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Clustering algorithms have been explored in recent years to solve hotspot clustering problems in integrated circuit design. With
various applications in design for manufacturability flow such as hotspot library generation, systematic yield optimization, and
design space exploration, generating good quality clusters along with their representative clips is of utmost importance. With
several generic clustering algorithms at our disposal, hotspots can be clustered based on the distance metric defined while
satisfying some tolerance conditions. However, the clusters generated from generic clustering algorithms need not achieve
optimal results. In this paper, we introduce two optimal integer linear programming formulations based on triangle inequality to
solve the problem of minimizing cluster count while satisfying given constraints. Apart from minimizing cluster count, we
generate representative clips that best represent the clusters formed. We achieve a better cluster count for both formulations in
most test cases as compared to the results published in the literature in the ICCAD 2016 contest benchmarks as well as the
reference results reported in the ICCAD 2016 contest website.

1. Overview

As the feature size decreases rapidly, the problem of man-
ufacturability in integrated circuits increases due to limita-
tions in lithographic wavelength used during the fabrication
stage. ,ese problems identified as hotspots are a set of
problematic patterns in the layout that have printing issues.
,ese are detected either using traditional lithographic
simulations or machine learning-based detection methods
that have been proposed in recent years. When such defects
are found, finding patterns of similar kind is of high interest. It
becomes useful to cluster these clips of interest into groups
and process them together. ,is is called layout pattern
classification [1] or hotspot clustering. Layout pattern clas-
sification has been utilized in recent years in design for
manufacturability flow for various applications. Few examples
of such applications are hotspot library generation [2], hi-
erarchical data storage [3], and systematic yield optimization.
With several applications in the DFM stage, finding good
quality clusters is important.

Few works such as [4] use pattern classification within
their tool flow. ,ey use a modified version of incremen-
tal clustering where they update the representative of
the clusters formed. Wu et al. [5] have worked on a modified
problem statement, where they consider dummy fills during
hotspot classification, can therefore accurately identify the
process hotspots in the layout with dummification in EUVL.
An interesting approach is adopted [6] where they shift the
clips to expand the solution space while satisfying given
constraints, thereby reducing the cluster count.,e minimal
cluster count is achieved for the ICCAD 2016 benchmark
suite in their approach. Different distance metric instead in
of the XOR logic is explored in [7, 8] to encapsulate
rotations/mirroring and other topological features. How-
ever, using these metrics is a trade-off between computa-
tional cost and quality of the clusters generated. ,ere are
several other works such as [9–12] which focus on hotspot
detection frameworks, whereas hotspot clustering has been
rarely explored but plays an important role in various ap-
plications in the design for manufacturability flow.
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In previous work [2, 13, 14], a few generic clustering
algorithms such as k-means clustering [14], hierarchical and
incremental clustering [2], and Markov clustering [13, 15]
were explored to solve this problem. In k-means clustering, the
value of k needs to be provided by the user, but the user may
not know the cluster count a priori.,erefore, it does not solve
the purpose of finding good quality clusters automatically. In
the hierarchical clustering algorithm, starting from each data
point as a cluster, the data are hierarchically grouped together
based on different types of linkages. Since hierarchical clus-
tering finds groups of data in a hierarchical manner, it is again
user dependent to get the clusters. In incremental clustering,
in the order of processing data, either new clusters are created
or existing clusters are grown incrementally. ,is algorithm
depends on the order of processing data and therefore does
not produce good quality solutions. Markov clustering [15] is
known to find good quality clusters in a short time, but the
clustering depends on fine tuning several parameters in the
algorithm.,ere are several other clustering algorithms in the
literature to cluster any kind of data; however, the problem
formulations of those algorithms are different from that of the
hotspot clustering problem.,erefore, a postprocessing step is
required while using those algorithms to regroup clusters in
order to satisfy the given constraints.

In this paper, we discuss our tool called CHIP which
solves the given hotspot clustering problem optimally. We
formulate two integer linear programs to solve for the optimal
number of clusters, i.e., the objective of both formulations is
to minimize cluster count. With some tolerance given by area
constraint or edge constraint, our tool classifies given clips
into clusters without assuming that the representative clips
must be from the given data set. Since the representative clip is
not required to be one of the given clips, we generate the
representative clip based on the cluster data and the tolerance
provided. ,is framework can achieve optimal cluster count
while satisfying the constraints as per the results from ICCAD
2016 Contest Problem C-Pattern Classification for Integrated
Circuit Design Space Analysis [1].

,e paper is further organized as follows: In Section 2, we
describe the problem, define the terminology, and elaborate
the two modes in clustering. In Section 3, we discuss the
overview of our tool flow. In Section 4, we define our integer
linear programming formulations which exactly represent the
problem statement, and in Section 5, the framework to gen-
erate representative clips is elaborated. Furthermore, in Sec-
tion 6, we report the results of the formulation and compare
with existing algorithms. We conclude the work in Section 7.

2. Problem Description

2.1. Overview. ,is problem is taken from the ICCAD 2016
Contest-Problem C. Given a GDS file with markers and clip
size and the constraints as inputs, the hotspot classification
tool has to cluster the clips formed around the markers and
output the corresponding cluster identities and a set of
representative clips which represent the clusters. ,ere are
two types of constraints given to the tool, i.e., area constraint
(a) and edge constraint (e). Based on the type of constraint,
the tool has to perform clustering in the respective mode.

,e tool takes either area constraint or edge constraint but
not both as the input.

Figure 1 depicts a sample layout where the polygons (in
yellow) are the interconnects of a circuit indicated in a layer.
On this layer, there are several markers placed at various
locations throughout the layout. Given these input data, clips
centered at the markers should be extracted according to the
given dimensions. Note that the center of the clip can be
anywhere inside the marker.

We define the terminology used in the problem de-
scription as follows:

Definition 1. Marker: a marker is a polygon which locates the
presence of a hotspot in the layout. ,ese markers are placed
on a different layer other than the design layer. For practical
purposes, these markers are picked to be small—about the
height & width of minimum width allowed in the layout.

Definition 2. Clip: a clip is defined as a set of polygons
extracted from the layout, based on the position of the
marker. ,ese set of polygons are extracted by a bounding
polygon (width w and height h) with its center anywhere
inside the marker. A sample clip is shown in Figure 2. For
practical purposes, the center of the clip can be assumed to
be the center of the marker.

Definition 3. Cluster: a cluster is a set of clips which are
grouped together based on the similarity metric defined.

Definition 4. Representative clip: a representative clip is
defined for each cluster which is similar to all its clips, where
the degree of similarity is constrained by a tolerance pa-
rameter given as input. For practical purposes, represen-
tative clips can be chosen from existing clips for each cluster.
But it need not necessarily exist in the layout.

2.1.1. Additional Specifications. Mirroring of clips is allowed,
i.e., 180° rotation along the axes passing through the clip’s
center. ,erefore, there are 4 possible combinations for each
clip. ,is is depicted in Figure 3. Also, since the clip’s center
need not be at the center of the marker, clip shifting can be
performed to generate a set of clips for one marker. A sample
set of possible clips are depicted in Figure 4 by shifting a clip’s
center. In this work, for simplicity, we consider the center of
the clip to be at the center of the marker, i.e., we only consider
the clip in Figure 4(a).

In general, clustering algorithms require pairwise sim-
ilarity relation of data points in order to group the data into
clusters. Pairwise distances of data points are one of the ways
to establish the similarity measure, i.e., the greater the
distance, the greater the dissimilarity.,ere are various types
of distances used for different applications such as L1 norm
for images, L2 norm for any d-dimensional set of points, and
Hamming distance for distance between two strings.

In hotspot classification, each clip (xi) is represented as a
w × h dimensional data point, i.e., xi ∈ Rd, where d � w × h.
For any two clips x1 and x2, XOR(x1, x2) produces a clip
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which depicts the dissimilarity between the given two clips.
Furthermore, based on the two constraints—area-constrained
clustering and edge-constrained clustering—the distancemetric
is defined for each mode by imposing the respective constraints
on the resultant clip. In the following subsections, the two
constraint-based clustering modes are explained in detail.

2.2. Constrained Clustering

2.2.1. Area-Constrained Clustering. In area-constrained
clustering (ACC), the distance metric is computed based
on the area of the resultant clip from exclusive OR operation
applied to two clips x1 and x2:

D x1, x2(  � area XOR x1, x2( ( . (1)

For example, in Figure 5, two clips are overlapped
against each other whose dissimilarity is depicted through

arrows. In Figure 6, the resultant XOR of the two clips is
shown. ,e distance of the clips is therefore the area of
the polygons (rectangles in this case) in Figure 6,
i.e., D(x1, x2) � area(XOR(x1, x2)).

Given this distance function between a pair of clips, ACC
constrains the distance between any clip S in a cluster and its
representative clip R as follows:

D(R, S)

(w × h)
≤ (1− a), (2)

where w × h is the area of the clip and 0≤ a≤ 1. Here, a is the
parameter given to the tool which constraints the distance
between the clips.

If a � 1, the tool has to perform exact clip matching. For
practical purposes, a is close to 1. ,is constraint need not
enforce two clips to be clustered together if they satisfy it.
However, if two clips do not satisfy the constraint, then they
cannot be clustered together.

2.2.2. Edge-Constrained Clustering. In edge-constrained
clustering (ECC), the distance between two clips x1 and x2
is given by the maximum shift along an edge either inward or
outward in clip x1 with respect to clip x2; that is, if ei is ith
shift along one edge out of all possible edge shifts in clip x1
with respect to the clip x2, then D(x1, x2) � max(e1, e2, . . .).
An example pair of clips with edge shifts is shown in Figure 5.

For any clip S in a cluster and its representative clip R,
then according to ECC, the following should be satisfied:

D(R, S)≤ e, (3)

where e is given as a parameter. Here, e is a nonnegative real
number. For practical purposes, e is close to 0. Similar to
ACC, ECC does not enforce the clips to be clustered together
if they satisfy the constraint. If the clips do not satisfy the
constraint, they should not be clustered together.

3. Overview of the Tool

,e proposed tool flow is discussed in this chapter.
Figure 7(a) shows our proposed tool flow with the steps. In
the layout data processing step, we convert all the polygons
into rectangles for easier data processing. We then handle
the layout data (in rectangles) using a grid structure in order
to speed up the process of clip extraction. In distance
computation step, we reorient all clips in a canonical way to
consider mirroring of the clips. Exact pattern matching is
performed to reduce data size, and therefore, redundant
computations are avoided in the subsequent steps.

,en, we compute the pairwise distances between these
reduced data according to the constraint type. Using this
distance matrix (D) and given tolerance (Dc, which is de-
termined by either a or e depending on the constraint type),
in the clustering step, an optimizer is called to solve the
optimization problem based on the formulations discussed
in Section 4 and an optimal solution is arrived along with the
cluster indices. Furthermore, since we assume each cluster
need not have its representative amongst given data, we use
ILP formulation again to search feasible solution space to

Figure 1: Sample layout.

Clip boundary

Marker boundary

Clip center

Polygon

Figure 2: Sample clip.
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generate the representative clip. �e following subsections
and chapters discuss each step in our proposed 
ow in detail.

3.1. LayoutDataProcessing. In this step, �rstly, the polygons
are converted into rectangles using a standard algorithm.
Note that this conversion need not be optimal in nature.
�en, the entire layout is divided into a grid structure where

each unit is of width w and height h as shown in Figure 7(b).
With this grid structure, the rectangles overlapping each
grid are stored in a data structure. While extracting the clip
for a given marker, we use the information stored in the
data structure to take relevant rectangles to form the clip.
�is process avoids scanning all rectangles and �nding in-
tersection between them and the clips of interest. �is is
illustrated in Figure 7(b). At most 4 grid structures and

(a) (b)

(c) (d)

Figure 3: Four possible con�gurations of a clip.

(a) (b) (c) (d)

Figure 4: A sample set of con�gurations of a clip (with shifting) [6].
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Layout data processing

Reorientation

Reduced pairwise distance
computation 

Exact clip matching

Integer linear program solver

Representative clip generation

Step1: preprocessing

Step2: distance
computation 

Step3: clustering 

Overall flow

(a)

w

h
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3 4
h

w

(b)

Figure 7: Overview of the tool and preprocessing step. (a) An overview of the tool. (b) Layout data processing.

X

Figure 5: Two clips overlapped with each other [1].

Figure 6: XOR of the two clips [1].
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correspondingly the rectangles present in them are scanned
for any clip to be extracted.

3.2. Distance Computation

3.2.1. Reorientation. Since we consider reflections along x-
axis or y-axis or both, in this step, before computing dis-
tances between the clips based on area or edge constraint, we
perform reorientation of the clips in a canonical way. We
compute the center of mass (COM) for a given clip and
divide the clip into 4 quadrants. Here, center of mass metric
is defined as follows.

Let ai be a clip which is mapped to a R2 space with
w × h number of data points, with the range −w/2 to w/2
on the x-axis, −h/2 to h/2 on the y-axis, and the center of
the clip at (0, 0). With this mapping, if there is a pixel at
(x, y), then its value is 1, i.e., ai(x, y) � 1 and 0 otherwise.
Let (xc, yc) represent the center of mass of this notation.
,erefore,

xc �


w/2
x�−w/2

h/2
y�−h/2ai(x, y) ∗ x


w/2
x�−w/2

h/2
y�−h/2ai(x, y)

,

yc �


w/2
x�−w/2

h/2
y�−h/2ai(x, y) ∗ y


w/2
x�−w/2

h/2
y�−h/2ai(x, y)

.

(4)

,en, we orient all the clips such that every clip’s COM is
in a fixed quadrant, e.g., lower-left quadrant as shown in
Figure 8.,is preprocessing step enables us to find exact clip
matching patterns. In Figures 8(a)–8(d), all possible re-
flections along the axes are indicated, and Figure 8(e) is the
canonical representation of all orientations. Note that in case
the center of mass is closer to the origin, then a higher order
metric can be computed to shift the COM away from the
origin.

3.2.2. Clip Matching. Once the clips are reoriented in a
canonical way, clip matching step is performed in order to
merge exact clips in the given data. In an IC with millions
of gates, it is most likely to find identical patterns in the
layout, and hence, this step would reduce the amount of
data to be processed. Exact clip matching can be performed
with pattern matching algorithms or by string comparison
if each clip is encoded into a string as proposed in [4].

In this work, exact clip matching is performed in two
levels. First, the given data are divided into different bins,
where a bin contains all the clips of same area.,en, the clips
in each of the bins are iterated through, with new clusters
formed whenever there is a mismatch with the existing
clusters in the bin; that is, incremental clustering is per-
formed, where two or more clips are clustered together if the
pairwise distance between them is zero.

To compute the distance between the two clips, each clip is
divided into a nonuniform grid where the grid lines are along
the boundaries of the polygons on the two clips. ,erefore,
each grid in the clip is either completely covered by a polygon
or completely empty and, hence, can now be represented by a

binary value. As a result, the distance of the two clips can be
easily computed based on the binary values for each grid and
its corresponding area, as shown in Figure 9.

3.2.3. Distance Computation. In this final step, pairwise
distances are computed between the reduced set of clips. To
compute the distance between the two clips, each clip is
divided into nonuniform grids where the grid lines are
along the boundaries of the polygons on the two clips as
discussed in the Section 3.2.2. ,erefore, the distance
between a pair of clips can be easily computed based on the
binary values for each grid and its corresponding area, as
shown in Figure 9.

4. ILP Formulations

One of the objectives of the problem is to minimize the
cluster count while satisfying the tolerance in terms of ACC/
ECC. In the following formulations, we define the objective
of the ILP as minimizing the number of clusters. ,erefore,
the optimizer solves for the optimal number of clusters for a
given constraint. Also, we leverage the idea of triangle in-
equality, as defined in Proposition 1, in order to generate the
minimal cluster count; that is, the representative clip need
not be chosen from the given clips, and therefore, we explore
the solution space without unnecessary restrictions while
satisfying the given constraints. We formulate two integer
linear programming approaches describing the given
problem in different ways. Both these formulations are
described in the following subsections.

4.1. CHIP Node. In this formulation, we describe the clus-
tering problem using nodes as variables, where each node is
assigned a cluster identity based on the distance metric and
the constraints. We define Ci as the variable representing
each data point i, and its value indicates the cluster index of
that data point:

Ci � Cj⟺ i, j ∈ same cluster,

Ci ≠Cj⟺ i, j ∉ same cluster, ∀i, j � 1, 2, . . . n,
(5)

where n � number of data points.
Here, the variables Ci are upper bounded by another

variable, K, representing the cluster count, i.e., 1≤Ci ≤K,
∀i � 1, 2, . . . , n and K≥ 1. With this setup, the objective to
minimize the cluster count is to minimize K in our
formulation.

Let D(i, j) be the distance between ith clip and jth clip
and the constrained distance be Dc.

Proposition 1. Triangle inequality for clustering: given a
cluster of clips and the distance constraint Dc, if
D(i, j)≤ 2 × Dc, ∀i, j ∈ same cluster, then ∃ r such that
D(i, r)≤Dc · ∀i.

ILP Formulation:
Objective: minimize K.
Constraints: ∀i≠ j
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Figure 8: Reorientation of the clip.
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Figure 9: Grid data structure to compute distance.
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Ci ≥Cj + 1−
2Dc

D(i, j)
  − Sij × H,

Ci ≤Cj − 1−
2Dc

D(i, j)
   + 1− Sij  × H.

(6)

Here, H is a huge constant, Ci is integer ∀i and
Sij is 0 or 1 ∀i, j.
Bounds: 1≤Ci ≤K∀i

,e above two constraints enforce the condition that if
the distance between two clips (i and j) D(i, j)> 2Dc, then
the two clips (nodes) cannot be clustered together,
i.e., Ci ≠Cj. However, the constraints can be ignored
whenever the distance constraint is satisfied; that is, the clips
can be either clustered together or not. ,is is elaborated in
the following two cases:

Case 1. If D(i, j)> 2Dc:

Constraints:

Ci ≥Cj + ϵ− Sij × H,

Ci ≤Cj − ϵ + 1− Sij  × H⟹Ci ≠Cj.
(7)

Note: Here, ε is a small value.

Case 2. If D(i, j)≤ 2Dc:

Constraints:
Ci ≤Cj or Ci ≥Cj depending on the value of Sij.

Note that a preprocessing step elaborated in Section 3.2.2
is applied to eliminate exactly the matched patterns. Hence,
D(i, j) will never be zero in this formulation.

4.1.1. Area-Constrained Clustering. In the case of area-
constrained clustering, D(i, j) � area(XOR(xi, xj)) as de-
fined in Section 2.2.1 and Dc � w × h × (1− a), where a is
the area constraint ranging between 0 and 1. Notice that, for
a � 1, Dc � 0⟹Ci ≠Cj, ∀i, j.

4.1.2. Edge-Constrained Clustering. In the case of edge-
constrained clustering, D(i, j) � max(e1, e2, . . .) as defined
in Section 2.2.2 and Dc � e, where e is the given edge
constraint (in nm).

4.2. CHIP Edge. In the 2nd formulation, we describe the
clustering problem using edges, where two nodes connected
by an edge are clustered together. We define that the ob-
jective of the ILP is to minimize the number of clusters.
Similar to the previous formulation, we leverage the idea of
triangle inequality in order to generate minimal cluster
count; that is, the representative clip need not be chosen
from the given clips, and therefore, we explore the solution
space without unnecessary restrictions while satisfying the
given constraints.

We define a graph where the nodes are clips and the
edges between them indicate whether the clips can be
clustered together. We define sij as a variable indicating
whether two clips i and j are clustered together, i.e., sij � 1 if
i, j are clustered together and 0 otherwise ∀i, j.

In other words,

sij � 1⟺ i, j ∈ same cluster,

sij � 0⟺ i, j ∉ same cluster, ∀i, j � 1, 2, . . . , n.
(8)

,ese sij variables are given as input (constant value � 0)
if two clips cannot be clustered together. Else, they can take
either 0 or 1 (variable in the formulation).,is is based on the
condition that two clips cannot be clustered together if the
distance constraint is not satisfied. However, they can either
be clustered or not, if the distance constraint is satisfied.

ILP Formulation:
Objective: minimize n− (i< jtij)

Constraints:
tij ≤ sij∀i< j, (9)

tij ≤ 2− ski − skj∀k< i< j, (10)

sij + sjk − 2 × sik ≤ 1, (11)

∀i, j and k where 1≤ i, j, k≤ n, i≠ j≠ k.

Here, constraint (11) enforces the condition that if i and j
are in the same cluster and j and k are in same the cluster,
then i and k has to be in the same cluster.

Apart from sij, binary variables tij are introduced.
Constraint (9) implies that tij must be 0 if sij is 0. Even if

sij � 1, if there exists k such that k< i< j and both ski and skj

are 1, then tij must be 0 too. ,erefore, tij can be 1 if i(<j) is
the node with the smallest index in the cluster defined by s �

1 containing the edge ij.
As the sum, i,jtij is maximized, the edges with tij � 1

will define a spanning forest (i.e., collection of trees)
which is a subgraph of the graph defined by the edges with
sij � 1.

Here, the summation, i,jtij, indicates the summation
of [number of cluster members − 1] of all the clusters.
,erefore, it can be observed that the objective n−
(i<jtij) � K, where K is the number of clusters as per the
1st formulation.

Example for CHIP Edge. Let there be 9 clips (nodes). Given,
a pairwise distance relation amongst these 9 clips, the
graph formed (with sij as edges) at an instance during
the optimization is shown in Figure 10. According to the
constraints, the variables tij take the values 0 or 1.
,e resultant graph with tij as edges is shown in Figure 11.
From this figure, the objective value can be computed,
which is 9− (2 + 3 + 1) � 9− 6 � 3 (�number of clusters).

4.2.1. Area-Constrained Clustering. In the case of area-
constrained clustering, D(i, j) � area(XOR(xi, xj)) as
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de�ned in Section 2.2.1 and Dc � w × h × (1− a), where a is
the area-constraint ranging between 0 and 1.

4.2.2. Edge-Constrained Clustering. In the case of edge-
constrained clustering, D(i, j) � max(e1, e2, . . .) as de�ned
in Section 2.2.2 and Dc � e, where e is the given edge
constraint (in nm).

5. Representative Clip Generation

In this section, we discuss the framework to generate repre-
sentative clips for the clusters formed in the clustering step.
Firstly, each cluster is checked whether there exists any clip
among the cluster members that satis�es the constraints to be a
representative clip. If a representative clip does not exist
amongst the given clips, then we proceed to the following steps:
(1) data preprocessing; (2) MILP formulation; and (3) repre-
sentative clip generation, and these steps are discussed in the
following subsections.

5.1. Data Preprocessing. In this step, we build a grid data
structure formed along the edges of polygons of all the clips
in the cluster. �is structure is similar to that used in dis-
tance computation in Section 3.2.2, where only two clips are
used to form the grid data structure as compared to con-
sidering all the clips in the cluster in this step. Using this
structure, we can represent each clip in the cluster using a
vector where each dimension represents the area covered by
a polygon in a particular grid. Each grid data structure is
unique with respect to the clusters.

5.2. MILP Formulation. Using the grid data structure,
we formulate a mixed integer linear program to �nd a
feasible solution that satis�es the given constraints. �is

feasible solution is then used to generate the represen-
tative clip.

Formulation:

Let c1, c2, c3, . . . , cq be a set of clips which belong
to a cluster and cr be its representative clip. �erefore,
as per the clustering formulations, ∃ cr such that
D(cr, ci)≤Dc,∀ i � 1, 2, . . . , n where Dc is the given
constraint.

Let the number of grids in the grid data structure of a
particular cluster be d; that is, the given clips and the
representative clip of the cluster can be represented by a d-
dimensional vector with corresponding areas (Aj) as
upper bound for each dimension. Let the vector be rep-
resented by

ci � ci1, ci2, ci3, . . . , cid[ ], (12)

where each cij ≤Aj,∀j.
For a cluster, we de�ne another d-dimensional vector

called the area vector (A) where A � [A1, A2, A3, . . . , Ad];
that is, each Ai is the area of a grid in the grid data structure.

Based on the grid structure formulation, each given clip
in the cluster can be represented by either 0 (empty) or Aj
(�lled) ∀j. �erefore, distance between cr and ci can be
written as a linear function.

For example, let area vector of a cluster be
A � 100 200 150 50[ ] and one of the clips (c1) be
100 200 0 50[ ]⟹D(cr, c1) � 100− cr1+ 200− cr2 + cr3+

50− cr4.

Objective: No objective
Constraints: ∀i

D cr, ci( )≤Dc. (13)

Bounds: crj ≤Aj

1

79

(a)

8

63

5

(b)

4

9

(c)

Figure 10: Example for the CHIP edge formulation (with sij as edges).
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5
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(c)

Figure 11: Example for the CHIP edge formulation (with tij as edges).
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As per the constraints and bounds, each variable (crj
)

takes values from 0 to Aj∀j; that is, it takes continuous
values rather than discrete. ,ese values are then used to fill
the grids using heuristics discussed in the next subsection.

Finding feasible solution step can be further sped up by
removing redundant dimensions (grids) which are either
always empty or always filled in all the clips of a cluster.

5.3. Representative Clip Generation. In this subsection, a
heuristic is proposed to generate the representative clip as
described in Algorithm 1. From the feasible solution of
MILP formulation, we obtain a solution vector of contin-
uous variables, where each dimension is in the range [0, Aj].
Let the result vector be represented by cr � [cr1

, cr2
,

cr3
, . . . , crd

].
In Algorithm 1, crl

, crr
, crt

, and crb
represent the

neighboring grids (left, right, top, and bottom, respectively)
of a grid in cr. In this algorithm, if crj

� Aj, we fill the grid
entirely. If crj

<Aj, then the grid has to be filled partially.
,is can either be done along the x-axis or y-axis, until the
condition is satisfied. For uniformity, we design a heuristic
function (PREFERENCE in Algorithm 1) to capture the local
neighborhood and fill the grid accordingly.

6. Experimental Results

We implemented our approach using C++ programming
language with STL and Boost libraries. We use IBM CPLEX
Optimizer [17] to solve the integer linear program. We
performed the experiments based on the benchmarks pro-
vided by ICCAD 2016 Contest as shown in Table 1. A
1.7GHz dual-core system with a memory of 8GB is used to
perform the evaluation. Since the results reported in contest
and the papers are based on experiments conducted in
different platforms (8 Core 2.3GHz KVM Processors
and with 64GB memory), the runtime reported here is
used to get a rough estimation but not to be compared with
the previous results. In some test cases, we found the op-
timization to exceed the time limit of 2 hours as per the
contest. ,erefore, for practical purposes, linear/binary
search is performed for the minimal k value, where each
iteration of the optimization is limited by time threshold.
Without such time threshold, the optimization may con-
sume more than 2 hours.

From Table 2, it can be observed that the ILP formu-
lations, which solve the constrained clustering problem,
scale well for the test cases, due to the reduction in data size
after exact pattern matching is performed in prior steps.
Also, we observe that default case (exact pattern matching)
takes majority of the runtime (from Table 3). It can be easily
reduced with the parallelization of the exact pattern
matching tasks. In future work, the preprocessing steps
could be further optimized in order to reduce the bottleneck
of our tool and therefore achieve even faster overall runtime
for the tool.

Based on Table 4, we achieve better results in most of the
test cases in terms of the cluster count as compared to
previous work. Since we perform a search for the minimal k

value, where each iteration of the optimization is limited by
time threshold (for practical run times), optimality is not
seen in some of the test cases. Also, due to this search,
different cluster counts are seen for CHIP node and CHIP
edge, which should otherwise return the same optimal
cluster count, i.e., both CHIP node and CHIP edge are
optimal in theory. It is also observed that CHIP node is
better in practice as compared to CHIP edge in both runtime
and cluster count. Even though we do not adopt clip shifting,
we achieve results that are comparable to the results in [6],
which are best in terms of the cluster count so far but employ
clip shifting. Also, clip shifting could be easily added to our
formulations to further reduce the cluster count.

7. Conclusion

In this paper, we introduce the problem of layout pattern
classification in the integrated circuit design. With several
applications in design for manufacturability flow such as
hotspot library generation, hierarchical data storage, and
systematic yield optimization, clustering the hotspots
optimally with good quality representative hotspots is
important.

We formally introduce the hotspot clustering problem
and briefly discuss the overview of our proposed tool. ,en,
we introduce the two integer linear program formulations
which solve for optimal clusters for the pattern classification
problem in IC layout, subject to constraints given by ACC or
ECC. Apart from minimizing cluster count, we generate
representative clips that best represent the clusters.

(1) function CLIPGENERATION (cr, c)
(2) for each dimension in grid data structure do
(3) if crj

� Aj then
(4) fill the grid completely
(5) if crj

<Aj then
(6) if PREFERENCE (l, r, t, b) � x then
(7) while fill< crj

do
(8) fill the grid with horizontal rows of pixels
(9) if PREFERENCE (l, r, t, b) � y then
(10) while fill< crj

do
(11) fill the grid with vertical rows of pixels
(12) function PREFERENCE (l, r, t, b)
(13) neighbors � [crl

, crr
, crt

, crb
];

(14) sort the neighbors vector in descending order;
(15) if most filled cell is left or right then return y
(16) else return x

ALGORITHM 1: Representative clip generation.

Table 1: Benchmarks from ICCAD 2016.

Test case No. of markers No. of polygons Clip size
1 16 77 200 × 200
2 200 845 200 × 200
3 5068 9779 200 × 200
4 264824 147764 250 × 250
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We achieve better results in majority of the test cases as
compared to the existing results published in the literature
and the reference results reported in ICCAD 2016 contest
website. Although the runtime of the ILP is more than the
other methods, our main focus in this work is to develop a
generic framework to cluster the hotspots in a layout op-
timally. ,ese formulations describe the given problem
exactly unlike other works in the literature which try to
adapt the existing clustering algorithms to this problem, with
some postprocessing steps. In future work, clip shifting can
be adopted to the tool flow to increase the solution space and
thereby further reduce the cluster count.
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