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AGC (Chapter 9 of W&W) 
1.0 Introduction  
Synchronous generators respond to load-

generation imbalances by accelerating or 

decelerating (changing speeds). For example, 

when load increases, generation slows down, 

effectively releasing some of its inertial energy to 

compensate for the load increase. Likewise, when 

load decreases, generation speeds up, absorbing 

the oversupply as increased inertial energy.  

 

Because load is constantly changing, an 

unregulated synchronous generator has highly 

variable speed resulting in highly variable system 

frequency, an unacceptable situation because: 
 NERC penalties for poor-performance (CPS) 

 Load performance can be frequency-dependent 
 Motor speed (without a speed-drive)  

 Electric clocks 

 Steam-turbine blades may lose life or fail under 

frequencies that vary from design levels. 

 Some relays are frequency-dependent: 
 Underfrequency load shedding relays 

 Volts per hertz relays 

 Frequency dip may increase for given loss of generation 
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The fact that frequency changes with the load-

generation imbalance gives a good way to 

regulate the imbalance: use frequency (or 

frequency deviation) as a regulation signal. A 

given power system will have many generators, 

so we must balance load with total generation 

by appropriately regulating each generator in 

response to frequency changes.  

 

As a result of how power systems evolved, the 

load-frequency control problem is even more 

complex. Initially, there were many isolated 

interconnections, each one having the problem 

of balancing its load with its generation. 

Gradually, in order to enhance reliability, 

isolated systems interconnected to assist one 

another in emergency situations (when one area 

had insufficient generation, another area could 

provide assistance by increasing generation to 

send power to the needy area via tie lines). 
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For many years, each area was called a control 

area, and you will still find this term used quite 

a lot in the industry. For example, on page 348 

of W&W, the term is defined as “An 

interconnected system within which the load 

and generation will be controlled as per the rules 

in Fig. 9.20.” The rules of Fig. 9.20 are 

discussed in more depth in Section 4.0 below.  

 

The correct terminology now, however, is 

balancing authority area, which is formally 

defined by the North American Electric 

Reliability Council (NERC) as [1]: 

Balancing authority area: The collection of 

generation, transmission, and loads within the 

metered boundaries of the Balancing Authority. 

The Balancing Authority maintains load-

resource balance within this area. 

 

This definition requires another definition [1]: 

Balancing authority: The responsible entity that 

integrates resource plans ahead of time, 

maintains load-interchange-generation balance 
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within a Balancing Authority Area, and supports 

Interconnection frequency in real time. 

 

Each balancing authority will have its own 

AGC. The basic functions of AGC are identified 

in Fig 9.2 of W&W (Fig. 1a below). 

 
Fig. 1a 

 

Figure 9.2 should also provide a “local” loop 

feeding back a turbine speed signal to the inputs 

of the generators. An alternative illustration 

showing this “local” loop is given in Fig. 1b. 
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Fig. 1b 

2.0 Historical View 

The problem of measuring frequency and net tie 

deviation, and then redispatching generation to 

make appropriate corrections in frequency and 

net deviation was solved many years ago by 

engineers at General Electric Company, led by a 

man named Nathan Cohn. Their solution, which 

in its basic form is still in place today, is 

referred to as Automatic Generation Control, or 

AGC. We will study their solution in this 

section of the course. Dr. Cohn wrote an 

excellent book on the subject [2].  
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3.0 Overview 

There are two main functions of AGC: 

1.Load-frequency control (LFC). LFC must 

balance the load via two actions: 

a. Maintain system frequency 

b.Maintain scheduled exports (tie line flows) 

2.Provide signals to generators for two reasons: 

a. Economic dispatch via the real-time market 

b.Security control via contingency analysis 

Below, Fig. 1c, illustrates these functions. 

 
Fig. 1c 
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As its name implies, AGC is a control function. 

There are two main levels of control: 

1.Primary control 

2.Secondary control 

We will study each of these in what follows.  

 

To provide you with some intuition in regards to 

the main difference between these two control 

levels, consider a power system that suddenly 

loses a large generation facility. The post-

contingency system response, in terms of 

frequency measured at various buses in the 

power system, is shown in Figs. 2b and 2c. This 

is understood in the context of Figs 2a and 2d. 

 

Fig. 2a 

T, Electromagnetic torque 

Tm, Mechanical torque (from turbine) 

Mechanical 

energy 

Electrical  

energy 
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Fig. 2b: transient time frame 

 
Fig. 2c: transient time frame 
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Fig. 2d: Transient & post-transient time frames 

 

The following chart identifies the various time intervals 

associated with the above figures. 
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Fig. 2e 

4.0 Two areas   

As mentioned in Section 1.0 above, on page 348 

of W&W, the term control area is defined as 

“An interconnected system within which the 

load and generation will be controlled as per the 
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rules in Fig. 9.20.” The rules of Fig. 9.20 are 

applied to a two-control area system as 

illustrated in Table 1 and Fig. 3 below.  

Table 1 
∆ω ∆Pnet int Load change Resulting secondary control action 

- - ∆PL1 + 
Increase Pgen in system 1 

  ∆PL2 0 

+ + ∆PL1 - 
Decrease Pgen in system 1 

  ∆PL2 0 

- + ∆PL1 0 
Increase Pgen in system 2 

  ∆PL2 + 

+ - ∆PL1 0 
Decrease Pgen in system 2 

  ∆PL2 - 

 

 
Fig. 3 

The table should be viewed with the following 

thoughts in mind: 

 The above system may be considered to be 

comprised of one control area of interest (let’s 

say #1) on one side of the tie line and a “rest of 

the world” control area on the other side. The 

Control area 1 Control area 2 

Pnet int 

∆PL1=Load change in area 1 

∆PL2=Load change in area 2 
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“rest of the world” control area may be one 

control area or many. 

 All values are steady-state values (not transient) 

following governor action (primary control) but 

before AGC action (secondary control). 

 Since all values are steady-state values, 

frequency change ∆ω is the same throughout the 

interconnection (i.e., the same ∆ω is seen in area 

1 as area 2). 

 Frequency change ∆ω is positive (above 60 Hz) 

when load decreases and negative (below 60 

Hz) when load increases. 

 Change in net interchange, denoted by ∆Pnet int, 

is positive for flow increase from area 1 to area 

2 and negative for flow decrease from area 1 to 

area 2. 

 The indications in the “load change” column can 

be understood to be the cause of the governor 

action (primary control) which results in the 

frequency and tie line change. 

 

There are two important points that come from 

studying the above table of “rules”: 
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1. AGC corrects both tie line deviations 

and frequency deviations. 

2. The tie line and frequency deviations 

are corrected by AGC in such a way so 

that each control area compensates for 

its own load change. 

These are core concepts underlying AGC. 

 

5.0 Interchange  

The interconnection of different balancing 

authority areas create the following complexity:  

   Given a steady-state frequency deviation (seen 

throughout an interconnection) and therefore a 

load-generation imbalance, how does an area 

know whether the imbalance is caused by its 

own area load or that of another area load? 

To answer the last question, it is necessary to 

provide some definitions [1]: 
Summary of terms: 

My term W&W term My symbol W&W symbol 

Net actual interchange  APij  

Net schedule interchange  SPij  

Interchange deviation  ΔPij  

Actual export Total actual net interchange APi Pnet int 

Scheduled export Scheduled or desired value 

of interchange 

SPi Pnet int sched 

Net (export) deviation  ΔPi ΔPnet int 
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Net actual interchange: The algebraic sum of all 

metered interchange over all interconnections 

between 2 physically Adjacent Balancing 

Authority Areas. 

Net scheduled interchange: The algebraic sum 

of all Interchange Schedules across a given path 

or between 2 Balancing Authorities for a given 

period or instant in time. 

Interchange schedule: An agreed-upon 

Interchange Transaction size (MW), start & end 

time, beginning & ending ramp times & rate, & 

type required for delivery/receipt of power/ 

energy between Source & Sink Balancing 

Authorities involved in the transaction. 

We illustrate net actual interchange & net 

scheduled interchange in Fig. 4 below.  

 

 

A1 

 

A2 

 

A3 

100 mw 

100 mw 

50 mw 

30 mw 

120 mw 

   80 mw 

Scheduled 

Actual 

 
Fig. 4 
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The net actual interchange between 2 areas: 

 

A1 to A2: AP12=120 MW 

A2 to A1: AP21=-120 MW 

A1 to A3: AP13=30 MW 

A3 to A1: AP31=-30 MW 

A2 to A3: AP23=-80 MW 

A3 to A2: AP32=80 MW 

 
The net scheduled interchange between 2 areas: 

 

A1 to A2: SP12=100 MW 

A2 to A1: SP21=-100 MW 

A1 to A3: SP13=50 MW 

A3 to A1: SP31=-50 MW 

A2 to A3: SP23=-100 MW 

A3 to A2: SP32=100 MW 

 
The interchange deviation between two areas is  
Net Actual Interchange-Net Scheduled Interchange 

We will define this as ΔPij, so: 

ΔPij=APij-SPij     (1) 

In our example: 

Area 1: 

ΔP12=AP12-SP12=120-100=20 MW 

ΔP13=AP13-SP13=30-50=-20 MW 

 

Area 2:  

ΔP21=AP21-SP21=-120-(-100)=-20 MW 

ΔP23=AP23-SP23=-80-(-100)=20 MW 

 

The word “net” 

is used with 

actual and 

scheduled 

interchange 

because there 

may be more 

than one 

interconnection 

between two 

areas. 
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Area 3:  

ΔP31=AP31-SP31=-30-(-50)=20 MW 

ΔP32=AP32-SP32=80-(100)=-20 MW 

 

Some observations: 

1.The net actual interchange may not be what is 

scheduled due to loop flow. For example, the 

balancing authorities may schedule 50 MW 

from A1 to A3 but only 30 MW flows on the 

A1-A3 tie line. The other 20 MW flows 

through A2. This is called “loop flow” or 

“inadvertent flow.”  

2.We may also define, for an area i, an “actual 

export,” a “scheduled export,” and a “net 

deviation” (or “net export deviation”) as: 

Actual Export: 




n

ij
j

iji APAP
1

    (2) 

Scheduled Export: 




n

ij
j

iji SPSP
1

    (3) 

Net Deviation: 




n

ij
j

iji PP
1    (4) 

W&W use different nomenclature/terminology, p. 347: 
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 “Total actual net interchange” denoted as 

Pnet int to mean “actual export.” 

 “Scheduled or desired value of interchange” 

denoted as Pnet int sched to mean “scheduled 

export.” 

 ΔPnet int to mean “net deviation” 

Since an area’s net deviation is the sum of its 

interchange deviations per eq. (4), and  

Since each interchange deviation is Net Actual 

Interchange-Net Scheduled Interchange per 

eq. (1), we can write 

ii

n

ij
j

ij

n

ij
j

ijij

n

ij
j

ij

n

ij
j

iji SPAPSPAPSPAPPP  










 1111

)(
 

  (5) 

This says that the net deviation for an area is 

just the difference between the actual export 

and the scheduled export for that area. 
Summary of terms: 

My term W&W term My symbol W&W symbol 

Net actual interchange  APij  

Net schedule interchange  SPij  

Interchange deviation  ΔPij  

Actual export Total actual net interchange APi Pnet int 

Scheduled export Scheduled or desired value 

of interchange 

SPi Pnet int sched 

Net (export) deviation  ΔPi ΔPnet int 



 18 

3. Net deviation is unaffected by loop flow.  

For example, in Fig. 5a, the right side has the same 

net deviation as the left side but shows a new set 

of actual flows between areas, due to a change in 

transfer path impedance. But ΔPi doesn’t change. 

 

 

A1 

 

A2 

 

A3 
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  
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A2 
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Fig. 5a 

What affects net deviation is varying load (& varying 

gen), as illustrated in Fig. 5b, where the right side 

has the same scheduled flows as the left side but 

shows new net deviation for areas A1, A2. 

 

 

A1 

 

A2 

 

A3 
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Fig. 5b 

We see that the A1 actual export is 160 MW instead of 

the scheduled export of 150MW, ΔP1=160-150=10MW. 

Likewise, the A3 actual export is 40 MW instead of the 

scheduled 50 MW, ΔP3=40-50=-10MW. 

The area A2 actual export is still the same as the 

scheduled export of -200 MW, ΔP2=-200-(-200)=0MW. 
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Conclusion: Area A1 has corrected for a load 

increase in Area A3. So we need to signal Area 

A1 generators to back down and Area A3 

generators to increase. 

 

Overall conclusion: To perform load-frequency 

control in a power system consisting of multiple 

balancing authorities, we need to measure two 

things: 

 Steady-state frequency deviation: to determine 

whether there is a generation/load imbalance in 

the overall interconnected system. 
60 ff      (6) 

When Δf>0, it means the generation in the 

system exceeds the load and therefore we 

should reduce generation in the area. 

 Net deviation: to determine whether the actual 

exports are the same as the scheduled exports. 

iii SPAPP       (5) 

When ΔPi>0, it means that the actual export    

exceeds the scheduled export, and so the 

generation in area i should be reduced. 
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The measurements of these two things is 

typically combined in an overall signal called 

the area control error, or ACE.  

 

From the above, our first impulse may be to 

immediately write down the ACE for area i as: 

fPACE ii       (7) 

Alternatively, 

 ii PACE      (8) 

But we note 2 problems with eq. (8). First, we 

are adding 2 quantities that have different units. 

Anytime you come across a relation that adds 2 

or more units having different units, beware. 

 

The second problem is that the magnitudes of 

the two terms in eq. (8) may differ dramatically. 

If we are working in MW and Hz (or rad/sec), 

then we may see ΔPi in the 100’s of MW 

whereas we will see Δf (or Δω) in the 

hundredths or at most tenths of a Hz. The 

implication is that the control signal, per eq. (8), 

will greatly favor the export deviations over the 

frequency deviations.  
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Therefore we need to scale one of them. To do 

so, we define area i frequency bias as Bi. It has 

units of MW/Hz, so that 

 iii BPACE       (9) 

We will look closely at use of this equation for 

control. Before we do that, however, we need to 

look at the system that we are trying to control 

and obtain models for each significant part. 

 

6.0 Generator model 

A well-known relation in power system analysis 

is the swing equation. This equation is derived 

in EE 554 and relates acceleration of a 

synchronous machine to imbalance between 

input mechanical power and output electrical 

power, according to 

em
e

e

PP
dt

dH


2

2

0

2 

      (10) 

Or, since ω=dδ/dt, we can write (10) as 

em
e

e

PP
dt

dH




0

2

     (11) 

where 
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δe is the machine “torque” (electrical) angle by 

which the rotor leads the synchronously rotating 

reference;  

Pm is mechanical input power in per-unit 

Pe is electrical output power in per-unit 

H is the inertia constant in Mjoules/MW=sec 

given by 

b

m

S

I
H

2
0

2

1 


     (12) 

Sb is the machine MVA rating; 

I is moment of inertia of all machine masses in 

kg-m
2
×10

6
; 

ω0m is the synchronous rotor speed in 

mechanical rad/sec 

ω0e is the synchronous rotor speed in electrical 

rad/sec (will always be 377 in North America). 

 

If you have the EE554 text (Anderson& Fouad), 

you will find (11) as eq. 2.18 in that text.  

 

Here, to agree with eq. 9.16 in W&W, we need 

to make three changes. 
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1.Put frequency in pu: 

em
e

e

PP
dt

dH




0

2

     (13) 

em
e

e

e

e PP
dt

d
H

0

0

0 2 







    (14) 

em PP
dt

d
H 


2      (15) 

where ω=ωe/ω0e. 

 

2.Use a different inertia term: 

Anderson & Fouad define the angular 

momentum of the machine as M; we denote it 

here as MAF where 

mAF IM 0     (16a) 

From (12) (repeated below, left), we can write 

b

m

S

I
H

2
0

2

1 


 
m

b
m

HS
I

0

0

2


 

    (16b) 

Thus we see that 

m

b
AF

HS
M

0

2




    (17) 
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and solving for 2H, we obtain: 

b

mAF

S

M
H 02




    (18) 

Substituting into (15) (repeated below, left): 

em PP
dt

d
H 


2


em

b

mAF PP
dt

d

S

M


0

(19) 

Now where A&F use the angular momentum 

MAF, W&W use a per-unitized angular 

momentum, according to 

b

mAF
W W

S

M
M 0

    (20) 

Comparison to (18) indicates  

HMW W 2     (21) 

Therefore, we have 

em PP
dt

d
M 


    (22) 

where it is understood from now on that 

M=MWW.  

 

W&W indicate on pg. 332 that the units of M 

are watts per radian per second per second. 



 25 

However, it is typically used in a form of per-

unit power over per-unit speed per second, as 

we have derived it above, and here it has units 

of seconds. In fact, W&W themselves mention 

this (pg 332) and use it in per-unit form in all of 

the rest of their work in this text. 

 

3.Use deviations: 

 

Express each variable in (22) as sum of an 

equilibrium value and a deviation, i.e., 

 

 mmm PPP  0  

 eee PPP  0  

 
)(1)()(

0

0 ttt
e

e 



 

 

Substitution of the above into (22) results in 

eemm PPPP
dt

td
M 


00

))(1( 
 (23) 

Simplifying, and noting that at equilibrium, 

Pm0=Pe0, we have 
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em PP
dt

td
M 

 )(
    (24) 

Equation (24) is eq. 9.16 in your text and is 

what W&W use to represent the dynamics of a 

synchronous machine. 

 

Because we want to derive block diagrams for 

our control systems, we will transform all time-

domain expressions into the Laplace (s) domain. 

em PPsMs  )(    (25) 

where we have assumed ∆ω(t=0)=0. 

 

7.0 Load model 
The load supplied by a power system at any given 

moment consists of many types of elements, 

including electronic loads, heating, cooking, and 

lighting loads, and motor loads, with the latter two 

types of load comprising the larger percentage. Of 

these two, it is quite typical that heating, cooking, 

and lighting loads have almost no frequency 

sensitivity, i.e., their power consumption remains 

constant for variations away from nominal 

frequency. More discussion about various load types 

is in [3]. 
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Motor loads, on the other hand, are different. To 

see this, we will focus on only the induction motor 

which tends to comprise the largest percentage of 

motor loads.  

 

Consider the standard per-phase steady-state 

model of an induction motor, as given in Fig. 6. 

 

Fig. 6 

From this model, the electric power delivered to 

the motor can be derived as: 

 


























2
2

2
2

2
2

'
'

'3

XX
s

R
R

RV
P

thth

th

  (26) 

where Rth+jXth and Vth are the Thevenin 

equivalent impedance and voltage, respectively, 

looking from the rotor circuit (the junction 

between jXS and R2’ in Fig. 6) left, back into the 

stator circuit. 
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Recall that induction motor slip is given by 
 

s

 ms
=s



     (27) 

where ωS is the mechanical synchronous speed 

(set by the network frequency) and ωm is the 

mechanical speed of the rotor. Substituting (27) 

into (26) we obtain 

 
 
















































2
2

2

ms

2

2
2

'
'

'3

XX
R

R

RV
P

th

s

th

th





  (28) 

Question: Let’s assume that the voltage Vth and 

the mechanical speed ωm remain almost constant 

(the “almost” is because there is some variation 

in ωm which can be observed by plotting torque 

vs. speed curves–see notes from EE 559).  

 

What happens to P as ωS decreases? 
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Example: Assume constant mechanical speed 

ωm of 180 rad/sec. What happens to  

 

s

s


 ms 


 

for a 4-pole machine when frequency decreases 

from 60 Hz to 59.9 Hz? Then indicate 

qualitatively what happens to power drawn by 

the motor under this same frequency deviation.  

 

Solution: At 60 Hz, the synchronous speed is 

given and corresponding slip are given by 

ωS=2πf/(p/2)=(2π)(60)/(4/2)=188.5 rad/sec 

s=(188.5-180)/188.5=0.0451 

where p is the number of poles. At 59.9 Hz, it is 

given by 

ωS=(2π)(59.9)/(4/2)=188.18 rad/sec 

s=(188.18-180)/188.18=0.0435 

And so reduction in frequency causes a 

reduction in slip. From (26), we see that this 

will cause the term 
s

R '2  to increase, which will 

cause the overall power expression to decrease. 

Conclusion: Power drops with frequency. 
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EPRI [4] provides an interesting figure which 

compares frequency sensitivity for motors loads 

with non-motor loads, shown below in Fig. 7. 

 
Fig. 7 

Figure 7 shows that motor loads reduce about 2% for 

every 1% drop in frequency. If we assume that non-

motor loads are unaffected by frequency, a 

reasonable composite characteristic might be that 

total load reduces by 1% for every 1% drop in 

frequency, as indicated by the “total load 

characteristic” in Fig. 7. 

To account for load sensitivity to frequency 

deviations, we will define a parameter D 

according to  
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frequency in     changepu   

loadin     changepu   
D

   (29a) 

from which we may write: 

 Dloadin   changepu     (29b) 

If our system has a 1% decrease in power for 

every 1% decrease in frequency, then D=1.  

 

In determining D based on (29a), the base 

frequency should be the system’s nominal 

frequency, in North America, 60 Hz. The base 

load should be the same as the base MVA, Sb, 

used to per-unitize power in the swing equation 

(24), repeated here for convenience. 

em PP
dt

td
M 

 )(
   (24) 

In (24), ∆Pe is the change in electric power out 

of the synchronous generator.  

The change in electric power out of the 

synchronous generator will be balanced by 

 any changes in net electric demand in the 

network, which we will denote as ∆PL and  
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 the change in load due to frequency deviation, 

according to (29b). 

Therefore  
 DPP Le      (30) 

Please note that this “D” differs from the “D” 

used in stability studies to represent windage & 

friction. 

Substitution of (30) into (24) results in  

)(
)(

tDPP
dt

td
M Lm 





  (31) 

Taking the Laplace transform of (31) results in 
)()()()( sDsPsPsMs Lm     (32) 

where again we have assumed ∆ω(t=0)=0. 

 

Solving (32) for ∆ω(s), we obtain 

 

 

 


  

Function
Transfer

Input

Lm

Lm

Lm

DMs
sPPs

sPPDMss

sPPsDsMs








1
)()(

)()(

)()()(







  (33) 

We model (33) as in Fig. 8. 
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8.0 Turbine (prime mover) model 

 

The mechanical power is provided by the prime-

mover, otherwise known as the turbine. For 

nuclear, coal, gas, and combined cycle units, the 

prime-mover is a steam turbine, and the 

mechanical power is controlled by a steam 

valve.  

For hydroelectric machines, the prime mover is 

a hydro-turbine, and the mechanical power is 

controlled by the water gate. 

 
We desire a turbine model which relates mechanical 

power control (steam valve or water gate) to 

mechanical power provided by the turbine. 



 34 

Since the mechanical power provided by the 

turbine is the mechanical power provided to the 

generator, we can denote it as ∆Pm. We will 

denote the mechanical power control as ∆PV. 

 

Reference [5, p. 214-216] provides a brief but 

useful discussion about turbine models and 

indicates that a general turbine model is as 

shown in Fig. 9. 
 

 

NEXT 6 PAGES PROVIDE BACKGROUND 

ON TURBINE MODELING. YOU SHOULD 

READ THIS ON YOUR OWN.  

 

IN LECTURE, WE SKIP TO PAGE 40.  
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This turbine model can be applied to a multi-stage 

steam turbine, a single-stage steam turbine, or a 

hydro-turbine.  

 

The multi-stage steam turbine is a common type of 

turbine that uses reheating to provide additional 

power from the same steam, and as a result is most 

often called a reheat turbine. The principle behind a 

reheat turbine is that the energy of the steam is 

dependent upon two of its attributes: pressure and 

temperature.  

 

This can be observed in a very simple way by 

recalling that work done by exerting a force F over a 

distance d is given by W=F×d. Dividing F by Area 

A and multiplying d by A, we get W=(F/A)×dA, and 

recognizing F/A as pressure, P, and dA as volume V, 

we see that W=P×V.  

 

Now the only other thing we need to know is that 

volume V increases with temperature, and we see 

quickly that the energy exerted by an amount of 

steam flowing over turbine blades increases with 

pressure and temperature. 
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A typical 2-stage reheat turbine is shown in Fig. 10 

where we observe that the reheater provides 

increased temperature to utilize the reduced pressure 

steam a second time in the low pressure turbine. 

 
Fig 10 

 

Referring once again to Fig. 9, the time constant T4 

represents the first stage, often called the steam 

chest. If the turbine is non-reheat, then this is the 

only time constant needed, and the desired transfer 

function is given by  

)(
1

1
)(

4

sP
sT

sP Vm 



    (34) 

For multistage turbines, reference [5] states that 

“The time constants T5, T6, and T7 are associated 

with time delays of piping systems for reheaters 

and cross-over mechanisms The coefficients K1, 

K3, K5, and K7 represent fractions of total 

REHEATER 

STEAM 

VALVE 

GEN HP  

Turbine 

LP  

Turbine 

2400 PSI 

1000° F 

500 PSI 

1000° F 
Exhaust 

600 PSI 

600° F 
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mechanical power outputs associated with very 

high, high, intermediate, and low pressure 

components, respectively.”  

Reference [5] also provides some typical data for 

steam turbine systems, reproduced in Table 2 below. 

 

Table 2 

 T4 T5 T6 T7 K1 K3 K5 K7 

Non-

reheat 

0.3 0 0 0 1 0 0 0 

Single-

reheat 

0.2 7.0 0 0.4 0.3 0.4 0.3 0 

Double-

reheat 

0.2 7.0 7.0 0.4 0.22 0.22 0.3 0.26 
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Finally, reference [5] addresses hydro turbines: 

“In the case of hydro turbines, the situation 

depends on the geometry of the system, among 

other factors. The overall transfer function of a 

hydro turbine is given as 

)(
5.01

1
)( sP

sT

sT
sP V

w

w
m 






 

where Tw is known as the water time 

constant. The significance of the above 

transfer function is that it contains a zero in 

the complex right-half plane. From a 

stability viewpoint, this may cause some 

problems since this is a non-minimum phase 

system. Using the model of Figure 6.5 (Fig. 

9 in our notes) one identifies the following 

parameters: T4=0, T5=Tw/2, T6=T7=0, K1=-2, 

K3=3, K5=K7=0. Typical values of Tw range 

from .5 to 5 sec.” 

The above system is called “non-minimum 

phase” because it has a right-half-plane zero and 

therefore, in frequency-response (Bode) plots, 

we will see a greater phase contribution at 

frequencies corresponding to the RHP zero. 
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We will be able to illustrate the basic attributes 

of AGC by using the model for the simplest 

turbine system – the nonreheat turbine, with 

transfer function given by (34).  

For convenience, we write this transfer function 

here, together with that of the generator with 

load frequency sensitivity given by (33): 

    )()(
1

)( sGsPP
DMs

PPs

Input

Lm

Function
Transfer

Input

Lm   








(33) 

)()()(
1

1
)(

4

sPsTsP
sT

sP VVm 



  (34) 

Substituting (34) into (33) results in 

DMs
sPsP

sT
s LV














1
)()(

1

1
)(

4


 (35) 

We see in (35) transfer functions providing 

frequency deviation as a function of: 

 change in steam valve setting and 

 change in connected load. 

The block diagram for this appears as in Fig. 11. 

Fig. 12 illustrates the action of the primary 

speed controller, which we will describe next. 
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Equations (36-37): 
  )()()()( sGsPsPs Lm   

)()()()()()( ssQsTsPsTsP Vm   
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9.0 Primary speed control 

 

The primary speed controller is also referred to 

as the speed governor. It has three purposes: 

1.Regulate the speed of the machine. 

2.Aid in matching system MW generation with 

system MW load. 

3.Provide a mechanism through which 

secondary speed control can act. 

 

Regulation of speed means we will control ∆ω. 

To control ∆ω, we must regulate the input 

power to the machine, denoted in Fig. 11 by 

∆PV. This requires having feedback from ∆ω to 

∆PV. We denote this feedback as Q(s), as shown 

in Fig. 12.  

 

Using the simpler notation of T(s) and G(s), we 

can see from Fig. 12 that 
  )()()()( sGsPsPs Lm     (36) 

and 
)()()()()()( ssQsTsPsTsP Vm    (37) 

Substitution of (37) into (36) results in 
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  )()()()()()( sGsPssQsTs L    (38) 

Solving for ∆ω… 
)()()()()()()( sGsPsGssQsTs L   

  )()()()()(1)( sGsPsGsQsTs L  

)()()(1

)()(
)(

sGsQsT

sGsP
s L




     (39) 

Appendix A of these notes provides an analysis 

of a mechanical-hydraulic speed governor that 

was used for many years (and still is in some 

older power plants). Newer plants today use 

computer-based digital controllers. But the 

concepts are the same; we utilize eq. (A22) from 

App A to illustrate the relations (in notation of 

App A, the circumflex above variables indicates 

the Laplace domain in these equations). 

)ˆˆ(ˆ 1
45

35
CAEV Pkk

kks

kk
xP 




    (A22) 

Here, Ex̂  is the same as ∆PV. We drop the Ex̂  

notation, and we ignore ∆PC (which is the set-

point power output) for now, so that 

̂1
45

35 



 k

kks

kk
PV    (40) 
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The first kind of governors ever designed 

provided simple integral feedback. This is 

obtained from (40) if k4 is set to 0 (in Appendix 

A, this corresponds to disconnecting rod CDE at 

point E in Fig. A4 and A5 – see eq. (A11a)). 

Then we obtain 

̂1
35 


 k

s

kk
PV    (41) 

The constants in (41) are combined to obtain: 

̂



s

K
P G

V     (42) 

Comparing (42) to the block diagram of Fig. 12, 

we see that 

s

K
sQ G)(      (43) 

Substitution of (43) into (39) results in 

)()(1

)()(
)(

sGsT
s

K

sGsP
s

G

L






    (44) 

The block diagram for (44) is shown in Fig. 14. 
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It is of interest to understand the steady-state 

response of the system characterized by (44) to 

a load change. 

Let’s assume that the load change is an 

instantaneous change. Mathematically, we can 

model this using the step function u(t). If the 

amount of load change is L, then the appropriate 

functional notation is 
)()( tLutPL       (45) 

Taking the Laplace transform, we obtain 

s

L
sPL  )(      (46) 

Substituting (46) into (44), we obtain 

)()(1

)(

)(

sGsT
s

K

sG
s

L

s
G




    (47) 

Multiplying through by s results in 

)()(

)(
)(

sGsTKs

sLG
s

G




    (48) 

Recall the final-value theorem (FVT) from 

Laplace transform theory, which says 
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)(lim)(lim
0

ssFtf
st 

  

We can use the FVT to obtain the steady-state 

response of (48) according to:  

0
)()(

)(
lim)(lim)(lim

00







 sGsTKs

sLG
ssst

Gsst
 (49) 

Equation (49) indicates that the steady-state 

response to a step-change in load is 0. In 

classical control theory, this is said to be a 

“Type 1” system, implying that the response to 

a step change gives 0 steady-state error.  

 

Therefore, this governor forces ∆ω(t) to 0 after a 

long enough time. Very nice! 

 

Or is it…? 

 

To fully appreciate the implications of this 

governor design, we need to recognize that the 

frequency deviation signal ∆ω(t) actually comes 

from comparing the measured turbine speed ω 

with a desired reference speed ωref, so that 
)()( tt ref       (50) 
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Since there are many generators in a power 

system, each having their own equation (50), we 

can write 

)()(

)()(

)()(

22

11

tt

tt

tt

refnn

ref

ref













  

It is physically not possible to ensure 

refnrefref   21  

This governor design would work fine if there 

were only a single machine. But with multiple 

machines, there will always be some units in the 

system that see a non-zero actuation signal ∆ω. 

This causes machines to “fight” against one 

another. 

 

That is, for the two-machine case, we will see 

that machine 1 will correct causing machine 2 to 

see actuation, machine 2 will correct causing 

machine 1 to see actuation, and so on. 
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To correct this problem, we add a proportional 

feedback loop around the integrator, as shown in 

Fig. 15. Note that the transfer function for the 

speed governor is now given by 

RKs

K

s

RK

sK

sq

s
sQ

G

G

G

G












1

/

)(

)(
)(



   (51) 

Factoring out the KGR term from the 

denominator, we obtain 





























RK

sR

RK

s
RK

K
sQ

GG
G

G

1

11

1

)(

  (52) 

Now define TG=1/KGR as the governor time 

constant, we can write (52) as 

 GsTR
sQ




1

11
)(     (53) 

We can use (53) in redrawing Fig. 15 as shown 

in Fig. 16. We may derive the overall transfer 

function via Fig. 16. Alternatively, we may 

substitute (53) into (39), repeated here for 

convenience. 

)()()(1

)()(
)(

sGsQsT

sGsP
s L




     (39) 
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 
)()(

1

11
1

)()(
)(

sGsT
sTR

sGsP
s

G

L







   (54) 

Again, we desire to look at steady-state 

frequency error to a step change in load. 

Following the same procedure as before, with 

s

L
sPL  )(      (46) 

the FVT provides that we can write 

 

 
)()(

1

11
1

)(
lim

)()(
1

11
1

)()/(
lim

)(lim)(lim

0

0

0

sGsT
sTR

sLG

sGsT
sTR

sGsL
s

sst

G

s

G

s

st






















  (55) 

To better see the significance of (55) we need to 

substitute into it the transfer functions for G(s) 

and T(s), which can be seen from Fig. 16 to be 

DMs
sG




1
)(   

41

1
)(

sT
sT


   (56) 

Substitution into (55) results in 
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     DMssTsTR

DMs
L

t

G

st








 1

1

1

1

11
1

1

lim)(lim

4

0


  (57) 

Clearing the fraction in the denominator, 
   

    111

11

lim)(lim
4

4

0 







 DMssTsTR

DMs

DMssTsTR
L

t
G

G

st
    (58) 

Canceling the Ms+D term in the numerator, 
  

    111

11
lim)(lim

4

4

0 




 DMssTsTR

sTsTLR
t

G

G

st
    (59) 

Now we can see that as s0, the expression 

becomes 

RD

L

RD

LR
t

t /11
)(lim












      (60) 

We denote the steady-state response to a step 

load change of L as ∆ω∞,  

RD

L

RD

LR

/11 







       (61) 

We will address how to eliminate this steady-

state error. Before doing that, however, let’s 

look at what happens to the mechanical power 

delivered to the generator in the steady-state.  
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To do that, we follow the same procedure as we 

did when inspecting steady-state frequency 

deviation, except now we are investigating 

∆Pm,∞. 

 

This requires that we first express ∆Pm(s). This 

can be done easily based on Fig. 16, where we 

observe that 
)()()()( ssQsTsPm       (61) 

Substituting (39) into (61), we obtain  

)()()(1

)()(
)()()(

sGsQsT

sGsP
sQsTsP L

m



      (62) 

Substituting (53) and (56) into (62) results in 

   
     DMssTRsT

DMs
sP

sTRsT
sP

G

L

G
m










1

1

11

1

1
1

1
)(

1

11

1

1
)(

4

4
(63) 

Clearing the fraction in the denominator 

   

   

    111

11
)(

1

11

1

1
)(

4

4

4 









DMssTsTR

DMs

DMssTsTR
sP

sTRsT
sP

G

G
L

G
m (64) 

Several terms will cancel: 

    111

)(
)(

4 




DMssTsTR

sP
sP

G

L
m   (65) 

Note the two negative signs make a positive. 
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Again using  

s

L
sPL  )(      (46) 

and applying the FVT, we obtain: 

   

   

1

111
lim

111

/
lim

)(lim)(lim

40

40

0


















RD

L

DMssTsTR

L

DMssTsTR

sL
s

sPstP

Gs

Gs

m
s

m
t

 (66) 

Therefore,  

1
,


 

RD

L
Pm      (67) 

But recall (61): 

1


 

RD

LR
         (61) 

Dividing both sides of (61) by –R, we obtain 

1


 

RD

L

R


        (68) 

Equating (67) and (68) results in 

R
Pm








,         (69) 
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Finally, we use the fact that, at steady-state, 

∆Pm,∞= ∆Pe,∞, and therefore (69) can be 

expressed as 

R
Pe








,         (70) 

Or, equivalently, 

  ,ePR         (71) 

Figure 17 plots ω∞ as a function of Pe,∞. 

  
Fig. 17 

Figure 17 displays the so-called droop 

characteristic of the speed governor, since the 

plot “droops” moving from left to right.  

 

ω∞ 

Pe,∞ 

Slope=-R=∆ω∞/∆Pe,∞ 
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It is important to understand that the droop 

characteristic (Fig. 17) displays steady-state frequency 

and power. You can think of ∆PL(t)=Lu(t) as the 

initiating change, then we wait a minute, at which time 

all transients have died, and the speed governor will 

have operated in such a way so that the frequency will 

decrease (for positive L) by ∆ω∞, and the generation 

will have increased (for positive L) by ∆Pe,∞. 

 

The parameter R can be understood via 










,eP
R


        (72) 

which shows that R is the value of per-unit frequency 

deviation required to produce a 1 per unit change in 

electric output power. 

 

R is called the regulation coefficient, or droop constant. 

It is typically set to 5% (0.05 pu) in the US (frequency 

and power are given in per-unit and the power per-unit 

base is the generator rated MVA). At 5% droop, the 

frequency deviation corresponding to a 100% change 

in machine output is 3 Hz. 

Question: Would 4% droop be tighter or looser 

frequency control than 5%?1 
                                                 
1
 Westinghouse machines used to be set to 4% and GE machines to 5%. It was then 

recommended to set all machines to 5%, and some confused engineers were supportive on the 

basis that the higher value of R was better for frequency regulation. 
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Answer: It would mean that a machine is required 

to move more for a given frequency. At 4% droop, 

the frequency necessary to cause a 100% change in 

machine output is 2.4 Hz. So answer is “tighter.” 
 

Recalling (70),  

R
Pe








,         (70) 

we see that if all units in the interconnection 

have the same R, in per-unit (on each units base 

MVA), and recalling that in the steady-state, the 

entire interconnection sees the same ∆ω∞, (70) 

tells us that all units will make the same per-unit 

power change (when power is given on the 

generator rated MVA). This means that 

generators “pick-up” in proportion to their 

rating, i.e., larger sized machines “pick-up” 

more than smaller sized machines. Lovely. 

 

Observe the benefit. Before, with integral 

control only where Q(s)=KG/s, we found steady-

state error to be zero, but the machines would 

continuously “fight” against each other if their 

ωref were not exactly equal.  
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Now, with proportional-integral control, 

Q(s)=(1/R)(1/(1+sTG), we have non-zero 

steady-state error, but, machines will not “fight” 

one another; instead, they will load share in 

proportion to their MVA rating, and in 

proportion to the final steady-state frequency 

error. This situation is illustrated in Fig. 18 

below. 
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Fig. 18 

 

Notice in Fig. 18, that when Δf=3Hz, for both units, j=1 and j=2, 
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



























jjjj PPPP

f
R

f 

P1 (MW) 

f 

P2 (MW) 

60 hz 
∆f 

∆P1 ∆P2 

3 Hz 
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Question: What can we do about the fact that we 

have a steady-state frequency deviation? 

 

Answer: Modify the real power generation set 

point of the units. 

 
The control point in which to accomplish this is 

called the “speed changing motor.” For a system 

with a single generator, this control changes turbine 

speed (and therefore the name) and consequently 

frequency. But for interconnected systems with a 

large number of generators (such that frequency is 

almost constant), this control mainly changes the 

power output of the machine and is situated so that 

the governor can do the work of actually opening 

and closing the valve (or gate), as shown in Fig. 19 

below, which we redraw as shown in Fig. 20 and 

then Fig. 21. W&W calls the control the machine’s 

“load reference set point.” I denote it by ΔPref. 

 

The modification to the speed changer motor 

will cause a shift as shown in Fig. 22. For 

constant power, speed (or frequency) changes. 

For constant frequency, power changes. 
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Fig. 22 

f∞ 

Pe,∞ 

60 Hz 

1.0 pu 
0.5 pu 

Pref1 

Pref2 

Pref3 

Pref4 

Pref5 

Pref5> Pref4>Pref3> Pref2> Pref1 

 

 

 



 63 

10.0 Two-area system 

 

Let’s now consider applying governor control to 

a system comprised of two balancing areas (BA) 

with each BA having only one generator (and so 

we have temporarily relieved ourselves from 

having to worry about how to allocate the 

demand among the various generators).  Fig 23 

below illustrates. 

 
Fig. 23 

The power flowing from BA1 to BA2 may be 

expressed as  

 21
21

12 sin  
X

VV
P     (71) 

Assume that V1=V2=1.0 and that (θ1-θ2) is small 

(and in radians). Then (71) becomes 

 2112

1
 

X
P     (72) 

 

BA 1 BA 2 
P12 

X 
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Now assume that we have a small perturbation 

(perhaps a small ∆PL). Then 

    22111212

1
 

X
PP   (73) 

which can be rewritten as 

    21211212

1
 

X
PP   (74) 

where we see that 

 )()(
1

)( 2112 tt
X

tP      (75) 

In (75), we have made the dependency on time 

explicit. Taking the Laplace transform of (75), 

we obtain: 

 )()(
1

)( 2112 ss
X

sP      (76) 

But 

 dttt ii )()(      (77a) 

In Laplace, (77a) becomes 

s

s
s i

i

)(
)(





      (77b) 

Substituting (77b) into (76) results in 

 )()(
1

)( 2112 ss
sX

sP      (78) 

 



 65 

Equation (78) assumes that ∆ωi(s) is in rad/sec. 

However, we desire it to be in per-unit, which 

can be achieved by (79): 

 )()()( 21
0

12 ss
sX

sP e 


    (79) 

Notation for ∆ωi in (78) and (79) is the same, 

but in (78), ∆ωi is in rad/sec whereas in (79), 

∆ωi is in pu, with this difference in the two 

equations being compensated by the 

multiplication of base frequency ωe0 in (79). 

 

Now we define the tie-line stiffness coefficient 

X
T e0
      (80) 

This tie-line stiffness coefficient is proportional 

to what is often referred to as the synchronizing 

power coefficient. For a single-generator 

connected through a tie-line having reactance X 

to an infinite bus, the power transfer is given by 

sin21

X

VV
Pe   

where V1 and V2 are the voltage magnitudes of 

the two buses and δ is the angular difference 
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between them. In this case, the synchronizing 

power coefficient is defined as 




cos21

X

VVPe 



 

The synchronizing power coefficient, or the 

stiffness coefficient as defined in (80), increases 

as the line reactance decreases. The larger the T, 

the greater the change in power for a given 

change in bus phase angle.  

 

Equation (79) becomes, then, 

 )()()( 2112 ss
s

T
sP      (81) 

The text (pp. 341-344) uses Ptie instead of P21. 

To clarify, we have 

tiePPP  1221     (82) 

Observe that +∆P12 causes increase generation 

from BA1 – it appears to BA1 as a load increase 

and should therefore have the same sign as ∆PL. 

We draw the block diagram for the 2-area 

system using two of Fig. 21 with (81) and (82), 

as shown in Fig. 24, which is the same (except 

for some nomenclature) as Fig. 9.16 in W&W. 
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We would like to find steady-state values of 

frequency ∆ω∞ and mechanical power ∆Pm1∞ 

and ∆Pm2∞. To do this, we begin by recalling the 

expression for ∆ω(s) for the single balancing 

area model, given by (54): 

 
)()(

1

11
1

)()(
)(

sGsT
sTR

sGsP
s

G

L







   (54) 

where,  

DMs
sG




1
)(   

41

1
)(

sT
sT


   (56) 

Substitution yields 

  DMssTsTR

DMs
sP

s

G

L








1

1

1

1

11
1

1
)(

)(

4


   (83) 

Simplifying,  
  

    111

11)(
)(

4

4






DMssTsTR

sTsTRsP
s

G

GL
   (84) 

Remember, (84) is for a single balancing area.  

Question: If you are BA1, how does being 

connected to BA2 differ from operating as a 

single BA? 

In 

developing 

data for the 

2-area 

system, all 

quantities 

must be 

normalized 

to the same 

power base. 

This pertains 

to M, D, R, 

and all power 

quantities. 
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Answer: The answer can be seen by comparing 

the external inputs (to the “demand summer”) of 

Fig. 24, which models 2 interconnected 

balancing areas, and that of Fig. 21, which 

models just one.  

 

Σ ΔPm2(s) + 

ΔPtie(s) 
+ 

Σ ΔPm1(s) + 

ΔPtie(s) 

- 

ΔPL1(s) 

ΔPL2(s) 

- 

- 

Σ ΔPm(s) + 

ΔPL(s) 
- 

From Fig. 21 

From Fig. 24 
 

Whereas Fig. 21 sees only its own load change, 

∆PL, as an external input, Fig. 24 sees,  

1. in the case of BA1, the BA1 load change 

plus the tie-line flow change, ∆PL1+∆Ptie, i.e.,  

 )()()( 2111 ss
s

T
sPPPP LtieLL   (85a) 
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2. and in the case of BA2, the BA2 load 

change less the tie-line flow change, ∆PL2-

∆Ptie, i.e.,  

 )()()( 2112 ss
s

T
sPPPP LtieLL   (85b) 

So what we can do is to just make the 

substitution of (85a) into the ∆ω expression of 

(84), i.e., replace ΔPL in (84) with ΔPL+ ΔPtie 

from the RHS of (85a). Alternatively, we can 

make the substitution of (85b) into the ∆ω 

expression of (84), i.e., replace ΔPL in (84) with 

ΔPL- ΔPtie from the RHS of (85b). In the first 

case, we obtain ∆ω1, and in the second, we 

obtain ∆ω2. It does not matter which one we use 

because we are interested in the steady-state 

frequency, and we know within an 

interconnection, the steady-state frequency is 

the same everywhere, so the expressions will be 

identical. 

 

Although it gets a little algebraically messy, 

making one of the above substitutions, with 

∆PL1(s)=L1/s, and use of the FVT, we obtain: 
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 




 

21
21

1
21 11

DD
RR

L

 (86) 

You can also algebraically find ∆Pm1,∞ and 

∆Pm2,∞, or you can reason as follows: 

1. We found before that R
Pm








,  for a 

one balancing area system. 

2. As we already observed, the only difference 

between the single area and the two area 

model, from the point of view of either area, is 

what the “demand summer” sees.  

3. But observing the model of Fig. 24, we see 

that ∆Pm depends on the input to the demand 

summer only through ∆ω; as long as we know 

∆ω, we do not need any additional 

information about the input to the demand 

summer to obtain ∆Pm. Therefore, we have 

Bsys

m
R

P
,1

,1









  

Bsys

m
R

P
,2

,2









 (87) 

Question: How does the generation get 

distributed? 

 

Again, for 

the 2-area 

system, all 

quantities 

must be 

normalized 

to the same 

power base. 

So in (86), 

R1, R2, D1, 

and D2 must 

be on the 

same power 

base. Let’s 

denote them 

with a 

subscript of 

“Bsys” in 

what follows.  

There are 

two “demand 

summers.” 

The one 

discussed 

here is the 

one in the 

right-center 

of the Fig. 24 

diagram, 

where ΔPL is 

input.  
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Define R1,B1=R2,B2 (=0.05) as droop constants on 

the machine base. 

 

But (87) are derived from a system of governors, 

necessitating that ∆Pm1, ∆Pm2, R1, and R2 be 

given on the same MVA base – the system 

MVA base, which we refer to as SBsys (as 

opposed to the machine MVA base, SB). 

Recalling   ,mPR , we can write that the 

per-unit frequency deviation is: 

1

)(

1
1,1

)(

1
,1

B

MW

m
B

Bsys

MW

m
Bsys

S

P
R

S

P
R 







   (88) 

where 
)(

1
MW

mP  is in MW. Solving (88) for R1,Bsys, 

we obtain 

1

1,1,1

B

Bsys

BBsys
S

S
RR      (89a) 

Similarly, we can derive 

2

2,2,2

B

Bsys

BBsys
S

S
RR      (89b) 

Substitute (89a) and (89b) into (87) results in 
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1
1,1

1
1,1

,1 B
BsysB

B

Bsys
B

m S
SR

S

S
R

P 










  (90a) 

2
2,2

2
2,2

,2 B
BsysB

B

Bsys
B

m S
SR

S

S
R

P 










  (90b) 

Equations (90a) and (90b) express the steady-

state power deviations in per-unit on the system 

base, SBsys. To express them in MW, we have 

1

1,1

,1 B

B

MW

m S
R

P 







    (91a) 

2

2,2

,2 B

B

MW

m S
R

P 







    (91b) 

If we require that R1,B1=R2,B2 be equal (and in 

North America they are 0.05), then (91a) and 

(91b) indicate that the governor action responds 

in such a way so that each balancing area 

compensates for load change in proportion to its 

size. This was a conclusion we guessed at in the 

analysis of a single area – see equation (70) – 

but here we have confirmed it using rigorous 

analysis for a two area case. 
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As a last comment regarding the two-area 

model, let’s take a look at the electrical power 

out of the machines. In what follows, all 

quantities are on a common power base (SBsys).  

 

In the single area case, you will recall that the 

steady-state deviation in electrical power out of 

the machine is equal to the change in load ∆PL 

plus the change in load resulting from the 

steady-state frequency deviation per (30), i.e.,  
 DPP Le      (30) 

The situation for area 1 will be exactly the same, 

except now we also have to pay attention to 

changes in tie-line flow, i.e.,  

tieLe PDPP   111    (92) 

where ∆Ptie=∆P12=-∆P21. If the only load change 

is in BA1, i.e., ∆PL2=0, then  

tiee PDP   12     (93) 

But recall from (87) 

Bsys

e
R

P
,1

,1









  

Bsys

e
R

P
,2

,2









 (94) 

Substitution of the ∆Pe2∞ of (94) into (93) gives 
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tiee PD
R

P 


 


 


2
2

,2    (95) 

Solving for ∆Ptie results in 









 

2
2

1

R
DPtie      (96) 

Substitution of (86) into (96) results in 

21
21

2
21

11

1

DD
RR

R
DL

Ptie














    (97) 

 

11.0 Secondary control 

 

Question: What sort of additional control do we 

need for our two-area system? 

 

For a step load change in area 1, we desire: 

1. ∆Pm1∞=∆PL1 

2. ∆Pm2∞=0 

3. ∆ω∞=0 

4. ∆Ptie∞=0 

 

How to develop such a control? 

Each BA compensates 

for its own load change. 
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There are three basic ways: 

1. Derive steady-state relations for ∆ω∞ and ∆Ptie∞ and 

ask: What do we need to do to make their sum = 0? 

This is what W&W do, see page 349. 

2. Derive expressions for ∆ω(s), ∆Ptie(s), ∆Pm1(s), and 

∆Pm2(s) given an unknown control input u(s), and then 

apply conditions 1-4 above. This works, but it is 

algebraically messy. 

3. Reason via knowledge of process control. This is what 

we will do. The reasoning is provided in what follows. 

Integral control action: Consider the following system 

that is conceptually similar to our own two-area load-

frequency model.  

 

We desire to ensure that b(t) and c(t) are driven to 0 in the 

steady-state (t=∞) following a step change in p(t), i.e., p(s)=1/s. 

In the above system, we do not achieve this as shown below 

(assume r(s)=0).  

 

 )()(lim)(lim)(lim

)(lim)(lim)(lim

)()(
)()()(

)(
)()()(

00

00

sBsCssctcc

sBssbtbb
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sBsC
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s

sB
spsBsb

sst

sst








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





 

We observe that neither term goes to zero. 

A(s) Σ 
+ 

- 
p(s)=1/s 

B(s) C(s) 
r(s) 

c(s) 

b(s) a(s) 
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The only way we will achieve b∞=0 is if we have a “zero” 

in B(s), and the only way we will achieve c∞=0 is if we 

have a “zero” in B(s) or C(s) or both.  

Assumption 1: We do not have a zero in B(s) or C(s). 

Assumption 2: We do not have a zero in A(s).  

Let’s add a controller in front of A(s) and feedback the 

sum of c(s) and b(s) through it as follows: 

 

Again, assume that r(s)=0 and p(s)=1/s. We may derive 

the expression for b(s) as follows: 
   

 
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c(s) 
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+ 

+ 

- 
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And because c(s)=C(s)b(s),  

 )(1)()()(1

/)()(
)(

sCsDsAsB

ssCsB
sc




  

We can now look at the steady-state error of 

these two terms: 
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Now let D=1/s, an integrator. 
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What is the point? We may zero the steady-state 

error of a signal, when system input is a step 

response, by passing the signal through an 

integral-controller via a negative feedback loop.  

That is, we desire to make Δω∞ and ΔPtie,∞ 

zero just like we made b(t), c(t) zero in the 

above exercise. So, let’s sum them & pass them 

through an integral controller via a negative 

feedback loop. Fig. 9.21,W&W, illustrates.  

 

ΔP
L1

 

ΔP
L2
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Notice (1) D(s)=K/s; (2) frequency bias factors 

B1 & B2; and (3) the signals ACE1=-B1∆ω-∆Ptie, 

ACE2=-B2∆ω+∆Ptie where 

 

2
22

1
11

1

1

R
DB

R
DB





 

The ACE1 and ACE2 signals become positive 

(to increase generation) when ∆ω and ∆Ptie are 

negative.  

12.0 State equations 

State equations may be written for the system 

illustrated in Fig. 9.21 of W&W. These 

equations enable one to simulate the system 

using Simulink. 
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13.0 Base point calculation 

A last comment is that the ACE, being a measure of 

how much the total system generation needs to 

change, is allocated to the various units that 

comprise the balancing area via participation 

factors. This is illustrated in Fig. 9.25 of W&W. 

The participation factors are obtained by linearizing 

the economic (market) dispatch about the last base 

point solution (see Wood & Wollenberg, section 

3.8). Base point calculation is performed by the real-

time market every 5 mins, as indicated in the slide at 

the top of the next page. 
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14.0 Control performance standards 
Control Performance Standards CPS1 and CPS2 are two 

performance metrics associated with load frequency 

control. These measures depend on area control error 

(ACE), given for control area i as  

fBPACE ii      (12) 

iii SPAPP       (13) 

where APi and SPi are actual and scheduled exports, 

respectively. ACEi is computed on a continuous basis. 

With this definition, we can define CPS1 and CPS2 as 

 CPS1: It measures ACE variability, a measure of short-
term error between load and generation [6]. It is an 
average of a function combining ACE and 
interconnection frequency error from schedule [7]. It 
measures control performance by comparing how well 
a control area’s ACE performs in conjunction with the 
frequency error of the interconnection. It is given by 

%100)2(1  CFCPS     (14a) 

2

1

12

)(
MonthameterControlPar

CF 
   (14b) 

ute
ute F

B

ACE
ameterControlPar min

min

10





 (14c) 

where 
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 CF is the compliance factor, the ratio of the 12 month 
average control parameter divided by the square of 
the frequency target ε1. 

 ε1 is the maximum acceptable steady-state frequency 
deviation – it is 0.018 Hz=18 mHz in the eastern 
interconnection. It is illustrated in Fig. 9 [8]. 

 
Fig. 9 [8] 

 The control parameter, a “MW-Hz,” indicates the 
extent to which the control area is contributing to or 
hindering correction of the interconnection frequency 
error, as illustrated in Fig. 10 [8]. 

 
Fig. 10 [8] 

ε1 

-ε1 

60-ε1 60+ε1 
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If ACE is positive, the control area will be increasing its 
generation, and if ACE is negative, the control area will 
be decreasing its generation. If ∆F is positive, then the 
overall interconnection needs to decrease its 
generation, and if ∆F is negative, then the overall 
interconnection needs to increase its generation. 
Therefore if the sign of the product ACE×∆F is positive, 
then the control area is hindering the needed 
frequency correction, and if the sign of the product 
ACE×∆F is negative, then the control area is 
contributing to the needed frequency correction.  
o A CPS1 score of 200% is perfect (actual measured 

frequency equals scheduled frequency over any 1-
minute period) 

o The minimum passing long-term (12-month rolling 
average) score for CPS1 is 100% 

 CPS2: The ten-minute average ACE. 
In summary, from [9], “CPS1 measures the relationship 

between the control area’s ACE and its interconnection 

frequency on a one-minute average basis. CPS1 values 

are recorded every minute, but the metric is evaluated and 

reported annually. NERC sets minimum CPS1 

requirements that each control area must exceed each 

year. CPS2 is a monthly performance standard that sets 

control-area-specific limits on the maximum average 

ACE for every 10-minute period.” The underlying issue 

here is that control area operators are penalized if they do 



 86 

not maintain CPS. The ability to maintain these standards 

is decreased as inertia decreases. 
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Appendix A 

 

These notes are adapted from treatment in [10]. 

 

Speed governing equipment for steam and hydro 

turbines are conceptually similar. Most speed 

governing systems are one of two types; 

mechanical-hydraulic or Electro-hydraulic. 

Electro-hydraulic governing equipment use 

electrical sensing instead of mechanical, and 

various other functions are implemented using 

electronic circuitry. Some Electro-hydraulic 

governing systems also incorporate digital 

(computer software) control to achieve 

necessary transient and steady state control 

requirements. The mechanical-hydraulic design 

illustrated in Fig. A4 is used with older 

generators. We review this older design here 

because it provides good intuitive understanding 

of the primary speed loop operation.  

 

Basic operation of this feedback control for 

turbines operating under-speed (corresponding 
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to the case of losing generation or adding load) 

is indicated by movement of each component as 

shown by the vertical arrows.  

 
Fig. A4 

 As ωm decreases, the bevel gears decrease their 

rotational speed, and the rotating flyweights 

pull together due to decreased centrifugal 

force. This causes point B and therefore point 

C to raise.  

 Assuming, initially, that point E is fixed, point 

D also raises causing high pressure oil to flow 

into the cylinder through the upper port and 

release of the oil through the lower port. 

 The oil causes the main piston to lower, which 

opens the steam valve (or water gate in the 
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case of a hydro machine), increasing the 

energy supply to the machine in order to 

increase the speed.  

 To avoid over-correction, Rod CDE is 

connected at point E so that when the main 

piston lowers, and thus point E lowers, Rod 

CDE also lowers. This causes a reversal of the 

original action of opening the steam valve. The 

amount of correction obtained in this action 

can be adjusted. This action provides for an 

intentional non-zero steady-state frequency 

error. 

 

There is really only one input to the diagram of 

Fig. A4, and that is the speed of the governor, 

which determines how the point B moves from 

its original position and therefore also 

determines the change in the steam-valve 

opening.  

 

However, we also need to be able to set the 

input of the steam-valve opening directly, so 

that we can change the MW output of the 
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generator in order to achieve economic 

operation. This is achieved by enabling direct 

control of the position of point C via a 

servomotor, as illustrated in Fig. A5. For 

example, as point A moves down, assuming 

constant frequency, point B remains fixed and 

therefore point C moves up. This causes point D 

to raise, opening the valve to increase the steam 

flow. 

 
Fig. A5 

A model for small changes 

We desire an analytic model that enables us to 

study the operation of the Fig. A5 controller 
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when it undergoes small changes away from a 

current state. We utilize the variables shown in 

Fig. A5, which include ΔPC, ΔxA, ΔxB, ΔxC, 

ΔxD, ΔxE. We provide statements indicating the 

conceptual basis and then the analytical relation. 

In each case, we express an “output” or 

dependent variable as a function of “inputs” or 

independent variables of a certain portion of the 

controller.  

1.Basis: Points A, B, C are on the same rod. 

Point C is the output. When A is fixed, C 

moves in same direction as B. When B is 

fixed, C moves in opposite direction as A. 

Relation: AABBC xkxkx     (A7) 

2.Basis: Change in point B depends on the 

change in frequency Δω. 

Relation:  1kxk BB      (A8) 

3.Basis: Change in point A depends on the 

change in set point ΔPC. 

Relation: CAA Pkxk  2      (A9) 

Substitution of (A8) & (A9) into (A7) result in  

CC Pkkx  21       (A10a) 
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4.Basis: Points C, D, and E are on the same rod. 

Point D is the output. When E is fixed, D 

moves in the same direction as C. When C is 

fixed, D moves in the same direction as E.  

Relation: ECD xkxkx  43   (A11a) 

5.Basis: Time rate of change of oil through the 

ports determines the time rate of change of E.  

Relation: )( portsthroughoil
dt

d

dt

xd E 


 (A12a) 

6.Basis: A change in D determines the time rate 

of change of oil through the ports. 

Relation: D
E xk

dt

xd



5     (A12b) 

7.Basis: The pilot valve is positioned so that 

when position D is moved by a positive ΔxD, 

the rate of change of oil through the ports 

decreases. 

Relation: D
E xk

dt

xd



5     (13a) 

 

Now we will take the LaPlace transform of eqs. 

(A10a), (A11a), and (A13a) to obtain: 

CC Pkkx ˆˆˆ
21        (A10b) 
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ECD xkxkx ˆˆˆ
43      (A11b) 

DEE xkxxs ˆ)0(ˆ
5      (A13b) 

where the circumflex above the variables is used 

to indicate the LaPlace transform of the 

variables.  

 

In eq. (A13b), we have used the LaPlace 

transform of a derivative which depends on the 

initial conditions. We will assume that the initial 

condition, i.e., the initial change, is 0, so that 

ΔxE(t=0)=0. Therefore, eq. (A13b) becomes: 

DE xkxs ˆˆ
5       (A13c) 

and solving for Ex̂ results in 

DE x
s

k
x ˆˆ 5 


       (A13d) 

 

Let’s draw block diagrams for each of the 

equations (A10b), (A11b), and (A13d).  

 

Starting with (A10b), which is 

CC Pkkx ˆˆˆ
21   , we can draw Fig. 6. 
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Σ 
k2 

k1 

ΔPC 

Δω 

ΔxC 

+ 

- 

 
Fig. A6 

Moving to (A11b), which is ECD xkxkx ˆˆˆ
43  , 

we can draw Fig. A7. 

 

Σ 
k3 

ΔxC 

ΔxD 

+ 

k4 

ΔxE 
+ 

 
Fig. A7 

Finally, considering (A13d), which is 

DE x
s

k
x ˆˆ 5 


 , we can draw Fig. A8. 

 

-k5 

ΔxD 

s

1
 

ΔxE 

 
Fig. A8 

Combining Figs. A6, A7, and A8, we have: 
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Fig. A9 

 

We can derive the relation between the output 

which is ΔxE and the inputs which are ΔPC and 

Δω using our previously derived equations. 

Alternatively, we may observe from the block 

diagram that 

DE x
s

k
x ˆˆ 5 


      (A14) 

ECD xkxkx ˆˆˆ
43       (A15) 

Substitution of (A15) into (A14) yields: 

)ˆˆ(ˆ
43

5
ECE xkxk

s

k
x 


     (A16) 

Expanding (A16) results in: 

ECE xk
s

k
xk

s

k
x ˆˆˆ

4
5

3
5 


     (A17) 
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Moving terms in ΔxE to the left-hand-side gives: 

CEE xk
s

k
xk

s

k
x ˆˆˆ

3
5

4
5 


     (A18) 

Factoring out the ΔxE yields: 

CE xk
s

k
k

s

k
x ˆ1ˆ

3
5

4
5 











     (A19) 

Dividing both sides by the term in the bracket 

on the left-hand-side provides: 

4
5

3
5

1

ˆ

ˆ

k
s

k

xk
s

k

x
C

E





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     (A20) 

Multiplying top and bottom by s gives: 

45

35
ˆ

ˆ
kks

xkk
x C

E



      (A21) 

Now recognizing from Fig. A9 or (A10b), that 

CAC Pkkx ˆˆˆ
1   , we may make the 

appropriate substitution into (A21) to get: 

)ˆˆ(ˆ
1

45

35
CAE Pkk

kks

kk
x 




     (A22) 

Distributing the negative sign through: 

)ˆˆ(ˆ
21

45

35
CE Pkk

kks

kk
x 


     (A23) 
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Now factor out k2 to obtain: 

)ˆˆ(ˆ
2

1

45

352
CE P

k

k

kks

kkk
x 




     (A24) 

Simply switching the order of the terms in the 

parentheses: 

)ˆˆ(ˆ
2

1

45

352 

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k

k
P

kks

kkk
x CE    (A25) 

Divide top and bottom by k5k4 to get: 

)ˆˆ(
1/

/
ˆ

2

1

45

432 



k

k
P

kks

kkk
x CE    (A26) 

Now we make three definitions: 

1

2

45
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k
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
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     (A27) 

where KG is the controller gain, TG is the 

controller time constant, and R is the regulation 

constant. Using these parameters in (A26) gives: 

)ˆ
1ˆ(

1
ˆ 


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R
P

sT

K
x C

G

G
E    (A28) 
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TG is typically around 0.1 second. Since TG is 

the time constant of this system, it means that 

the response to a unit step change achieves 

about 63% of its final value in about 0.1 second.  
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Appendix B 
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