits are into bus 2 

(the flows along the line out of buses 1 and 

3, respectively, are higher).  
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Fig. 1 
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One observes that L2<1. This is because a 

load change compensated by a gen change at 

bus 2 decreases the losses as indicated by 

the fact that the bus 1 generation decreased 

by 0.2 MW. 

On the other hand, L3>1. This is because a 

load change compensated by a gen change at 

bus 3 increases the losses as indicated by the 

fact that the bus 1 generation increases by 

0.2. MW. 

 

Why does the bus 2 generation reduce losses 

whereas the bus 3 generation increases 

losses?  

 

Answer:  Because increasing bus 2 tends to 

reduce line flows, whereas increasing bus 3 

tends to increase line flows.  

     So we see that in general, generators on 

the receiving end of flows will tend to have 

lower penalty factors (below 1.0); generators 

on the sending end of flows will tend to 

have higher penalty factors (above 1.0).  
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Because transmission systems are in fact 

relatively efficient, with reasonably small 

losses in the circuits, the amount of 

generation necessary to supply a load 

change tends to be very close to that load 

change. Therefore penalty factors tend to be 

relatively close to 1.0.  

 

A list of typical penalty factors for the 

power system in Northern California is 

illustrated in Fig. 2. Generators marked to 

the right are units in the San Francisco Bay 

Area, which is a relatively high import area 

for the Northern California system. Most of 

the penalty factors for these units are below 

1.0. Units having penalty factors>1.1 are 

mainly units close to the Oregon border (a 

long way from the SF load center), such that 

they tend to add to the north-to-south flow 

that results from the northwest hydro being 

sold into the California load centers. 
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Fig. 2 

 

But why do we actually call them penalty 

factors? Consider the criterion for optimality 
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This says that all units (or all regulating 

units) must be at a generation level such that 

the product of their incremental cost and 

their penalty factor must be equal to the 

system incremental cost λ. 

 

Let’s do an experiment to see what this 

means. Consider that we have three identical 

units such that their incremental cost-rate 

curves are identical, given by 

IC(PG)=45+0.02PG. 

 

Now consider the three units are so located 

such that unit 1 has penalty factor of 0.98, 

unit 2 has penalty factor of 1.0, and unit 3 

has penalty factor of 1.02, and the demand is 

300 MW. 

 

Without accounting for losses, this problem 

would be very simple in that each unit 

would carry 100 MW.  

 

But with losses, the problem is as follows: 
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λ=0.98(45+0.02PG1)=44.1+0.196PG1 

λ=1.0(45+0.02PG2)=45+0.02PG2 

λ=1.02(45+0.02PG3)=45.9+0.0204PG3 

 

Putting these three equations into matrix 

form results in: 
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Solving in Matlab yields: 
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One notes that the unit with the lower 

penalty (unit 1) was “turned up” and the unit 

with the higher penalty (unit 3) was “turned 

down.” The reason for this is that unit 1 has 

a better effect on losses. 
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3.0 Penalty factor calculation 

There are several methods for penalty factor 

calculation. We will review several of them 

in this section.  

This method is described in [1]. Consider a 

power system with total of n buses of which 

bus 1 is the swing bus, buses 1…m are the 

PV buses, and buses m+1…n are the PQ 

buses. 

 

Consider that losses must be equal to the 

difference between the total system 

generation and the total system demand: 

DGL PPP       (8) 

Recall the definition for bus injections, 

which is 

DiGii PPP       (9) 

Now sum the injections over all buses to get: 
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Now differentiate with respect to a particular 

bus angle θk (where k is any bus number 

except 1) to obtain: 
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Assumption to the above: All voltages are 

fixed at 1.0; this relieves us from accounting 

for variation in power with angle through 

the voltage magnitude term. Otherwise, each 

term in (12) would appear as 
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Now let’s assume that we have an 

expression for losses PL as a function of 

generation PG2, PG3,…,PGm, i.e.,  

PL=PL(PG2, PG3,…,PGm)    (13) 

Then we can use the chain rule of 

differentiation to express that 

nk
P

P

PPP

P

PPP

k

m

Gm

GL

kG

GL

k

L ,...,2,
)()( 2

2

























 (14) 

In (14), we assume that at generator buses, 

loads are constant, and ∂PGi/∂θi=∂Pi/∂θi. 

Subtracting (14) from (12), we obtain, for 

k=2,…,n: 
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Now bring the first term to the left-hand-

side, for k=2,…,n 
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Writing the above  
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The above equation, when written for 

k=2,…,n, can be expressed in matrix form as 
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The matrix on the left-hand side is the 

transpose of the upper left-hand submatrix 

of the power flow Jacobian (we called it 

J
Pθ

), and so codes are readily available to 

compute it. The elements of the right-hand-

side vector may be found by differentiating 

the real power equation for bus 1, which is: 
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with respect to each angle, resulting in 
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The solution vector contains the inverse of 

the penalty factors in the first m-1 terms. 

 

4.0 Using loss formula 

The method of loss formula results in an 

approximate expression given by 
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where PG is the vector of generation 
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Development of the coefficient matrices in (17) 

has been done in several ways. The first edition of 

the W&W text (1986) presented a method 

developed by Meyer [2] in Appendix B of chapter 

4; it was removed from the second edition.  

 

I developed another method based on the work of 

Kron, which is partially articulated in the book by 

El-Harawry and Christenson, and attached to the 

end of these notes.  
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Some important similarities in the methods: 

1. Both are dependent on the following 

assumptions: 

 Each bus can be clearly distinguished as 

either a load bus or a generation bus. 

 Reactive generation varies linearly with 

generation, i.e., Qgk=Qgo+fkPgk. 

2. Both end up with expressions for PL of 

the same form. 

3. Both expressions for PL are dependent on 

the elements of the Zbus matrix. 

But there is one major difference between 

the formulations in that Kron’s approach 

makes no assumption regarding conforming 

loads. However, the method of W&W 

(Meyers) does, i.e., in Meyer’s approach, all 

loads must increase or decrease uniformly.  

 

We assume that we have the so-called B-

coefficients in the example which follows. 
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