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ABSTRACT
Even well administered networks are vulnerable to attack.
Recent work in network security has focused on the fact that
combinations of exploits are the typical means by which
an attacker breaks into a network. Researchers have pro-
posed a variety of graph-based algorithms to generate at-
tack trees (or graphs). Either structure represents all possi-
ble sequences of exploits, where any given exploit can take
advantage of the penetration achieved by prior exploits in
its chain, and the final exploit in the chain achieves the at-
tacker’s goal. The most recent approach in this line of work
uses a modified version of the model checker NuSMV as a
powerful inference engine for chaining together network ex-
ploits, compactly representing attack graphs, and identify-
ing minimal sets of exploits. However, it is also well known
that model checkers suffer from scalability problems, and
there is good reason to doubt whether a model checker can
handle directly a realistic set of exploits for even a modest-
sized network. In this paper, we revisit the idea of attack
graphs themselves, and argue that they represent more infor-
mation explicitly than is necessary for the analyst. Instead,
we propose a more compact and scalable representation. Al-
though we show that it is possible to produce attack trees
from our representation, we argue that more useful informa-
tion can be produced, for larger networks, while bypassing
the attack tree step. Our approach relies on an explicit as-
sumption of monotonicity, which, in essence, states that the
precondition of a given exploit is never invalidated by the
successful application of another exploit. In other words,
the attacker never needs to backtrack. The assumption re-
duces the complexity of the analysis problem from exponen-
tial to polynomial, thereby bringing even very large networks
within reach of analysis.
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1. INTRODUCTION
Commercial vulnerability scanners are quite effective at

what they do - namely identifying vulnerabilities in a spe-
cific host. However, a variety of authors have noted that
identifying vulnerabilities in isolation is only a small part of
securing a network, and that a significant issue is identify-
ing which vulnerabilities an attacker can take advantage of
through a chain of exploits. For example, an attacker might
exploit a defect in a particular version of ftp to overwrite
the .rhosts file on a victim machine. In the next step, the
attacker could remotely log in to the victim. In a subsequent
step, the attacker could use the victim machine as a base to
launch another exploit on a new victim, and so on. There
are numerous examples of such chains in the literature, and
extensive databases of exploits tailored to specific software
and services are available on the web.
Researchers and penetration testers often organize these

chains of exploits into graphs or trees. In either case, a des-
ignated node (or set of nodes) represents the initial state(s),
where a state is defined by assigning a set of values to rele-
vant system attributes, including specific vulnerabilities on
various hosts in the network, connectivity between hosts,
and attacker access privileges on various hosts. Each transi-
tion in the tree (or graph) represents a specific exploit that
an attacker can carry out. For example, the ‘sshd buffer
overflow’ exploit, carried out from a specific host controlled
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by the attacker towards a victim host, lets the attacker ob-
tain root access privileges on the victim, thereby changing
the state of the system. Although the precise definitions of
attack graph and attack tree vary by author, it is useful to
think of an attack tree as a structure in which each possible
exploit chain ends in a leaf state that satisfies the attacker’s
goal, and an attack graph as a consolidation of the attack
tree in which some or all common states are merged.
The basic observation behind this paper is that attack

graphs can easily be far too large to be practical. Paper
[13] provides some support for our position on this: in a
scaling exercise with 5 hosts, 8 exploits, and the vulnera-
bilities associated with those exploits, NuSMV reportedly
took 2 hours to execute, with most of that time spent on
graph manipulation. The resulting attack graph had 5948
nodes and 68364 edges. The state space in that example
was represented with 229 bits.
By contrast, to encode such a problem with the meth-

ods presented in this paper, we need, at most, 229 nodes,
one for each bit in the state representation. Each of these
nodes must be able to store a constant amount of informa-
tion about however many exploits can change the value of
that particular node from ‘false’ to ‘true’. It is clear that
our structure is dramatically smaller, even for this relatively
limited, from a real world perspective, example. However,
we don’t lose any of the information in our encoding. That
is, we present an algorithm that explodes our structure into
an attack tree. At the same time, we aren’t required to gen-
erate an attack tree (or graph) to carry out our subsequent
analysis. We give worst case bounds on our algorithms as
we give our presentation.
The cost we pay in this paper for our dramatically smaller

data structure is monotonicity. Simply stated, monotonic-
ity means that no action an attacker takes interferes with
the attacker’s ability to take any other action. We return
to the issue of monotonicity throughout the paper. Our ba-
sic position is that monotonicity is a reasonable modeling
assumption in many network analysis situations.

2. AN SCALABLE, GRAPH-BASED ALGO-
RITHM FOR NETWORK ANALYSIS

We treat vulnerabilities, attacker access privileges, and
network connectivity in a way similar to other authors [13,
12], but with some simplification. A vulnerability is a fact
about the system that, on the one hand, potentially enables
some exploit to be carried out, and on the other, is the
result of some exploit. A vulnerability might be running
a particular version of some operating system on a given
host. Attacker privileges and network connectivity are both
straightforward to model; the fact that an attacker has a
certain privilege level on a given host is an atomic fact, as
is whether two hosts have a type of connectivity required
for a given exploit. The simplification is that we group to-
gether attacker access privileges, network connectivity, and
vulnerabilities into generic attributes in our model. Thus, if
an attacker has ftp access to a given host, we model this as
an atomic attribute. Similarly, if a ‘.rhosts’ file includes a
given host, we record that as an atomic attribute as well.
We model an exploit as an atomic transformation that,

given a set of preconditions, estabilishes a set of postcondi-
tions. Both preconditions and postconditions in our model
are simply attributes. An ‘rcp’ exploit is illustrated in figure

1. In this exploit, the malicious party needs four attributes
on the ‘attacker’ machine:

1. rcp needs to be available on the attacker,

2. the victim needs to have a trust relationship (via a
.rhosts file) with the attacker,

3. the malicious party has a shell on the attacker, and

4. the attacker and the victim need to be connected by
the network.

The postcondition, shown on the top, is that the mali-
cious party can move arbitrary files, including programs with
which to carry out further exploits, from the attacker to the
victim. This exploit model is closely related to the template
model of Phillips and Swiler [10].

rcp exploit

attacker = host 1

victim = host 2

on victim
available
attacker files

on attacker
rcp available

Precondition Attributes

Postcondition Attributes

victim trusts
attacker

shell access

on attacker

to victim
connectivity

Figure 1: Example Exploit

Our explicit assumption of monotonicity has the follow-
ing implications. First, the precondition of an exploit, once
satisfied, never becomes unsatisfied. Said another way, at-
tributes may start in the ‘not satisfied’ state and become
transformed, via some exploit, to the ‘satisfied’ state, but
never the reverse. Second, the monotonicity assumption re-
quires that the negation operator is not used to express the
precondition of any exploit. We assume that the precondi-
tions of an exploit are conjoined; this assumption entails no
loss of generality, since disjunctions could easily be handled
by splitting the exploit into multiple exploits. We also as-
sume that postconditions are conjoined, since it simplifies
the algorithms.
One way of thinking about monotonicity is that it means

the attacker never has to backtrack. Although there are
certainly attacks where monotonicity does not strictly hold,
for the most part, these can be modeled, with reasonable fi-
delity, as monotonic. An example may help here. Consider
the ‘port forward’ exploit, in which an unwitting middleman
host is used to forward communication from a compromised
host to some host that trusts the middleman. To carry out
a ‘port forward’ exploit, it is clearly necessary to have a free
port on the middleman, and carrying out the exploit uses up
that port. Hence that port is unavailable for a port forward-
ing attack on a different host; technically the ‘port forward’
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attack is nonmonotonic. However, a clever attacker can of-
ten get by with a single port by merely switching back and
forth between the two exploits, thereby justifying modeling
the ‘port forward’ exploit monotonically.
Attacks which patch the vulnerability that enables the

exploit, such as the ’code green’ exploit, may be modeled
as monotonic, even though they are clearly not. The rogue
machine which initiates the exploit in ’code green’ exploit
uploads a patch that prevents other attackers from hacking
into the host using ’code green’. As in ’port forward’, a
clever attacker is not impeded in any further attack by using
’code green’. Use of an exploit may lead to the attacker
being caught and in such a scenario, the attacker can be
prevented from compromising the system. We don’t model
such scenarios. As a final justification for monotonicity, the
Center for Secure Information Systems (CSIS) laboratory
has been encoding exploits for the model checker SMV as
part of a project that has been ongoing for over a year. The
encoded exploits come from training sessions for penetration
testers. CSIS has yet to encounter an exploit where the
monotonicity assumption wasn’t at least as plausible as in
the ‘port forward’ or ’code green’ examples described above.
While this experience is hardly a guarantee, it does seem to
indicate that the assumption of monotonicity is plausible.

2.1 Model
We now turn to our formal model to describe exploits and

vulnerabilities. Let A = {a0, a1, ..., aN} be the set of at-
tributes. A forms the set of nodes in the graph that is the
focus of our manipulations. Let E = {e0, e1, ..., eM} be
the set of exploits of interest for that network. We consider
exploits in a very concrete way, namely an exploit ej is as-
sociated with typically 2 (sometimes 3) specific hosts in the
network, where each of these hosts fulfills a particular role.
For example, if

port-forward(attacker, middleman, victim)

is a generic exploit; in our model, concrete exploits would
look like:

port-forward(Host 1, Maude, Ned)

port-forward(Host 1, Ned, Maude)

port-forward(Maude, Host 2, Ned)...
where each of the three formal parameters binds with all

possible hosts, as allowed by connectivity. Note that the
‘attacker’ may take the role of the ‘middleman’, or even the
‘victim’, if this proves useful in compromising the network.
From a complexity perspective, the number of concrete ex-
ploits derived from a single generic exploit is quadratic in the
number of hosts in the network for exploits with two hosts
as parameters – a typical case, and cubic in the number of
hosts in the network for exploits with three hosts as parame-
ters – a minority case. We are not aware of any exploits that
require more than three hosts simultaneously. Some exploits
apply to a single host; for example, cracking passwords with
a dictionary attack in the case where a shadow password file
is not used on that host. In this paper, we count exploits in
their instantiated versions, not their generic versions.
The set E forms the edges in our graph, but in a slightly

complex way. The reason is that a given exploit can have
both multiple preconditions and multiple postconditions.

The number of edges labeled ei is the product of the number
of preconditions of ei and the number of postconditions of
ei. That is, each attribute that is a precondition of ei has an
edge labeled ei to each postcondition of ei. The assignment
of edges can be done statically, regardless of the initial state
of the system. However, for a given initial state, only some
of the exploits are feasible, and hence only some of the edges
actually materialize.
To encode these edges in a compact way, for each exploit

ei, where ei has attribute aj as a postcondition, we label the
node description of aj with ei. This records the fact that
it is possible, under certain circumstances for exploit ei to
establish aj .
For a given network configuration, we partition the set

of attributes into two sets: those that are satisfied in the
initial state, and those that require some successful exploit
to enable them. The structure described so far appears in
figure 2.

Layer ?

nsatified 
nitially

Layer 1

Layer 2

Layer 3

...
Goal 
Node

ttributes

Initially Satisfied Attributes

Figure 2: Arrangement of Attributes

The unsatisfied attributes are further structured into lay-
ers. Those that can be satisfied by applying a single ex-
ploit to the initial state are in layer 1. Those that require
at least two exploits, chained together, are in layer 2, and
so on. Computing the layer numbers is straightforward: it
amounts to a breadth first search of the attributes, starting
in the initial state, and adding a layer by considering just the
exploits that are satisfied in the prior state. It is possible
that some attributes cannot be satisfied by any combina-
tion of exploits; we ignore these in subsequent analysis. The
layers are also shown in Figure 2.
We model the goal of the attacker as a single attribute,

such as ‘root access on host J’. Note that this attribute shows
up at some layer in the graph, assuming the attacker can
reach his or her goal, although not necessarily at the top
layer. A generic goal attribute is identified in Figure 2. This
is weaker than [13] with the temporal formula specification.
Our graph G is now almost complete; all that remains is

to mark attributes with the step in the analysis with which
a given exploit first satisfies that attribute. The algorithm is
given below. The idea is to revisit the layering description
from above. At each layer, the exploits that are ‘active’
at that layer are applied. If a postcondition attribute is not
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true, it is set to be true. If it is already true, it is left as true.
In either case, the exploit label in that attribute is marked
with the layer number. That is, if exploit e7 establishes
postcondition a3 on the 4th layer, then the e7 label in a3 is
marked 4, and a3 is set to true, whether or not a3 has already
been set to true by some other exploit in some layer before
or equal to 4. (Note that this fact will also be recorded in
the label for the appropriate exploit in a3.) We do not use
the goal attribute as a precondition for any exploit. That is,
we do not use the fact that the system is compromised by
some sequence of exploits to search for further compromise.
This restriction removes spurious exploits from subsequent
analysis. The layer numbers themselves prove convenient in
some of our later analysis algorithms.

markAttributes(S, att):
Input: A set of attributes A, a set of exploits E
Input: A set of initially satisfied attributes U ⊆ A
Ouput: A graph with forward markings
Let Un be the set of attributes marked at layer n
1.Layer 1:
If U1 = U �= ∅, proceed.

else halt.
2.Layer n:
Repeat
3. { for each attribute ai and attack ej

If preConds(ej) ⊆ Un−1 then
If ak ∈ postConds(ej) and ak has not been
marked with ej at a level ≤ n.
mark ak with attack ej at level n.

Let all attributes marked at level n be Vn.
Un = Un−1 ∪ Vn.
}

until (Vn = ∅)
Comment: preConds(ej), postConds(ej) are respectively
the set of preconditions and postconditions of exploit ej .

The runtime of markAttributes is O(| A |2. | E |). This
is due to the following reasons.

1. Un is monotonic and Un ⊆ A. Hence the algorithm
converges in at most | A | steps.

2. Attack ej is monotonic and preconditions exclude all
postconditions. preConds(ej) ∩ postConds(ej) = ∅.
Also preConds(ej) ∪ postConds(ej ) ⊆ A.
Thus for each layer of the algorithm, step 3 takes at
most | A | . | E | computations.

2.2 Analysis
We are now ready to analyze our model. First, we present

an algorithm to generate a single, minimal, attack from our
structure. An attack is a sequence of exploits, such that the
first exploit is enabled in the initial state, each subsequent
exploit is enabled in it’s prior state, and the postcondition
of the last exploit achieves the attacker’s goal. An attack is
minimal if there is no exploit that can be deleted from the
attack without causing some other exploit’s preconditions to
become false. Consequently, an attack is minimum if it has
the minimum cardinality over all attacks. [13] showed that
finding minimum attacks is NP complete in the number of
exploits. Finding a minimal attack is, however, straightfor-
ward. Algorithm findMinimal finds a minimal attack with
the call findMinimal({goal},∅)

findMinimal(S, att):
Global: Attribute/exploit graph with forward markings
Input: A set of attributes to be satisfied S
Input: A partial attack att
Ouput: A minimal attack satisfying S

If (S �= ∅) then
If there is a set of exploits Em = {e1, e2, ...} where
each si ∈ S is a postcondition of some ej ∈ Em.

1. Choose a minimal set E′
m ⊆ Em.

2. Prepend each e ∈ E′
m to att to obtain att′.

3. Select a minimal set E′′
m ⊆ E′

m.
4. S′ is the set of unsatisfied preconditions in E′′

m

return findMinimal(S′ , att′);
Else,

break out of all recursions and report failure.
else return att

Algorithm findMinimal deserves a few comments. First,
the notion of choosing a minimal set of exploits for a given
set of attributes is straight forward, if messy to implement.
Each attribute is marked (from the Forward Marking phase),
with exactly those exploits that can make it true. So, it is
a simple matter to choose one exploit for each attribute. In
some cases, an exploit might satisfy multiple attributes, in
which case additional choices do not have to be made for
those attributes. The partial attack encodes the exploits
chosen so far, which in turn identifies attributes that are
known to be true, namely the postconditions of the chosen
exploits, along with any attributes that are true in the ini-
tial state. Note that the running time of findMinimal is
quadratic in the cardinality of E, the number of exploits.1

The reason for the quadratic time complexity is that com-
puting a minimal set of exploits in steps 1 and 3 of findMini-
mal may take E2 many steps in the worst case. In other
words, finding a minimal attack is relatively cheap. The
following result follows directly.
Result 1: The attack returned by findMinimal is a minimal
attack.
The next item of interest is to determine all of the exploits

that might participate in any attack. The result is algo-
rithm findAll, a simple modification of algorithm findMin:
Algorithm findAll finds all exploits that can lead to the
attacker’s goal with the call findAll({goal},∅)
The findAll algorithm doesn’t miss any exploits because

the forward marking phase guarantees the application of ev-
ery feasible exploits. findAll also doesn’t include any ex-
tra exploits, because it searches backwards from the goal
state, thereby including only exploits whose postconditions
advance the state of the attacker. Correspondingly, we have
the following results:

Result 2: For any given exploit in an arbitrarily chosen
minimal attack, algorithm findAll includes that exploit in
its result.
Result 3: Every exploit identified by algorithm findAll does
appear in some minimal attack.

1This assumes a constant bound on the number of precon-
ditions or postconditions for a given exploit.
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findAll(S,Eall):
Global: Attribute/exploit graph with forward markings
Input: A set of attributes to be satisfied S
Input: A partial result Eall

Ouput: All exploits that might satisfy S
If (S �= ∅) then

Choose all exploits Em not already in Eall

that have any s in S as a postcondition.
Add Em to Eall

Let S′ be the set of unsatisfied
preconditions for exploits in Eall.

return findAll(S′,Eall);
else return Eall

Given a goal for an attacker, we enhance the algorithm
findMinimal to find an attack that can be launched with the
least number of steps from the initial state. The idea here
is to compute the attack given by minimal levels provided
by the forward marking algorithm.

findShort(S, att):
Global: Attribute/exploit graph with forward markings
Input: A set of attributes to be satisfied S
Input: A partial attack set att.
Ouput: A short attack set satisfying S

If (S) has an unmarked attribute, then abort.
/ � an attack set cannot be found � /

Else for each s ∈ S let es be the attack marked with
smallest level for s.

let att′ be the collection of such smallest level
attacks, and let S′ be the preconditions
of attacks in att′.

return findShort(S′, att′)

Notice that the set of attacks found by findShort may not
be minimal, but would correspond to the minimal level that
is necessary to achieve the end goal of the attacker. However,
if we now find a minimal cover (as in the case of step 1 and
3 of the algorithm findMinimal, we obtain a minimal attack
that corresponds to the shortest attack. The worst case run
time of findShort is O(E. max{ min{ length(s):s } s∈S
}). As stated, the cost of finding a minimal shortest cost is
O(E2).

2.3 Application
Given the graph structure defined above, what additional

analyses are possible? The short answer is the ‘standard’ list
is available. For example, it is possible to associate weights
with exploits, thereby leading to notions of expensive (or
likely) attack chains. Simple greedy modifications of our
search algorithms can find desirable (but not necessarily op-
timal) attack chains with respect to the metrics.
It is also useful to think in terms of ‘cut sets’ of either

exploits or attributes. These approaches ask the question:
what set of exploits (edges) or attributes (nodes) in our
graph must be removed to disconnect the goal state from
the initial state. Standard graph analysis algorithms can be
applied.

3. EXAMPLE
In this section, we consider an example closely related to

that in [7]. We model a monotonic variant of that example
with our approach. We enumerate attributes and exploits.
We show the result of forward reachability analysis on the
example, and then give the output of algorithm findAll.
The example has an attacker outside a firewall, a router

behind the firewall, and two hosts behind the router. We
consider three hosts: the attacker (host 0), and the two
hosts behind the router (hosts 1 and 2). There is an intru-
sion detection system that monitors traffic going across the
firewall. The result is that rlogin sessions from outside the
firewall notify the IDS, but rlogin sessions between hosts
behind the firewall do not.
There are 6 vulnerabilities considered in the example; each

vulnerability is possible on each host. Hence, there are
6 ∗ 3 = 18 attributes in our model corresponding to vul-
nerabilities. The vulnerabilities are:

sshh: ssh service is running on host h

ftph: ftp service is running on host h

datah: database is running on host h

wdirh: ftp home directory is writable on host h

fshellh: ftp user has executable shell on host h

xtermh: xterm executable vulnerable to overflow on host h

There is a physical connectivity and two connectivity rela-
tions between each pair of hosts: one connectivity relation
is for an ftp port and the second is for an sshd port. Al-
together, this is three attributes for each pair of hosts. The
result is 3 ∗ 3 ∗ 3 = 27 attributes. There is also a trust rela-
tionship between pairs of distinct hosts. In this example, 3
hosts yield 6 trust relationships.
There are three privilege levels for the attacker on any

given machine: none, user, and root. For three machines,
this yields 3 ∗ 3 = 9 attributes.
Thus our state space for this example has 18 + 27 + 6 +

9 = 60 attributes. Most of these attributes do not change
value as a result of the exploits. In fact, considering all of
the attacks that achieve the goal of ‘root privilege on the
second host behind the firewall’, only a small fraction of the
attributes change value. We will enumerate these after we
instantiate the exploits.
The example considers 4 generic exploits:

0: sshd buffer overflow

1: ftp .rhosts

2: rsh login

3: local setuid buffer overflow

Examining the first of these is illustrative from the per-
spective of monotonicity. As given in [7], the exploit is:

• preconditions:

1. User level privilege for attacker on host S

2. Less than root level privilege for attacker on host
T

3. Host T is running sshd
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4. Host T reachable from S on sshd port

• postconditions:

1. Root level privilege for attacker on host T

2. Host T is not running sshd

It is clear that the 2nd precondition is not monotonic.
However, modeling it as monotonic has no negative effect.
That is, the exploit can be carried out whether or not the
attacker already has root privilege on host T ; in the former
case there is simply no effect. The second postcondition
is also not monotonic, since the sshd service, which was
running, is now no longer running. Again it is reasonable to
model the exploit as monotonic, since with root access on
T , the attacker can usually restart sshd on T . Finally, we
model postconditions such as ‘root privilege’ with multiple
postconditions - in this case both ‘root privilege’ and ‘user
privilege’.
The first three of these exploits requires a pair of hosts; the

last requires only one host. Including each machine paired
with itself, each of these generic exploits results in 3 ∗ 3 = 9
instantiated exploits. In total, therefore, there are 3 ∗ 9 +
3 = 30 such exploits to consider. Of these, an analysis of
the attack graph for this example shows that 8 turn out to
be relevant to some minimal attack that achieves the goal.
These 8 instantiated exploits are shown below, along with
the attributes that each exploit affects.

1. The sshd buffer overflow exploit from hosts:

• 0 to 1 (root privilege on host 1)

2. The ftp .rhosts exploit from hosts:

• 0 to 1 (rsh trust from all other hosts to host 1)

• 0 to 2 (rsh trust from all other hosts to host 2)

• 1 to 2 (rsh trust from all other hosts to host 2)

3. The rsh rlogin exploit from hosts:

• 0 to 1 (user privilege on host 1)

• 0 to 2 (user privilege on host 2)

• 1 to 2 (user privilege on host 2)

4. The local setuid buffer overflow exploit from hosts:

• 2 to 2 (root privilege on host 2)

As can be seen from the table, the number of attributes
that change value in some attack directed at the goal is
quite small: 1 attribute for the first exploit, 2 ∗ 2 = 4 for
the second, 2 for the third, and 1 for the fourth. The to-
tal is 8 distinct attributes out of the 54 attributes present.
(Other attributes can change value as well, but these do not
contribute towards the goal.)
The next step in the example is to show the effects of

forward reachability analysis on these 8 attributes. For this
purpose, we identify instantiated exploits by the generic ex-
ploit number (0 through 3) and the specific source host (0
through 2) and target host (also 0 through 2).

1. Attribute: Root privilege on host 1
Precondition for: nobody.
Achieved by E0(0, 1) on round 1.

2. Attribute: User privilege on host 1
Precondition for: E1(1, 1), E1(1, 2), and E2(1, 2).
Achieved by E0(0, 1) on round 1.

3. Attribute: .rhosts file on host 1 trusts host 0
Achieved by E1(0, 1) on round 1.
Precondition for: E2(0, 1).

4. Attribute: .rhosts file on host 1 trusts host 2
Achieved by E1(0, 1) on round 1.
Precondition for: nobody.

5. Attribute: .rhosts file on host 2 trusts host 0
Precondition for: E2(0, 2).
Achieved by E1(0, 2) on round 1.
Achieved by E1(1, 2) on round 2.

6. Attribute: .rhosts file on host 2 trusts host 1
Precondition for: E2(1, 2).
Achieved by E1(0, 2) on round 1.
Achieved by E1(1, 2) on round 2.

7. Attribute: User privilege on host 2
Precondition for: E3(2, 2).
Achieved by E2(1, 2) on round 2.

8. Attribute: Root privilege on host 2
Goal node.
Achieved by E3(2, 2) on round 3.

We now turn to generating attack chains. We give the
output of the algorithm findAll(root privilege on host 1,
∅). There are 3 chains generated. Each chain is minimal,
meaning that there is no subset of exploits in the chain that
also achieves the goal. Each chain is partially order, so that
there is sometimes a choice as to which exploit to attempt
next. Detectable exploits are marked. All stealthy attacks
must include E0(0, 1). All attacks must end with E3(2, 2).
The chains are:

1. E0(0, 1), E1(1, 2), E2(1, 2), E3(2, 2) // stealthy

2. E1(0, 2), E2(0, 2), E3(2, 2) // detectable

3. E1(0, 1), E2(0, 1), E1(1, 2) E2(1, 2) E3(2, 2) // detecta-
ble

4. RELATED WORK
There are a variety of commercial tools that scan single

hosts for known vulnerabilities. Several prominent ones are
COPS [2], SystemScanner [15], and CyberCop [4]. Such
scanning tools form a necessary part of a complete system
for network vulnerability analysis as they provide the in-
put to our model. Each host on a network hosting network
services would expose vulnerabilities to hosts outside the
network. Such exposures could be benign or hazardous in
nature. Plugging all the vulnerabilities based on the out-
put of a scanning tool may render a network unusable to
bonafide users. The focus of the work in this paper is on
chaining together the vulnerabilities uncovered by such tools
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to uncover end-to-end attack scenarios and thus discover the
nature of the exposed vulnerabilities.
In addition to tools cited above for analyzing single hosts,

two distinct lines of work relate to our contribution here:
model checking for network security and direct graph algo-
rithms that manipulate attack graphs or attack trees. We
start with the model checking work.
Ramakrishnan and Sekar used a model checker to ana-

lyze a single host systems with respect to combinations of
unknown vulnerabilities [11]. Ritchey and Ammann used
a model checker to provide single attack scenarios to test
heterogeneous networks [12] with respect to known exploits
such as one might find on bugtraq. The model checker SMV
was used to produce a counterexample showing a single, pos-
sible attack. In an extension of the network vulnerability
analysis of Ritchey and Ammann, Jha et al [8] and Sheyner
et al [13] use model checking to analyze attack graphs on
heterogeneous networks. As in [12], these authors consider
interconnected network of computers with known vulnera-
bilities that can be combined by hackers in order attack one
or more hosts. Every attack goal is encoded as an in compu-
tation tree logic (CTL) and model checked using NuSMV.
If an attack fails, the authors provide a mechanism, im-
plemented in NuSMV, to produce an attack graph, which
includes all of the counterexamples that can be analyzed,
thereby allowing the analyst to understand all possible at-
tack scenarios. Various analyses are performed on the at-
tack graphs. Ordered binary decision diagrams are used for
compact representation of attack graphs, but the relevant
point for our paper is that these graphs are still likely to
be prohibitively large, since, as is usual in model checking
applications, the state space is exponential in the number of
system variables. The advantage of the monotonic approach
proposed here is that the state space is linear in the number
of system variables. In particular, it is possible to perform
useful analyses without instantiating the full attack graph.
The other line of work addresses the problem of analyzing

combinations of network exploits by explicit graph meth-
ods. The attack graphs generated in most of these works
necessarily carry the problem of exponential size, and the
authors are candid about the resulting effect on scalability.
The earliest work in this line is the Kuang system [1], and
it’s extension to a network environment, the NetKuang sys-
tem [17]. In these systems a backwards, goal-based search
scans UNIX systems for poor configurations. The output is
a combination of operations that lead to compromise.
The closest work to ours is that of Swiler et al [10], which

has been implemented in [14]. The attack templates that
they use correspond to our generic exploits, and the instan-
tiation of an attack template on a specific network configu-
ration corresponds to our instantiated exploits. Their attack
graph is essentially that of Sheyner et al (cited above), with
edges being steps in an attack, and nodes being valuations
of system variables. Swiler et al eliminate redundant paths
from their attack graphs with what amounts to an assump-
tion of monotonicity, namely that the order of attacks does
not matter. While their approach helps control the visited
parts of the state space, it does not eliminate its fundamen-
tal exponential character. Swiler et al also consider cost
functions, which we do not; it would be interesting to apply
their techniques to our model.
Templeton and Levitt [16] develop a ‘requires/provides’

model for modeling chains of network attacks and reducing

the complexity of such a model. The ‘requires’ part corre-
sponds to our exploit preconditions, and the ‘provides’ part
corresponds to our exploit postconditions. They provide a
language for specifying exploits. Their ideas on reducing the
complexity of the attack tree can be used within our model
to further reduce the complexity of the attack graph. In
future work, we would like to abstract multiple vulnerabili-
ties on a host, with similar effects, to a generic vulnerability
and hence simplify the analysis. Similarly, we can abstract a
group of hosts with similar abstract vulnerabilities as a sin-
gle node to simplify the attack graph. Dawkins et al [6] also
provide a language for modeling exploits, and they use this
language to provide a hierarchical view of attack trees. The
hierarchy helps present information to the user in a more
manageable way, but the approach does not have the ‘goal’
directed aspect of Sheyner et al, Swiler et al, and our work.
That is, their search is a forward exploration of the state
space, and hence includes all possible compromises, and not
just those of interest to a specific attack goal.
Dacier et al [5] and Ortalo et al [9] also used graph analysis

for network security evaluation. The result in their work is a
notion of Mean Effort To security Failure (METF), a proba-
bilistic metric based on assigning likelihoods to attacks. The
work in Ortalo et al has a substantial implementation effort
associated with it, and our methods may fit well into that
framework.
Cuppens and Miege [3] use a similar approach to model

the attacks in the Intrusion Detection Framework. They
provide a formal basis to the chaining of attacks and go on to
correlate alerts generated on that basis. They use LAMBDA as
the modeling language to model their attacks which could be
a good approach to make the analysis portable on different
platforms and make the model generation easier.
Of course, graph analysis is a common computer science

technique, and a variety of authors have developed graph
based algorithms for different aspects of computer security.
We have described the directly relevant cases above. Prior
uses of graph-based approaches for other aspects of com-
puter security are well described in the references listed
above.

5. CONCLUSIONS
In this paper, we have used an assumption of monotonic-

ity to obtain a concise, scalable graph-based representation
for encoding attack trees. Without actually enumerating
these trees, we can identify minimal attacks chains, includ-
ing attack chains which are ‘short’ in the sense that they re-
quire the least number of (possibly parallel) steps from the
initial state. We have achieved the above results in a pro-
totype implementation with the algorithms discussed above
implemented using Java programming language. Our repre-
sentation avoids the exponential explosion problem associ-
ated with defining states as valuations of system variables,
thereby making our approach a candidate for realistic net-
works with tens or hundreds of hosts.
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