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Unit Commitment, jdm@linux3.ece.iastate.edu 
 
1.0 Introduction 
 
The problem of unit commitment (UC) is to decide which units to 
interconnect over the next T hours, where T is commonly 24 or 48 
hours, although it is reasonable to solve UC for a week at a time. 
The problem is complicated by the presence of inter-temporal 
constraints, i.e., what you do in one period constrains what you can 
do in the next period. The problem is also complicated because it 
involves integer decision variables, i.e., a unit is either committed 
(1) or not (0).  
 
The UC problem forms the basis of today’s day-ahead markets 
(DAMs). Most ISOs today are running so-called security-
constrained unit commitment (SCUC) 24 hours ahead of the real-
time (balancing) market.  
 
If one has a very good solution method to solve the UC problem (or 
the SCUC problem), then the good solutions that come will save a 
lot of money relative to using a not-so-good solution method. 
Regardless of the solution method, however, the solutions may not 
save much money if the forecast of the demand that needs to be met 
contains significant error. Having a “perfect” solution for a 
particular demand forecast is not very valuable if the demand 
forecast is very wrong. Therefore demand forecasting is very 
important for solving the UC. Systems that are expecting high wind 
energy penetrations are concerned about this fact, since high wind 
penetration increases demand forecast uncertainty (the demand that 
the thermal units must meet is load-wind). This is why so much 
attention is being paid to improving wind power forecasting. It is 
also why so much attention is being paid to creating UC models and 
solvers that handle uncertainty.  
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We begin these notes with a motivating example in Section 2.0, then 
we provide the explicit problem statement, in words, in Section 3.0. 
Section 4.0 provides the analytic problem statement. Section 5.0 
provides an overview of solution methods. Section 6.0 ….  
Section 7.0 describes the most important solution method – branch 
and bound. Section 8.0 illustrates the method on the UC problem. 
Section 9.0 provides an overview of the SCUC used by several ISOs 
today. 
 
2.0 Motivating example 
 
Assume we are operating a power system that has load characteristic 
as given in Fig. 1. 

 
Fig. 1 

Consider that we have three units to supply the load. The unit cost 
rates are expressed below. 
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Note that the available capacity is 5+10+3=18.  
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In the economic dispatch problem, we identified the minimum cost 
for each hour, under the assumption that all units were connected.  
 
The UC problem differs from the economic dispatch problem in that 
we no longer assume that all of the units are connected. In fact, the 
essence of the UC problem is to decide which units to connect.  
 
To begin consideration of the problem at hand, let’s make the very 
significant assumption that there are no costs associated with a unit 
making the transition between up (connected) and down 
(disconnected).  
 
Therefore our objective is to determine how to operate the three 
units in order to  

• achieve the minimum cost over the 24 hour period and  
• satisfy the load.  

Let’s consider two approaches for doing this. 
 
Approach 1:  
 
In this simple-minded approach, we will connect (commit) all units 
for the entire 24 hour period, and dispatch them according to 
economic dispatch at each hour.  
 
Observe that this method will certainly satisfy the load. But it does 
not achieve minimum cost because, for example, we could simply 
run unit 1 by itself from 0 to 6 hours and not incur the automatic 
$10/hr required by running units 2 and 3 with Pg2=Pg3=0.  
 
So this is a very poor approach. 
 
Approach 2:  
 
Let’s try to run only the necessary units for each load-level. But we 
need to decide which units. 
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To answer this question, let’s consider that there are 7 possible 
combinations of units. We will denote each combination as Sk. They 
are enumerated below. 

S1: G1 
S2: G2 
S3: G3 
S4: G1, G2 
S5: G1, G3 
S6: G2, G3 
S7: G1, G2, G3 

However, we observe that unit 3 is very expensive therefore let’s 
run this unit only if we must. This means we will eliminate any of 
the above combinations that have G3 except the last one. Therefore 
we now only have four possibilities: 

S1: G1 
S2: G2 
S3: G1, G2 
S4: G1, G2, G3 

We desire to determine which combination should be chosen at each 
of the various load levels.  
 
To accomplish this, we will plot the total cost of each combination 
against total load, assuming the units committed are dispatched 
according to economic dispatch (without losses).  
 
So we want to obtain a function CTk(Pd) for each set Sk, k=1,2,3,4.  
 
This is easy for S1 because in this case, Pd=Pg1, and also for S2, 
because in this case, Pd=Pg2. Therefore, we have 

2
1 5.05)( dddT PPPC ++= ,  50 ≤≤ dP  

2
2 5.05)( dddT PPPC ++= ,   100 ≤≤ dP  

For S3 and S4, we have more than one generator, and so how do we 
get CT3(Pd)?  
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What we will do here is to write the optimality condition for each 
generator, which is  
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where N=2 for S3 and N=3 for S4. 
 
We do it here for S3 and just give the result for S4. 
 
For S3: 
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we can write that 

5.02125.0 1221 −=⇒+=+ gggg PPPP   (*) 
From power balance, we have 

21 ggd PPP +=    (**) 
Substitution of (*) into (**) results in 

5.035.02 111 −=−+= gggd PPPP  
Solving for Pg1 results in 
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Substitution of (#) into (*) results in 
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Substitution of (#) and (##) into (&) above results in 
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and the above relation is applicable for 150 ≤≤ dP . 
 
For S4: 
We will not go through the detailed algebra here but just give the 
result, which is 
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and this relation is applicable for 180 ≤≤ dP . 
 
Figure 2 plots CT1, CT2, CT3, and CT4 together as a function of 
demand. 
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Fig. 2 

 
Recall the generators comprising each set, repeated below for 
convenience, but now we indicate the load interval for which each 
set should be used. 

Use S2 Use S3 Use S4
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S1: G1   NEVER 
S2: G2   0-5 
S3: G1, G2   5-13 
S4: G1, G2, G3  13-18 

 
Now we return to the load characteristic of Fig. 1 and use Fig. 2 to 
identify the “solution” to that particular UC problem. The solution is 
given in Fig. 3. 
 

 
Fig. 3 

 
It is important to note that we have solved this problem under the 
assumption that transition costs are zero. What if this is not the 
case? 
 
Transition costs include startup costs and shutdown costs. Startup 
costs involve both fixed costs and variable costs and requires some 
further explanation.  
 
Shutdown costs generally involve only fixed costs (mainly labor) 
and are easy to model. Sometimes they are neglected because they 
are generally not very significant. 

G2 
G1,G2

G1,G2

G2

G1,G2, G3

G1,G2 
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The fixed startup costs (generally labor) will be denoted by Cf. The 
variable startup costs are denoted by CV.  
 
Variable costs depends on the shut-down state. There are two 
possibilities, depending on how “ready” we want the unit to be 
during its shutdown period. These two possibilities are 
• Hot reserve (banking): This is when the unit is down, but the 

boiler is kept hot. The disadvantage of this state is that it costs 
money to supply the fuel to heat the boiler. The advantage of this 
state is the unit can be started quickly. It is also less expensive to 
start a unit from a hot reserve state since no startup fuel is 
required to heat the unit. A relation to estimate the variable costs 
of a hot reserve state is: 

[ ] ftCC bVb =  
where  

o Cb is the energy per hour to keep the boiler warm 
(MBTU/hr) 

o f is the cost per MBTU ($/MBTU) 
o t is the shutdown duration 

Note that Cvb increases with time, without bound. Therefore the 
hot reserve state is typically more attractive if the unit will be 
down for only a short time. 

• Cold reserve (cooling): This is when the unit is down and the 
boiler is not heated. The disadvantage of this state is that the 
colder the unit is, the more costly and more time to start. The 
advantage of this state is that there is no fuel cost while the unit is 
down. A relation to estimate the costs of a cold reserve state is 

[ ]feCC t
cVc

α/1 −−=  
where 

o Cc is the fuel required to start the unit from completely cold 
(MBTU) 

o α is unit thermal time constant (time constant of thermal 
loss) 

o f is the cost per MBTU ($/MBTU) 
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o t is the shutdown duration 
Note from the cold reserve equation that  

• t=0 implies CVc=0, meaning the unit is not allowed time to cool. 
• t=∞ implies CVc=Ccf, meaning the unit becomes completely cold. 
 
3.0 Node-arc model of the UC problem 
 
You will find in the homework problem 1 that when including start-
up costs, the peaks allow only one solution (S3) but the valleys 
allow three which we designate as follows: 

S2-H: This is G2 up, with G1 in hot reserve 
S2-C: This is G2 up, with G1 in cold reserve 
S3: This is G1, G2 up. 

You can see that the problem, peaks and valleys, admits only the 
above three possible states.  
 
We will use a particular representation using nodes and arcs to 
model the situation where 

• node: state of the system at the beginning of a period 
• arc: possible path from a state in period i to a state in period 

i+1.  
Notice the use of the term “state” here is to globally specify the 
status of all units in the system. 
 
For the homework problem, of our three possible states, only one, 
S3, is feasible during the peaks when the demand is 11, but all three 
states are feasible during the valleys when the demand is only 3 or 4. 
Figures 4 and 5 represents the situation. 
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Fig. 4 

 
 

 
Fig. 5 

 

S3 

S2-H 

S2-C 

P1 P2 P3 P4 V1 V2 V3 
12 0 18 36 42 58 66 72 

4 11 4 11 3 11 4 11 
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We can also associate a value with each arc as the cost if the system 
is in the state from which the arc begins. We can compute these 
costs for each state and for each different load level.  
I will not provide the expressions to make these computations (you 
will need to do that in your homework). Rather, I will just provide 
the results in terms of Fig. 6. 

 
Fig. 6 

Observe that the UC problem has been converted to a new 
problem… 
 
Assume that the values on the arcs are arc-lengths. Then we desire 
to find the shortest path between the first and last node in the 
network.  
 
It is easy to see the shortest path in our node-arc model, but consider 
a case where we have N units instead of 3.  
 
 
 

S3 

S2-H 

S2-C 

P1 P2 P3 P4 V1 V2 V3 
12 0 18 36 42 58 66 72 

4 11 4 11 3 11 4 11 
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Even if we limit the number of states per unit to two (on or off), then 
at each loading level, there are 2N-1 possible states (nodes) to 
consider, and we still have not thought about the many different 
transitions (arcs). This represents the curse of dimensionality.  
If there are m intervals of time for which we must find a solution, 
each having 2N-1 possible states, then we will have a total number of 
possible solutions equal to (2N-1)m. 
 
For example, consider where N=5 and m=24. In this case 
(25-1)24=6.2E35. 
 
Two questions: 

1. How do we limit the dimensionality of the problem? 
2. How do we algorithmically solve the problem of how to find 

the shortest path? 
 
Question 1:  
There are two approaches: 

A. Limit the number of nodes at each time interval. 
B. Limit the number of possible transitions (arc) between time 

intervals. 
 
Example: 
Consider 3 gens with 2 possible states (nodes): on or off. 
The total number of nodes possible at any time interval is 7. 
 
But let’s now prioritize the units using the following rule:  
 We always turn on unit i before unit i+1. Therefore, we now  
 only have 3 possible states (nodes), as follows: 
   S1=G1 
   S2=G1G2 
   S3=G1G2G3 
In general, this rule creates all states Si=G1G2…Gi 
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The prioritization rule is typically done according to economic 
criteria and security criteria. 
 
Note also that this limits the transitions if you can quantify the 
maximum possible load variation for one period, see Fig. 7.  

 
Fig. 7 

Question 2: How to algorithmically solve the “shortest path” 
problem? 
 
Several alternatives: 

• Dijkstra’s algorithm 
• Dial’s algorithm 
• Label correcting algorithms 
• All-pair algorithm 
• Dynamic programming: forward and backward 

 
Dynamic programming was used many years ago but not has fallen 
out to what are called branch and bound methods, which we will 
explore more fully. 
 

i 

If the maximum possible 
load change between 
intervals is less than X, then 
we need only consider states 
in the next interval that are 
relevant in considering loads 
of Li+1= Li+X 
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4.0 Problem statement  
 
The unit commitment problem is solved over a particular time 
period T; in the day-ahead market, the time period is usually 24 
hours. It is articulated in [10], in words, as follows: 
 
1. Min Objective=UnitEnergyCost+StartupCost+ShutdownCost   
                            +TransactionCost 
                            +VirtualBidCost+ DemandBidCost 
                            +Wheeling Cost 
Subject to: 

2. Area Constraints: 
a. Demand + Net Interchange 
b. Spinning and Operating Reserves 

3. Zonal Constraints: 
a. Spinning and Operating Reserves 

4. Security Constraints 
5. Unit Constraints: 

a. Minimum and Maximum Generation limits 
b. Reserve limits 
c. Minimum Up/Down times 
d. Hours up/down at start of study 
e. Must run schedules 
f. Pre-scheduled generation schedules 
g. Ramp Rates 
h. Hot, Intermediate, & Cold startup costs 
i. Maximum starts per day and per week 
j. Maximum Energy per day and per study length 

 
We describe the objective function and the various constraints in 
what follows. 
 
4.1 Objective function 
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a. UnitEnergyCost: This is the total costs of supply over T, based on 
the supply offers made, in $/MWhr. 
b. StartupCost: This is the total cost of starting units over T, based 
on the startup costs 
c. ShutdownCost: This is the total cost of shutting down units over 
T, based on the shutdown costs. 
d. TransactionCost: Transactions are bilateral agreements made 
outside the market. Transaction cost for a particular transaction is 
the difference between nodal prices of transaction sink and source 
nodes, multiplied by the MW value of the transaction. So 
TransactionCost is the total transaction costs over T.  
e. VirtualBidCost: Purely financial energy bids and offers made to 
arbitrage between the day ahead and real time market prices. 
f. DemandBidCost: This is the total “cost” of demand over T, based 
on the demand bids made, in $/MWhr. 
g. WheelingCost: I do not find this defined in the PJM materials but 
assume this is the transmission service cost associated with non-firm 
transactions. 
 
Revenue from transaction sales, virtual bids and demand bids are 
added as negative costs so that by minimizing the objective the 
profit is maximized. For Day Ahead studies, this results in a large 
negative objective cost. 
 
4.2 Area constraints 
a. Demand + Net Interchange: The area demand plus the exports 
from the area (which could be negative, or imports).  
b. Spinning and Operating Reserves: The spinning reserve is the 
amount of generation capacity Σ(Pgmax,k-Pgen,k) in MW that is on-line 
and available to produce energy within 10 minutes. Operating 
reserve is a broader term: the amounts of generating capacity 
scheduled to be available for specified periods of an Operating Day 
to ensure the security of the control area. Generally, operating 
reserve includes primary (which includes spinning) and secondary 
reserve, as shown in Fig. 8.  
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Fig. 8 [1] 

 
4.3 Zonal constraints 
 
Some regions within the control area, called zones, may also have 
spinning and operating reserve constraints, particularly if 
transmission interconnecting that region with the rest of the system 
is constrained. 
 
4.4 Security constraints 
 
These include constraints on branch flows under the no-contingency 
condition and also constraints on branch flows under a specified set 
of contingency conditions. The set is normally a subset of all N-1 
contingencies.  
 
4.5 Unit constraints 
a. Minimum and Maximum Generation limits: Self explanatory. 
b. Reserve limits: The spinning, primary, and/or secondary reserves 
must exceed some value, or some percentage of the load. 
c. Minimum Up/Down times: Units that are committed must remain 
committed for a minimum amount of time. Likewise, units that are 
de-committed must remain down for a minimum amount of time. 
These constraints are due to the fact that thermal units can undergo 
only gradual temperature changes. 
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d. Hours up/down at start of study: The problem must begin at some 
initial time period, and it will necessarily be the case that all of the 
units will have been either up or down for some number of hours at 
that initial time period. These hours need to be accounted for to 
ensure no unit is switched in violation of its minimum up/down 
times constraint. 
e. Must run schedules: There are some units that are required to run 
at certain times of the day. Such requirements are most often driven 
by network security issues, e.g., a unit may be required in order to 
supply the reactive needs of the network to avoid voltage instability 
in case of a contingency, but other factors can be involved, e.g., 
steam supply requirements of co-generation plants. 
f. Pre-scheduled generation schedules: There are some units that are 
required to generate certain amounts at certain times of the day. The 
simplest example of this is nuclear plants which are usually required 
to generate at full load all day. Import, export, and wheel 
transactions may also be modeled this way. 
g. Ramp Rates: The rate at which a unit may increase or decrease 
generation is limited, therefore the generation level in one period is 
constrained to the generation level of the previous period plus the 
generation change achievable by the ramp rate over the amount of 
time in the period. 
h. Hot, Intermediate, & Cold startup costs: A certain amount of 
energy must be used to bring a thermal plant on-line, and that 
amount of energy depends on the existing state of the unit. Possible 
states are: hot, intermediate, and cold. Although it costs less to start 
a hot unit, it is more expensive to maintain a unit in the hot state. 
Likewise, although it costs more to start a cold unit, it is less 
expensive to maintain a unit in the cold state. Whether a de-
committed unit should be maintained in the hot, intermediate, or 
cold state, depends on the amount of time it will be off-line. 
i. Maximum starts per day and per week: Starting a unit requires 
people. Depending on the number of people and the number of units 
at a plant, the number of times a particular unit may be started in a 
day, and/or in a week, is usually limited. 
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j. Maximum Energy per day and per study length: The amount of 
energy produced by a thermal plant over a day, or over a certain 
study time T, may be less than Pmax×T, due to limitations of other 
facilities in the plant besides the electric generator, e.g., the coal 
processing facilities. The amount of energy produced by a reservoir 
hydro plant over a time period may be similarly constrained due to 
the availability of water. 
 
5.0 The UC problem (analytic statement) 
 
The unit commitment problem is a mathematical program 
characterized by the following basic features. 
• Dynamic: It obtains decisions for a sequence of time periods. 
• Inter-temporal constraints: What happens in one time period 
affects what happens in another time period. So we may not solve 
each time period independent of solutions in other time periods. 
• Mixed Integer: Decision variables are of two kinds: 

o Integer variables: For example, we must decide whether a unit 
will be up (1) or down (0). This is actually a special type of 
integer variable in that it is binary. 

o Continuous variables: For example, given a unit is up, we must 
decide what its generation level should be. This variable may 
be any number between the minimum and maximum 
generation levels for the unit. 

 
There are many papers that have articulated an analytical statement 
of the unit commitment problem, more recent ones include [7, 8, 2, 
3], but there are also more dated efforts that pose the problem well, 
although the solution method is not as effective as what we have 
today, an example is [4].  
 
We provide a mathematical model of the security-constrained unit 
commitment problem in what follows. This model was adapted from 
the one given in [5, ch 1]. This model is a mixed integer linear 
program.  
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where the decision variables are: 
• git is the MW produced by generator i in period t, 
• rit is the MW of spinning reserves from generator i in period t, 
• zit is 1 if generator i is dispatched during t, 0 otherwise,  
• yit is 1 if generator i starts at beginning of period t, 0 otherwise, 
• xit is 1 if generator i shuts at beginning of period t, 0 otherwise, 
 
Other parameters are 
• Dt is the total demand in period t,  
• SDt is the spinning reserve required in period t, 
• Fit is fixed cost ($/period) of operating generator i in period t,  
• Cit is prod. cost ($/MW/period) of operating gen i in period t; 
• Sit is startup cost ($) of starting gen i in period t. 
• Hit is shutdown cost ($) of shuting gen i in period t. 
• MxInci is max ramprate (MW/period) for increasing gen i output 
• MxDeci is max ramprate (MW/period) for decreasing gen i output 
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• aij is linearized coefficient relating bus i injection to line k flow 
• MxFlowk is the maximum MW flow on line k 
• )( j

kia is linearized coefficient relating bus i injection to line k flow 
under contingency j, 
• )( j

kMxFlow  is the maximum MW flow on line k under contingency j 
 
The above problem statement is identical to the one given in [5] 
with the exception that here, we have added eqs. (11) and (12).  

The addition of eq. (11) alone provides that this problem is a 
transmission-constrained unit commitment problem. 

 The addition of eqs. (11) and (12) together provides that this 
problem is a security-constrained unit commitment problem. 
 
One should note that our problem is entirely linear in the decision 
variables. Therefore this problem is a linear mixed integer program, 
and it can be compactly written as 

xcTmin  
Subject to 

bxA ≤  
We have already had some discussion about solution methods to the 
above problem, in that we have illustrated priority list methods and 
we have described dynamic programming and Lagrangian 
Relaxation. There is one more to discuss. In summary, then, there 
have four basic solution methods used in the past few years: 

• Priority list methods 
• Dynamic programming 
• Lagrangian relaxation 
• Branch and bound 

The last method, branch and bound, is what the industry means 
when it says “MIP.” It is useful to understand that the chosen 
method can have very large financial implications. This point is 
well-made in the chart [6] of Fig. 9. 
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Fig. 9 

 
6.0 UC and Day-ahead market 
 
The main tool used to implement the day-ahead-markets (DAM) is 
the security-constrained unit commitment program, or SCUC. In this 
section, we review some basics about the DAM by looking at some 
descriptions given by a few industry authors. You are encouraged to 
review the papers from which these quotes were taken. Notice that 
any references made inside the quotations are given only in the 
bibliography of the subject paper and not in the bibliography of 
these notes. References made outside of the quotations are given in 
the bibliography of these notes. 
 
6.1 Paper by Chow & De Mello:  
Reference [7] offers an overall view of the sequence of functions 
used by an ISO, as given in Fig. 10. Observe that the “day-ahead 
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scheduling” and the “real time commitment and dispatch” both 
utilize the SCUC. 

Fig. 10 
 
They state: 
“Electricity is a commodity that cannot be effectively stored and the 
energy-supplying generators have limits on how quickly they can be 
started and ramped up or down. As a result, both the supply and 
demand become more inelastic and the electricity market becomes 
more volatile and vulnerable as it gets closer to real time [34]. To 
achieve a stable margin as well as to maintain the system reliability, 
a forward market is needed to provide buyers and sellers the 
opportunity to lock in energy prices and quantities and the ISO to 
secure adequate resources to meet predicted energy demand well in 
advance of real time. Thus architecturally, many ISOs (e.g. PJM, 
ISO New England, New York ISO) take a multisettlement approach 
for market design….” 
 
“The two main energy markets, each producing a financial 
settlement, in a multisettlement system, are the following.  
1) DAM: schedules resources and determines the LMPs for the 24 h 
of the following day based on offers to sell and bids to purchase 
energy from the market participants.  
2) Real-time market: optimizes the clearing of bids for energy so 
that the real-time system load matching and reliability requirements 
are satisfied based on actual system operations. LMPs are computed 
for settlement at shorter intervals, such as 5–10 min….” 
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“Fig. 6 shows the timeline of the multiple-settlement systems used 
in NYISO, PJM, and ISO-NE, which are typical of those used in 
practice. Supply and demand bids are submitted for the DAM, 
typically 12–24 h ahead of the real-time operation. Then the day-
ahead energy prices are computed and posted, 6–12 h ahead of real-
time operation….” 
 
“The DAM typically consists of supply and demand bids on an 
hourly basis, usually from midnight to the following midnight. The 
supply bids include generation supply offers with start-up and no-
load costs, incremental and decremental bids1, and external 
transactions schedules. The demand bids are submitted by loads 
individually or collectively through load-serving entities. In 
scheduling the supply to meet the demand, all the operating 
constraints such as transmission network constraints, reserve 
requirements, and external transmission limits must not be violated. 
This process is commonly referred to as an SCUC problem, which is 
to determine hourly commitment schedules with the objective of 
minimizing the total cost of energy, start-up, and spinning at no-load 
while observing transmission constraints and physical resources’ 
minimum runtime, minimum downtime, equipment ramp rates, and 
energy limits of energy-constrained resources. Based on the 
commitment schedules for physical resources, SCUC is used to clear 
energy supply offers, demand bids, and transaction schedules, and to 
determine LMPs and their components at all defined price nodes 
including the hubs, zones, and aggregated price nodes for the DAM 
settlement. The SCUC problem is usually optimized using a 
Lagrangian relaxation (LR) or a mixed-integer programming (MIP) 
solver….” 
 
“A critical part of the DAM is the bid-in loads, which is a day-ahead 
forecast of the real-time load. The load estimate depends on the 
                                                 
1 Decremental bids are similar to price-sensitive demand bids. They allow a marketer or other similar entity 
without physical demand to place a bid to purchase a certain quantity of energy at a certain location if the 
day-ahead price is at or below a certain price. Incremental offers are the flip side of decremental bids. 
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season, day type (weekday, weekend, holiday), and hour of the day. 
Most ISOs have sophisticated load forecasting programs, some with 
neural network components [36], [37], to predict the day-ahead load 
to within 3%–5% accuracy and the load forecasts are posted. LSEs 
with fully hedged loads through long-term bilateral contracts tend to 
bid in the amount corresponding to the ISO predicted loads. Some 
other LSEs may bid in loads that are different from those posted by 
the ISO. In such cases, if the LSE bid load exceeds the ISO load, the 
LSE bid load is taken as the load to be dispatched. Otherwise, the 
ISO load will supersede the LSE bid load and the SCUC will 
commit generators to supply the ISO forecasted load in a reliability 
stage. Then the generation levels of the committed generators will 
be allocated to supply LSE bid loads. Committing extra generators 
outside the DAM will be treated as uplifts and be paid by the 
LSEs….” 
 
6.2 Paper by Papalexopoulos:  
Reference [8] states: 
“The Must Offer Waiver (MOW) process is basically a process of 
determining which Must Offer units should be committed in order to 
have enough additional capacity to meet the system energy net short 
which is the difference between the forecast system load and the 
Day-Ahead Market energy schedules. This commitment process 
ensures that the resulting unit schedule is feasible with respect to 
network and system resource constraints. Mathematically, this can 
be stated as a type of a SCUC problem [3]. The objective is to 
minimize the total start up and minimum load costs of the 
committed units while satisfying the power balance constraint, the 
transmission interface constraints, and the system resource 
constraints, including unit inter-temporal constraints….” 
 
“The most popular algorithms for the solutions of the unit 
commitment problems are Priority-List schemes [4], Dynamic 
Programming [5], and Mixed Integer Linear Programming [6]. 
Among these approaches the MILP technique has achieved 
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significant progress in the recent years [7]. The MILP methodology 
has been applied to the SCUC formulation to solve this MOW 
problem. Recent developments in the implementation of MILP-
based algorithms and careful attention to the specific problem 
formulation have made it possible to meet accuracy and 
performance requirements for solving such large scale problems in a 
practical competitive energy market environment. In this section the 
MILP-based SCUC formulation is presented in detail….” 
 
6.3 Paper by Ott:  
 
Reference [9] states: 
“In addition to the LMP concept, the fundamental design objectives 
of the PJM day-ahead energy market are: 1) to provide a mechanism 
in which all participants have the opportunity to lock in day-ahead 
financial schedules for energy and transmission; 2) to coordinate the 
day-ahead financial schedules with system reliability requirements; 
3) to provide incentive for resources and demand to submit day-
ahead schedules; and 4) to provide incentive for resources to follow 
real-time dispatch instructions….” 
 
6.4 Paper by AREVA and PJM:  
 
Reference [10] states: 
“As the operator of the world’s largest wholesale market for 
electricity, PJM must ensure that market-priced electricity flows 
reliably, securely and cost-effectively from more than 1100 
Generating resources to serve a peak load in excess of 100,000 MW. 
In doing so, PJM must balance the market’s needs with thousands of 
reliability-based constraints and conditions before it can schedule 
and commit units to generate power the next day. The PJM market 
design is based on the Two Settlement concept [4]. The Two-
Settlement System provides a Day-ahead forward market and a real-
time balancing market for use by PJM market participants to 
schedule energy purchases, energy sales and bilateral contracts. Unit 
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commitment software is used to perform optimal resource 
scheduling in both the Day-ahead market and in the subsequent 
Reliability Analysis….” 
 
“As the market was projected to more than double its original size, 
PJM identified the need to develop a more robust approach for 
solving the unit commitment problem. The LR algorithm was 
adequate for the original market size, but as the market size 
increased, PJM desired an approach that had more flexibility in 
modeling transmission constraints. In addition, PJM has seen an 
increasing need to model Combined-cycle plant operation more 
accurately. While these enhancements present a challenge to the LR 
formulation, the use of a MIP formulation provides much more 
flexibility. For these reasons, PJM began discussion with its 
software vendors, in late 2002, concerning the need to develop a 
production grade MIP-based approach for large-scale unit 
commitment problems….” 
 
“The Day-ahead market clearing problem includes next-day 
generation offers, demand bids, virtual bids and offers, and bilateral 
transactions schedules. The objective of the problem is to minimize 
costs subject to system constraints. The Day-ahead market is a 
financial market that provides participants an operating plan with 
known compensation: If their generation (or load) is the same in the 
real-time market, their revenue (or cost) is the same. Compensation 
for any real-time deviations is based on real-time prices, providing 
participants with opportunities to improve profit (or reduce cost) if 
they have flexibility to adjust their schedules….” 
 
“In both problems, unit commitment accepts data that define bids 
(e.g., generator constraints, generator costs, and costs for other 
resources) and the physical system (e.g., load forecast, reserve 
requirements, security constraints). In real time, the limited 
responsiveness of units and additional physical data (e.g., state 
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estimator solution, net-interchange forecast) further constrains the 
unit commitment problem.” 
 
“The Unit Commitment problem is a large-scale non-linear mixed 
integer programming problem. Integer variables are required for 
modeling: 1) Generator hourly On/Off-line status, 2) generator 
Startups/Shutdowns, 3) conditional startup costs (hot, intermediate 
& cold). Due to the large number of integer variables in this 
problem, it has long been viewed as an intractable optimization 
problem. Most existing solution methods make use of simplifying 
assumptions to reduce the dimensionality of the problem and the 
number of combinations that need to be evaluated. Examples 
include priority-based methods, decomposition schemes (LR) and 
stochastic (genetic) methods. While many of these schemes have 
worked well in the past, there is an increasing need to solve larger 
(RTO-size) problems with more complex (e.g. security) constraints, 
to a greater degree of accuracy. Over the last several years, the 
number of units being scheduled by RTOs has increased 
dramatically. PJM started with about 500 units a few years ago, and 
is now clearing over 1100 each day. MISO cases will be larger 
still….” 
 
“The classical MIP implementation utilizes a Branch and Bound 
scheme. This method attempts to perform an implicit enumeration of 
all combinations of integer variables to locate the optimal solution. 
In theory, the MIP is the only method that can make this claim. It 
can, in fact, solve non-convex problems with multiple local minima. 
Since the MIP methods utilize multiple Linear Programming (LP) 
executions, they have benefited from recent advances in both 
computer hardware and software [6]…” 
 
“This section presents results from using the CPLEX 7.1 and 
CPLEX 9.0 MIP solvers on a large-scale RTO Day Ahead Unit 
Commitment problem. This problem has 593 units and a 48 hour 
time horizon….” 
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7.0 Solution methods for mixed integer programs  
 
To begin with, we need to discuss a very fundamental principle 
related to linear programming. Consider a standard linear program, 
given below. Notice that variables are continuous, not integer. 
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We can use Matlab-linprog or CPLEX to solve this, but it is so 
simple that you we can also visualize the solution in x1-x2 space, as 
in Fig. 11 below. The shaded area indicates the feasible region.  
 
Observe the following in Fig. 11: 

• The parallel lines correspond to different values of the 
objective function. 

• The objective function is increasing from bottom to top, as 
indicated by the heavy arrow. The parallel lines are contours of 
constant Z. For example, note there are two dark dotted 
parallel lines. The lower one corresponds to Z=5. The upper 
one corresponds to Z=10.  

• The solid dark parallel line is the highest Z-contour (parallel 
line) which touches one feasible point.  

• Unless the Z-contours are parallel to a binding constraint, the 
highest Z-contour which touches only one feasible point will 
always do so at a corner point. A corner point is a point of 
intersection between two or more constraints.  
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x1 → 
1 2 3 

1 

2 

↑ 
x2  

3 Increasing Z 

Z=10=x1+5x2 

Z=5=x1+5x2 

x1+ 10x2<20 

Solution is where the 
highest Z-contour 

touches a feasible point. 

 
Fig. 11 

 
7.1 Integer programs 
 
In Sections 5 and 6, we observed that our problem is a linear mixed 
integer programming problem. Before we discuss our chosen 
method of solving this problem, it is useful to see where our 
problem lies in the general area of optimization. 
 
Linear mixed integer programs are a particular type of problem that 
falls under the more general heading of integer programs (IPs). IPs 
may be pure, in which case all the decision variables are integer 
(PIP), or they may be mixed, in which case some decision variables 
are integer and some are continuous valued (MIP). 
 
It is also possible to have problems where the integer variables may 
take on one of just two values: 0 and 1. Such problems occur 
frequently when the decisions to be made are of the “yes or no” 
type. When all integer variables are this way, the problem is 
considered to be a binary integer program (BIP).  
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The remaining material in this section is adapted from [11, ch 13.3].  
 
There are two obvious approaches that come to mind for solving 
IPs. One is to check every possible solution. We call this exhaustive 
enumeration.  Another is to solve the problem as a linear program 
without integrality requirements, and then round the values we get 
to the nearest integer. We call this LP-relaxation with rounding. 
Let’s look at these two approaches. 
 
7.1.1 Exhaustive enumeration 
 
Consider a BIP problem with 3 variables: x1, x2, and x3, each of 
which can be 1 or 0. The possible solutions are  

(0,0,0), (0,0,1), (0,1,0), (0,1,1), 
(1,0,0), (1,0,1), (1,1,0), (1,1,1). 

Thus, there are 23=8 solutions. It would not be too hard to check 
them all. But consider more typical problems with 30 variables, or 
even 300. 
230=1.0737×109=1,073,700,000 (over a billion possible solutions) 
2300=2.037×1090 
 
Recall our UC formulation in the previous notes. There were three 
integer variables for every generator: 
• zit is 1 if generator i is dispatched during t, 0 otherwise,  
• yit is 1 if generator i starts at beginning of period t, 0 otherwise, 
• xit is 1 if generator i shuts at beginning of period t, 0 otherwise, 
PJM, for example, has over 1100 generators. For PJM’s unit 
commitment problem, the number of integer decision variables is 
over 3300. We see there are over 23300 possible solutions! It is for 
this reason, as we have seen in Section 3, that the UC problem is 
said to suffer from the “curse of dimensionality.”  
 
The conclusion is that exhaustive enumeration is simply not 
feasible, even for the fastest computers. 
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7.1.2 LP relaxation with rounding 
 
Here, we relax the requirement that the decision variables be 
integers. Then our problem becomes a standard LP, and we can 
solve it efficiently using the simplex method. When we examine the 
resulting solution, some or all of the variables are likely to be non-
integer. These variables are then just rounded to the nearest feasible 
integer, and we call what results our solution.  
 
This approach may in fact work with reasonable accuracy (it may 
get close to the optimum) for some problems, especially if the 
values of the variables are large so that rounding creates relatively 
little error. (This would not be the case, however, for BIPs, as in the 
case of the UC, where integer variables are either 1 or 0.) 
 
But there are two pitfalls in this approach. 
 
Pitfall #1: The solution obtained by rounding the optimal LP 
solution is not necessarily feasible. To illustrate, consider a problem 
having the below two constraints. 
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Assume the LP-relaxation found a solution that has x1=6.5 and 
x2=10, so that  

5.165.16105.6
5.35.3105.6

≤=+
≤=+−

 

If we round x1 to 7, then 

5.16not  17107
5.33107
≤=+

≤=+−
 

If we round x1 to 6, then 

5.1661106
5.3not  4106

≤=+
≤=+−
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Thus, either way we go, rounding up or down, we result in an 
infeasible solution. The only way we can make x1 an integer is if we 
also change x2. This situation is illustrated using Fig. 12 below. 

 
Fig. 12 

In Fig. 12, the feasible region is between the x-axis and the two 
constraint-lines. The “corner point” of (6.5, 10) is the solution to the 
relaxed IP. When x1 is rounded to 7, the solution is X in Fig. 12, 
which is clearly above the feasible region. When x1 is rounded to 6, 
the solution is O in Fig. 12, again, clearly above the feasible region. 
 
Pitfall #2: Even if the rounded solution is feasible, there is no 
guarantee it will be optimal or that it will even be reasonably 
accurate (reasonably close to the optimal). This is illustrated by the 
following problem. 
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This problem is illustrated in Fig. 12. 

x1 → 
1 2 3 

1 

2 

↑ 
x2  
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● ● ● 

● ● ● ● 

● 

● ● ● ● 

● ● ● ● 

Z*=10=x1+5x2 

LP-relaxed 
solution, 
Z*=11 

LP-relaxed, 
rounded solution 

Z*=7 

Actual integer 
solution, 
Z*=10 

 
Fig. 12 

 
In Fig. 12, the dots are the possible integer solutions, and the shaded 
region is the feasible region. The LP-relaxed solution is (2, 9/5) 
where Z*=11. If we rounded, then we would get (2, 1) where Z*=7. 
But it is easy to see that the point (0, 2) is on the Z*=10 line. 
Because (2,0) is integer and feasible, and higher than Z*=7, we see 
that the rounding approach has failed us miserably.  
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7.2 Some other methods 
There are two broad classes of methods to solving IPs: 
• Cutting plane methods 
• Tree-search methods 
 
7.2.1 Cutting plane methods 
Cutting plane methods generate additional constraints. There are 
several kinds of cutting plane methods. One of the simplest to 
understand is the fractional integer programming algorithm [12, ch 
13]. In this method, we shrink the feasible region the minimum 
amount possible so that all corner points are integer. If we are 
successful in doing this, then the solution to the corresponding 
relaxed LP will be integer and thus the solution to the original 
integer program. Figure 13 illustrates. 

x1 → 
1 2 3 

1 

2 

↑ 
x2  

3 

● ● ● 

● ● ● ● 

● 

● ● ● ● 

● ● ● ● 

Original 
constraint 

Shrunk 
feasible 
region 

 
Fig. 13 

Another very popular cutting plane method, particularly for MIP, is 
Benders decomposition [12, Sec 15.2]. To apply this method, the 
variables must be separable. If they are, one can set up a Master 
problem to solve for one set of variables and subproblems to solve 
for the other set. Then the algorithm iterates between Master and 
subproblems. 
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7.2.2 Tree-search methods 
 
The essence of tree-search algorithms are that they conceptualize the 
problem as a huge tree of solutions, and then they try to do some 
smart things to avoid searching the entire tree. Such a tree is shown 
in Fig. 14. 

● 

● ● 

● ● ● ● 

● ● ● ● ● ● ● ● 
 

Fig. 14 
The common features of tree-search algorithms are [12, App C]: 
1. They are easy to understand; 
2. They are easy to program on a computer; 
3. The upper bound on the number of steps the algorithm needs to 

find the solution is O(kn), where n is the number of decision 
variables (this means running time increases exponentially with 
the number of variables); 

4. They lack mathematical structure. 
 
The most popular tree-search method today is called branch and 
bound. We will study this method in the next section. 
 
7.3 Branch and bound (B&B) 
 
Two definitions are necessary. 
• Predecessor: Pj 
• Successor: Pk 
Problem Pj is predecessor to Problem Pk, and Problem Pk is 
successor to Problem Pj, if they are identical with the exception that 
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one continuous-valued variable in Problem Pj is constrained to be 
integer in Problem Pk. 
 
How to constrain a continuous-valued variable to be integer? 
Consider the following problem [13, ch. 23]. We will call it P0. 
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Solution using CPLEX yields 
333.68,333.3,667.1: 210 === ζxxSolutionP  

Observe this solution as the corner point labeled “solution” in Fig. 
15. 

 
Fig. 15 
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What if we now pose a problem P1 to be exactly like P0 except that 
we will constrain x1≤1? Here it is: 
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What do you expect the value of x1 to be in the optimal solution? 
 
Because the solution without the constraint x1≤1 wanted 1.667 of x1, 
we can be sure that the solution with the constraint x1≤1 will want as 
much of x1 as it can get, i.e., it will want x1=1.  
 
But now let’s ask, in terms of constraining a continuous-valued 
variable to be integer: what have we done here?  
1. We solved a predecessor problem as a relaxed LP and obtained 

optimal values (but non-integer) for the variables.  
2. Then we constructed a successor problem by indirectly imposing 

integrality on one variable via constraining it to be less than or 
equal to the integer just less than the value of that variable in the 
optimal solution to the predecessor problem.  

Let’s use CPLEX to solve P1 to see if it works. The CPLEX solution 
is: 

0.65,0.4,0.1: 211 === ζxxSolutionP  
It worked in that x1 did in fact become integer. In fact, x2 became 
integer as well, but this is by coincidence, i.e., in general, the “trick” 
of imposing integrality on a variable, as we have done above, is not 
guaranteed to also impose integrality on the remaining variables.  
 
A related way to think of this is that we just made a new corner 
point, as illustrated in Fig. 16, that had to be the next “best” (largest 
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ζ in this case) corner point to the optimal without the constraint 
x1≤1. 

 
Fig. 16 

So we understand now how to constrain a continuous-valued 
variable to be integer.  
 
But here is another question for you… What if we want to solve the 
following IP: 
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This problem is identical to P0 except we require x1, x2 to be integer. 
The question is: Is the P1 solution we obtained, which by chance is a 
feasible solution to IP1, also the optimal solution to IP1? 
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To answer this question, let’s state a rather obvious criterion.  
IP Optimality Criterion: A solution to an IP is optimal if the 
corresponding objective value is better than the objective value 
corresponding to every other feasible solution to that IP. 

 
So is the P1 solution the optimal solution to IP1?  
 
Answer: We do not know. Why?  
 

 Because we have not yet explored the entire solution space. 
 
What part of the solution space remains?  
 
Answer: The part associated with x1=2. So let’s constrain x1≥2. This 
results in problem P2. 
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Using CPLEX to solve P2 results in: 
8286.68,857.2,0.2: 212 === ζxxSolutionP  

This time, we were not so fortunate to obtain a feasible solution to 
IP1, since x2 is not integer. And so the P2 solution is not feasible to 
IP1, and therefore it is certainly not optimal to IP1. The situation is 
illustrated in Fig. 17. 
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Fig. 17 

But does the P2 solution tell us anything useful?  
YES! Compare the objective function value of P2, which is 68.8286, 
with the objective function value of P1, which is 65. Since we are 
maximizing, the objective function value of P2 is better. But the P2 
solution is not feasible. However, we can constrain x2 appropriately 
so that we get a feasible solution. Whether such a feasible solution 
will have better objective function value we do not know. What we 
do know is, because the objective function value of P2 (68.8286) is 
better than the objective function value of P1 (65), it is worthwhile to 
check it. Although the objective function value of successor 
problems to P2 can only get worse (lower), they might be better than 
P1, and if we can find a successor (or a successor’s successor,…) 
that is feasible, it might be better than our best current feasible 
solution, which is P1. 
 
On the other hand, if P2 had resulted in an objective function lower 
than that of P1, what would we have done? 
 

 We would not have evaluated any more successor problems to 
P2. Why? Because successor nodes add constraints, and it is 
impossible for the objective to get better by adding constraints. 
Either the objective will get worse, or it will stay the same. But it 
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will not get better. Therefore if a predecessor node is already not as 
good as the current best feasible solution, there is no way a 
successor node will be, and we might as well terminate evaluation of 
successors to that predecessor node.  
 
But in this case, the objective function value of P2 is better than that 
of our current best feasible solution, so let’s solve P2 with the 
additional constraint x2≤2. Call this problem P3, given below. 
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 Using CPLEX to solve P3 results in: 
2.68,0.2,6.2: 213 === ζxxSolutionP  

Note that x1 has reverted back to non-integer. We could have 
expected this since we forced x2 to change, requiring a new corner 
point, as shown in Fig. 18. 
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Fig. 18 

 
Now we need to force a feasible solution, and we do so by imposing 
x1≤2, as indicated in problem P4 below. 
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Using CPLEX to solve P4, we obtain: 
0.58,0.2,0.2: 214 === ζxxSolutionP  

This solution is displayed in Fig. 19. 
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Fig. 19 

This solution is feasible! Wonderful. However, comparing the 
objective value function to our “best so-far” value of 65, we see that 
this value, 58, is worse. So the P4 solution is not of interest to us 
since we already have one that is better. 
 
What next? 
Let’s go back to problem P3 where we had this: 

2.68,0.2,6.2: 213 === ζxxSolutionP  
In P4, we pushed x1 to 2. Let’s explore the space associated with 
pushing x1 to 3. So we need a new problem for this, where we 
require x1≥3. Let’s call this P5, given below. 
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Using CPLEX to solve it, we obtain 
1429.68,4286.1,0.3: 215 === ζxxSolutionP  

This solution is not integer, but it has an objective function value 
better than our current best feasible solution (65), and so let’s branch 
again to a successor node with x2≤1. Let’s call this P6, given below. 
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Using CPLEX to solve it, we obtain 
1.68,0.1,3.3: 216 === ζxxSolutionP  

 
Again, the solution is not integer, but it has an objective function 
value better than our current best feasible solution (65), and so let’s 
branch again to a successor node with x1≤3. Let’s call this P7, given 
below: 
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Using CPLEX to solve it, we obtain 
0.63,0.1,0.3: 217 === ζxxSolutionP  

This solution is feasible! However, comparing the objective value 
function to our “best so-far” value of 65, we see that this value, 63, 
is worse. So the P7 solution is not of interest to us since we already 
have one that is better. 
 
So now what? 
 
Let’s go back to problem P6 where we had this: 

1.68,0.1,3.3: 216 === ζxxSolutionP  
In P7, we pushed x1 to 3. Let’s explore the space associated with 
pushing x1 to 4. So we need a new problem for this, where we 
require x1≥4. Let’s call this P8, given below. 
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Using CPLEX to solve it, we obtain 
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0.68,0,0.4: 218 === ζxxSolutionP  
This solution is feasible! Not only that, but when we compare the 
objective value function to our “best so-far” value of 65, we see that 
this value, 68, is better. So the P8 solution becomes our new “best 
solution.” And we will use 68 as our bound against which we will 
test other solutions.  
 
What other solutions do we need to test? 
 
Let’s go back to problem P2 where we had this: 

8286.68,857.2,0.2: 212 === ζxxSolutionP  
In P3, we pushed x2 to 2. Let’s explore the space associated with 
pushing x2 to 3. So we need a new problem for this, where we 
require x2≥3. Let’s call this P9, given below. 
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Using CPLEX to solve, we learn that Problem P9 is infeasible. 
 
We have one more branch to check…  
Let’s go back to problem P5 where we had this: 

1429.68,4286.1,0.3: 215 === ζxxSolutionP  
In P6, we pushed x2 to 1. Let’s explore the space associated with 
pushing x2 to 2. So we need a new problem for this, where we 
require x2≥2. Let’s call this P10, given below. 
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Using CPLEX to solve, we learn that Problem P10 is infeasible. 
 
The tree-search is illustrated in Fig. 20 below. 
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Fig. 20 [13] 
 
There are two central ideas in the B&B method.  
1. Branch: It uses LP-relaxation to decide how to branch. Each 

branch will add a constraint to the previous LP-relaxation to 
enforce integrality on one variable that was not integer in the 
predecessor solution. 

2. Bound: It maintains the best integer feasible solution obtained so 
far as a bound on tree-paths that should still be searched.  

a. If any tree node has an objective value less optimal than the 
identified bound, no further searching from that node is 
necessary, since adding constraints can never improve an 
objective. 

b. If any tree node has an objective value more optimal than 
the identified bound, then additional searching from that 
node is necessary. 

 
In the B&B method, the first thing to do is to solve the problem as 
an LP-relaxation. If the solution results so that all integer variables 
are indeed integer, the problem is solved. 
 
On the other hand, if the LP-relaxation results in a solution that 
contains a particular variable xk=[xk]+sk, where 0<sk<1, and [xk] is 
an integer, then we branch to two more linear programs 
• The predecessor problem except with the additional constraint: 
xk=[xk] 
• The predecessor problem except with the additional constraint 
xk=[xk]+1 
 
7.4 Other algorithmic issues on B&B 
 
In section 7.3, we identified the essence of the B&B algorithm:  
 
Branch: force integrality on one variable by adding a constraint to 
an LP-relaxation. 
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Bound:  Continue branching only if the objective function value of 
the current solution is better than the objective function value of the 
best feasible solution obtained so far.  
 
It is our primary goal to have understood this. 
 
However, you should be aware that there are several other issues 
related to B&B that need to be considered before implementation. 
Below is a brief summary of two of these issues [14, ch. 6]. 
 
7.4.1 Node selection 
 
The issue here is this: 

 Following examination of a node in which we conclude we need 
to branch, should we go deeper, or should we go broader? 
 
Consider, in the example of Section 4.0, the situation we were in at 
the node corresponding to Problem P3. Reference to Fig. 9 above 
will be useful at this point. The solution we obtained was 

2.68,0.2,6.2: 213 === ζxxSolutionP  
And so it was clear to us, because our current best feasible solution 
had an objective function value of 65, and 68.2>65, we needed to 
branch further on this node.  
 
However, consider P3’s predecessor node, P2. Its solution was 

8286.68,857.2,0.2: 212 === ζxxSolutionP  
To get to P3, we had added the constraint x2≤2. But there was 
something else we could have done, and that was added the 
constraint x2≥3. This was the other branch. We had to pick one or 
the other, and we decided on x2≤2. 
 
But once at P3, after evaluating it, we had a tough decision to make.  
• Depth: Do we continue from P3, requiring x1≤2, for example? or  
• Breadth: Do we go back to P2 to examine its other branch, x2≥3? 
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For high-dimensional IPs, it is usually the case that feasible 
solutions (meaning that all integer variables are integer) are more 
likely to occur deep in a tree than at nodes near the root. Finding 
multiple feasible solutions early in B&B is important because it 
tightens the bound (in the above example, it increases the bound), 
and therefore enables termination of branching at more nodes (and 
therefore decreases computation). One can see this by considering 
the bound before we find a feasible solution: the bound is infinite! 
(+∞ for maximization problems and -∞ for minimization problems). 
Therefore the best strategy is to go deep first; then after finding 
several feasible solutions, explore breadth. 
 
7.4.2 Branching variable selection 
 
In the example of Section 4.0, branching variable selection was not 
an issue. At every node, there was only, at most, one non-integer 
variable, and so there was no decision to be made. This was because 
our example problem had only two variables, x1 and x2.  
 
However, if we consider having any more than 2 decision variables, 
even 3, we run into this issue, and that is:  

 Given we are at a node that needs to branch, and there are 2 or 
more non-integer variables, which one do we branch on? 
 
This is actually a rich research question that, so far, has not been 
solved generically but rather, is addressed for individual problem 
types by pre-specifying an ordering of the variables that are required 
to be integer. Good orderings become apparent after running the 
algorithm many times for many different conditions. Sometimes, 
good orderings are apparent based on some physical understanding 
of the problem, e.g., perhaps the largest unit should be chosen first. 
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7.4.3 Mixed integer problems 
 
Our example focused on a pure-integer program (PIP). However, the 
UC is a mixed integer problem (MIP). Do we need to consider this 
more deeply? 
 
Reconsider our example problem, except now consider it as a mixed 
integer problem as follows: 
 

integer.          
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40710        

s.t.
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Recall our tree-search diagram, repeated here for convenience. You 
should be able to see that the solution is obtained as soon as we 
solved P1 and P2.  
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Fig. 21 [13] 

The other possible MIP would be to require x2 integer only, as 
follows: 
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Recalling the solution to P0,  
333.68,333.3,667.1: 210 === ζxxSolutionP  
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we see that we can branch by setting either x2≤3 or x2≥4, resulting in 
 
x2≤3: 

3.68,0.3,9.1: 21 === ζxxSolution  
 
x2≥4: 

65,0.4,0.1: 21 === ζxxSolution  
 
And so we know the solution is the one for x2≤3. 
 
The conclusion here is that we can very easily solve MIP within our 
LP-relaxation branch and bound scheme by simply allowing the 
non-integer variables to remain relaxed. 
 
7.5 Using CPLEX to solve MIPs directly 
 
Here is the sequence I used to call CPLEX’s MIP-solver to solve our 
example problem above. 
 
1. Created the problem statement within a text file called mip.lp as 
follows: 

maximize  
 17 x1 + 12 x2 
subject to 
 10 x1 + 7 x2 <= 40 
    x1 +   x2 <= 5  
Bounds 
 0<= x1 <= 1000 
 0<= x2 <= 1000 
Integer 
 x1 x2 
end 

 
3. Used WinSCP to port the file to pluto. 
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4. Used Putty to log on to pluto. 
5. Typed cplex101 to call cplex. 
6. Typed read mip.lp to read in problem statement. 
7. Typed mipopt to call the MIP-solver. The result was as follows: 
 
Tried aggregator 1 time. 
MIP Presolve modified 3 coefficients. 
Reduced MIP has 2 rows, 2 columns, and 4 nonzeros. 
Presolve time =    0.00 sec. 
MIP emphasis: balance optimality and feasibility. 
Root relaxation solution time =    0.00 sec. 
 
        Nodes                                         Cuts/ 
   Node  Left     Objective  IInf  Best Integer     Best Node    ItCnt     Gap 
 
      0     0       68.3333     2                     68.3333        2 
*     0+    0                   0       65.0000       68.3333        2    5.13% 
*                   68.0000     0       68.0000      Cuts:  3        4    0.00% 
 
Mixed integer rounding cuts applied:  1 
 
MIP - Integer optimal solution:  Objective =  6.8000000000e+01 
Solution time =    0.00 sec.  Iterations = 4  Nodes = 0 
 
8. Typed display solution variables - to display solution variables. 

The result was: 
 
Variable Name           Solution Value 
x1                            4.000000 
All other variables in the range 1-2 are 0. 
 
 
8.0 UC Solution by mixed-integer programming 
 
Here, we provide some data to use in solving our problem.  
We illustrate using an example that utilizes the same system we 
have been using in our previous notes, where we had 3 generator 
buses in a 4 bus network supplying load at 2 different buses, but this 
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time we will model each generator with the ability to submit 3 
offers. 

y13 =-j10 
y14 =-j10 

y34 =-j10 

y23 =-j10 

y12 =-j10 

g1 

Pd3 

Pd2 

1 2 

3 4 

g2 

g4 

 
Fig. 22: One line diagram for example system 

 
The offers, in terms of fixed costs, production costs, and 
corresponding min and max generation limits are as follows  
 
Production costs (in $/pu-hr): 
Unit, 

k 
Fixed 
costs 
($/hr) 

Startup 
Costs 

($) 

Shutdown 
Costs ($) 

Production Costs ($/pu-hr) 
gk1t gk2t gk4t 

1 50 100 20 1246 1307 1358 
2 50 100 20 1129 1211 1282 
4 50 100 20 1183 1254 1320 
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The UC problem is for a 24 hour period, with loading data given as 
below. Figure 2, the load curve, illustrates variation of load with 
time over the 24 hour period. 
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Hour, t Load, Dt (pu) 
1 1.50 
2 1.40 
3 1.30 
4 1.40 
5 1.70 
6 2.00 
7 2.40 
8 2.80 
9 3.20 
10 3.30 
11 3.30 
12 3.20 
13 3.20 
14 3.30 
15 3.35 
16 3.40 
17 3.30 
18 3.30 
19 3.20 
20 2.80 
21 2.30 
22 2.00 
23 1.70 
24 1.60 

One Day Load variation
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Fig. 23: Load curve 
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8.1 Example – 4 hours 
For this solution, we will only include startup and shutdown 
constraints. In order to illustrate all data entered, we will analyze 
only the first four hours. The CPLEX code to do this is given below. 
 
 
 

minimize  
  50 z11 +50 z12 + 50 z13 + 50 z14 
 +50 z21 +50 z22 + 50 z23 +50 z24 
 +50 z41 +50 z42 + 50 z43 +50 z44 
 +1246 g111 + 1307 g121 + 1358 g131 
  +1129 g211 + 1211 g221 + 1282 g231 
  +1183 g411 + 1254 g421 + 1320 g431 
 +1246 g112 + 1307 g122 + 1358 g132 
  +1129 g212 + 1211 g222 + 1282 g232 
  +1183 g412 + 1254 g422 + 1320 g432 
 +1246 g113 + 1307 g123 + 1358 g133 
  +1129 g213 + 1211 g223 + 1282 g233 
  +1183 g413 + 1254 g423 + 1320 g433 
 +1246 g114 + 1307 g124 + 1358 g134 
  +1129 g214 + 1211 g224 + 1282 g234 
  +1183 g414 + 1254 g424 + 1320 g434 
 +100 y12 + 100 y13 +100 y14 
 +100 y22 + 100 y23 +100 y24 
 +100 y42 + 100 y43 +100 y44 
 +20 x12 + 20 x13 +20 x14 
 +20 x22 + 20 x23 + 20 x24 
 +20 x42 + 20 x43 +20 x44 
subject to 
 loadhr1: g111+g121+g131+g211+g221+g231+g411+g421+g431=1.5 
 loadhr2: g112+g122+g132+g212+g222+g232+g412+g422+g432=1.4 
 loadhr3: g113+g123+g133+g213+g223+g233+g413+g423+g433=1.3 
 loadhr4: g114+g124+g134+g214+g224+g234+g414+g424+g434=1.4 
 initialu1: z11=0 
 initialu2: z21=1 
 initialu4: z41=1 
 starthr21u1: z12-z11-y12<=0 
 starthr32u1: z13-z12-y13<=0 
 starthr43u1: z14-z13-y14<=0 
 starthr21u2: z22-z21-y22<=0 
 starthr32u2: z23-z22-y23<=0 
 starthr43u2: z24-z23-y24<=0 
 starthr21u4: z42-z41-y42<=0 
 starthr32u4: z43-z42-y43<=0 
 starthr43u4: z44-z43-y44<=0 
 shuthr21u1: z12-z11+x12>=0 
 shuthr32u1: z13-z12+x13>=0 
 shuthr43u1: z14-z13+x14>=0 
 shuthr21u2: z22-z21+x22>=0 
 shuthr32u2: z23-z22+x23>=0 
 shuthr43u2: z24-z23+x24>=0 
 shuthr21u4: z42-z41+x42>=0 
 shuthr32u4: z43-z42+x43>=0 
 shuthr43u4: z44-z43+x44>=0 
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g111 - 0.5 z11<= 0 
 g112 - 0.5 z12<= 0 
 g113 - 0.5 z13<= 0 
 g114 - 0.5 z14<= 0 
 g121 - 0.6 z11<= 0 
 g122 - 0.6 z12<= 0 
 g123 - 0.6 z13<= 0 
 g124 - 0.6 z14<= 0 
 g131 - 0.4 z11<= 0 
 g132 - 0.4 z12<= 0 
 g133 - 0.4 z13<= 0 
 g134 - 0.4 z14<= 0 
 
 g211 - 0.35 z21<= 0 
 g212 - 0.35 z22<= 0 
 g213 - 0.35 z23<= 0 
 g214 - 0.35 z24<= 0 
 g221 - 0.6 z21<= 0 
 g222 - 0.6 z22<= 0 
 g223 - 0.6 z23<= 0 
 g224 - 0.6 z24<= 0 
 g231 - 0.2 z21<= 0 
 g232 - 0.2 z22<= 0 
 g233 - 0.2 z23<= 0 
 g234 - 0.2 z24<= 0 
 
 g411 - 0.45 z41<= 0 
 g412 - 0.45 z42<= 0 
 g413 - 0.45 z43<= 0 
 g414 - 0.45 z44<= 0 
 g421 - 0.5 z41<= 0 
 g422 - 0.5 z42<= 0 
 g423 - 0.5 z43<= 0 
 g424 - 0.5 z44<= 0 
 g431 - 0.4 z41<= 0 
 g432 - 0.4 z42<= 0 
 g433 - 0.4 z43<= 0 
 g434 - 0.4 z44<= 0 
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Bounds 
 0<= g111 
 0<= g112 
 0<= g113 
 0<= g114 
 0<= g121 
 0<= g122 
 0<= g123 
 0<= g124 
 0<= g131 
 0<= g132 
 0<= g133 
 0<= g134 
 
 0<= g211  
 0<= g212 
 0<= g213 
 0<= g214 
 0<= g221 
 0<= g222 
 0<= g223 
 0<= g224 
 0<= g231 
 0<= g232 
 0<= g233 
 0<= g234 
 
 0<= g411 
 0<= g412 
 0<= g413 
 0<= g414 
 0<= g421 
 0<= g422 
 0<= g423 
 0<= g424 
 0<= g431 
 0<= g432 
 0<= g433 
 0<= g434 
Integer 
 z11 z12 z13 z14 
 z21 z22 z23 z24 
 z41 z42 z43 z44 
 y12 y13 y14 
 y22 y23 y24 
 y42 y43 y44 
 x12 x13 x14 
 x22 x23 x24  
 x42 x43 x44 
end 
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Result: CPLEX gives an objective function value of 7020.7 $. 
 
CPLEX> display solution variables - 
Variable Name           Solution Value 
z21                           1.000000 
z22                           1.000000 
z23                           1.000000 
z24                           1.000000 
z41                           1.000000 
z42                           1.000000 
z43                           1.000000 
z44                           1.000000 
g211                          0.350000 
g221                          0.600000 
g411                          0.450000 
g421                          0.100000 
g212                          0.350000 
g222                          0.600000 
g412                          0.450000 
g213                          0.350000 
g223                          0.500000 
g413                          0.450000 
g214                          0.350000 
g224                          0.600000 
g414                          0.450000 
All other variables in the range 1-66 are 0. 
 
Note that all y- and x-variables are zero, therefore there is no 
starting up or shutting down. 
One should check that the generation in each hour equals the 
demand in that hour: 
g211+g221+g411+g421=0.35+0.6+0.45+0.1=1.5 
g212+g222+g412=0.35+0.6+0.45=1.4 
g213+g223+g413=0.35+0.5+0.45=1.3 
g214+g224+g414=0.35+0.6+0.45=1.4 
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This very simple solution was obtained as a result of the fact that the 
initial solution of  
 initialu1: z11=0 
 initialu2: z21=1 
 initialu4: z41=1 

was in fact the best one for the initial loading condition, and since 
the loading condition hardly changed during the first four hours, 
there was no reason to change any of the units. 
 
Let’s try a different initial condition: 
 initialu1: z11=1 
 initialu2: z21=0 
 initialu4: z41=1 

 
Result: CPLEX gives an objective function value of 7208.9 $. 
 
CPLEX> display solution variables - 
Variable Name           Solution Value 
z11                           1.000000 
z22                           1.000000 
z23                           1.000000 
z24                           1.000000 
z41                           1.000000 
z42                           1.000000 
z43                           1.000000 
z44                           1.000000 
g111                          0.500000 
g121                          0.050000 
g411                          0.450000 
g421                          0.500000 
g212                          0.350000 
g222                          0.600000 
g412                          0.450000 
g213                          0.350000 
g223                          0.500000 
g413                          0.450000 
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g214                          0.350000 
g224                          0.600000 
g414                          0.450000 
y22                           1.000000 
x12                           1.000000 
All other variables in the range 1-66 are 0. 
Why was this solution more expensive?  
 

 Because we initialized the solution with more expensive units, to 
get back to the less expensive solution, notice that the program 
forces unit 2 to start up (y22=1) and unit 1 to shut down (x12=1) at 
the beginning of period 2.  Apparently, the additional cost of starting 
unit 2 ($100) and shutting down unit 1 ($20) was not enough to 
offset the savings associated with running the more efficient unit 
over the remaining three hours of the simulation. 
 
Let’s test our theory by increasing the startup costs of unit 2 from 
$100 to $10,000. The objective function value in this case is 
$7281.25 (higher than the last solution). The decision variables are: 
Variable Name           Solution Value 
z11                           1.000000 
z12                           1.000000 
z13                           1.000000 
z14                           1.000000 
z41                           1.000000 
z42                           1.000000 
z43                           1.000000 
z44                           1.000000 
g111                          0.500000 
g121                          0.050000 
g411                          0.450000 
g421                          0.500000 
g112                          0.500000 
g412                          0.450000 
g422                          0.450000 
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g113                          0.500000 
g413                          0.450000 
g423                          0.350000 
g114                          0.500000 
g414                          0.450000 
g424                          0.450000 
All other variables in the range 1-66 are 0. 
 
We observe that unit 1 was on-line the entire four hours, i.e, there 
was no switching, something we expected since the start-up cost of 
unit 2 was so very high. 
 
8.2 Example – 24 hours 
 
We refrain from providing the data in this case because it is 
extensive, having 426 variables: 

72 z-variables 
69 y-variables 
69 x-variables 
216 g-variables 

 
Rather, we have posted the dataset on the web page under “UC24 
Data” for the 04/16/08 date. 
 
The solution was initialized at 
 initialu1: z11=0 
 initialu2: z21=1 
 initialu4: z41=1 

which is the most economic solution for this loading level. 
 
The output is most easily analyzed by using  
“display solution variables -” 
and then searching the output variables for y-variables and/or x-
variables that are listed (and therefore 1). These variables indicate 
changes in the unit commitment. In studying the load curve, what 
kind of changes do you expect? 
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The result, objective value=$77667.3, shows that the only x and y 
variables that are non-zero are y18 and x121. This means that the 
changes in the unit commitment occur only for unit 1 and only at 
hours 18 and 21. A pictorial representation of the unit commitment 
through the 24 hour period is shown below. 
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To perform additional investigation, the load curve was modified as 
shown below (UC24a.lp). All other data remained as before. The 
result, with objective function value of $, shows that the only x and 
y variables that are non-zero are y18, x120, and x424. A pictorial 
representation of the UC through the 24 hour period is shown below. 
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In a last investigation, the load curve remained modified, and startup 
costs were reduced to $10, shutdown costs reduced to $2. All other data 
remained as before (UC24b.lp). The result, with objective function value 
of $66,867.95, shows that the only x and y variables that are non-0 are 
y18, x112, y45, x111, x120, x42, x424. A pictorial representation of the 
UC through the 24 hour period is shown below. 
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