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E-Beam Lithography Character and Stencil
Co-Optimization

Wai-Kei Mak, Member, IEEE, and Chris Chu, Fellow, IEEE

Abstract—Electron-beam maskless lithography is being ac-
tively explored by the semiconductor industry for chip production
in the sub-22nm regime. Character projection allows in one e-
beam shot the printing of complex pattern rather than merely a
single rectangle or triangle as in variable-shaped beam projection.
However, those circuit patterns that do not match any character
on the stencil still have to be written by variable-shaped beam
projection. We investigate a new problem of character and stencil
co-optimization with blank space sharing between characters so
as to minimize the total number of shots required for printing a
circuit. We exploit the fact that the blank spaces on the sides of
a character can be adjusted by moving the pattern to be printed
within its projection region to facilitate blank space sharing so
as to pack more characters into the stencil. Even though the
co-optimization problem is shown to be NP-complete, we are
able to design an elegant approximation algorithm, CASCO.
Experiments confirm that the solutions by CASCO are nearly
optimal. Compared to the published state of the art, CASCO
reduces the shot count by 1.59× while it is also orders of
magnitude faster.

Index Terms—e-beam lithography, character projection, stencil
design.

I. INTRODUCTION

To extend Moore’s law, different solutions like exten-
sions of 193 immersion with multiple patterning, extreme
ultraviolet (EUV) lithography, directed self-assembly (DSA),
nanoimprint, and electron beam (e-beam) lithography [1]–[3]
are being explored by the semiconductor industry. E-beam
lithography directly shoots e-beams onto a wafer to define
nanometer structures of a circuit. E-beam lithography has
several advantages. Compared to optical lithography, it has
very high resolution and has no depth of focus problem. In
addition, e-beam direct write avoids the ever-rising mask costs.
But the key issue with e-beam direct write is the time it takes
to write a wafer.

The throughput of an e-beam writing system using the
traditional variable-shaped beam (VSB) method [4] is very
low. In the VSB method, the patterns to be printed are divided
into constituent rectangles and triangles as in Fig. 1(a), and
each of which is shot onto the wafer sequentially. So the
method of character projection (CP) as shown in Fig. 2
has been introduced to improve the throughput of e-beam

This work was supported in part by the National Science Council under
Grant NSC 102-2220-E-007-013.

Wai-Kei Mak is with the Department of Computer Science, National Tsing
Hua University, 101 Kuan Fu Rd. Sec. 2, Hsinchu, Taiwan 300 R.O.C. (email:
wkmak@cs.nthu.edu.tw).

Chris Chu is with the Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50010 (email: cnchu@iastate.edu).

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

lithography [5]. In CP, a character represents some complex
pattern within an area of several square microns that can be
projected in just one shot (as in Fig. 1(b)). A collection of
characters corresponding to some frequently utilized patterns
are implemented in a stencil. For a given layout, any pattern
corresponding to a character in the stencil can be printed in
one shot. Remaining patterns that do not match any character
would be printed by VSB. Since character projection can
significantly reduce the shot count, which is directly propor-
tional to the writing time, the throughput of e-beam writing
system can be significantly improved. Besides, the throughput
of shooting a wafer can be further increased by employing a
multi-beam system [1], [2].

Fig. 1. (a) VSB requires four shots to print the pattern. (b) CP requires just
a single shot.

Fig. 2. An e-beam writing system for CP.

In conventional stencil design, characters are placed in a
regular 2-D array on the stencil as shown in Fig. 3. An e-
beam writing system uses electrostatic deflection (see Fig. 2)
to switch between characters on the stencil instantaneously
without any physical movement of the stencil, which would
require re-calibration and take orders of minutes. The maxi-
mum size of a stencil is constrained to maintain the accuracy
of e-beam deflection. This limits the number of characters that
can be put on a stencil. Stencil design for the front-end-of-line
layers of standard cell-based devices are considered in [6]–[9].
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Character and/or stencil design for interconnect layers and via
layers are addressed in [8]–[11].

Fig. 3. Typical arrangement of characters on a stencil.

When an e-beam is projected onto the stencil, it covers
a region which we call the projection region (see Fig. 2).
The size of the projection region, which is determined by the
shaping aperture, should be larger than the bounding box of the
pattern in a character. Since character patterns vary greatly, a
character is usually surrounded by considerable blank spaces
on its four sides in its enclosing projection region. To pack
more characters onto a stencil, Yoshida et al. [12] and Fujimura
[13] pointed out that one can overlap the blank spaces of
neighboring projection regions as illustrated in Fig. 4.

Fig. 4. (a) Two characters are placed side by side without overlapping of
blank spaces. (b) The characters are placed with overlapping of blank spaces.

The problem formulation in Yuan et al. [8] and Yu et al. [9]
assumed that for each character, the location of the pattern to
be printed within its projection region was arbitrarily set. They
made no attempt to adjust the location of the pattern. We want
to point out that the character projection systems actually allow
the pattern of a character to be located anywhere within its
enclosing projection region as long as they are not too close to
the boundary.1 Hence, we propose a new problem of character
and stencil co-optimization with blank space sharing for a cell-
based chip in which we exploit this flexibility to co-optimize
the character and stencil design. Our main contributions are
summarized as follows.

1) We point out that there is a degree of freedom in
packed stencil design which was overlooked in previous
publications. By exploiting the flexibility of placing
the pattern of a character almost anywhere within its
enclosing projection region, more characters can be
packed and the throughput of e-beam writing can be
improved.

1Previous works on character design like [10], [11] simply assume that a
pattern has to be within its enclosing projection region, but in Section II, we
point out that a safety margin must be left in practice.

2) We formulate a new character and stencil co-
optimization problem to make optimal use of a stencil.

3) We show that character and stencil co-optimization is
NP-complete.

4) We design a very efficient approximation algorithm
CASCO for character and stencil co-optimization that
produces near optimal results.

The rest of the paper is organized as follows. In Section II,
we formally define our character and stencil co-optimization
problem. In Section III-A, we prove that the problem is NP-
complete. In Section III-B, we introduce the notion of tight
packing and derive some interesting properties which serve as
the basis for solving the character and stencil co-optimization
problem nearly optimally. In Section IV, we present our algo-
rithm CASCO and show its performance bound. Experimental
comparisons are reported in Section V. Finally, a conclusion
is given in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

It is easy to see that each time an e-beam is shot through
the shaping aperture onto the stencil (see Fig. 2), it will only
cover a certain region on the stencil. As pointed out by [12],
in practice there could be some stray or scattered electrons
from the e-beam shaped by the shaping aperture. In Fig. 5,
we use the dotted boundary to represent the projection region
boundary after accounting for stray electrons. The effective
printing region is the area where the e-beam from the shaping
aperture is supposed to cover ideally. The area outside the
effective printing region but within the dotted boundary is
the area where some stray electrons may reach. The required
safety margin depends on the degree and amount of anticipated
scattering and straying of electrons of the e-beam passing
through the shaping aperture [12].

Fig. 5. Effective printing region and safety margin of an e-beam shot on the
stencil.

In order to print characters on the wafer with no loss of
accuracy, the following conditions have to be satisfied. First,
the pattern of each character must lie within the effective
printing region. Second, the pattern of any character A cannot
overlap with the projection region of another character B.
Otherwise, partial image of character A would be printed
erroneously when printing character B. However, the blank
space of two neighboring characters may overlap as in the
example of Fig. 4(b).

We notice that as long as the two conditions above are
satisfied, the e-beam writing system can print any character
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with the pattern located anywhere within its effective printing
region. We show by an example in Fig. 6 that this flexibility
can be exploited to increase the number of characters packed
in a stencil. Fig. 6(a) shows three characters A to C, and
the available character area of a stencil. Note that the blank
spaces in the three characters are quite different because the
widths of the three patterns are different. The approach in
[8] would try to pack them all into the available character
area by heuristically maximizing the amount of shared blank
space between neighboring projection regions. However, even
though the stencil design in Fig. 6(b) would maximize blank
space sharing, the total required width would still exceed that
of the stencil. So only two characters A and C can be packed
into the stencil. On the other hand, if we relocate the character
patterns within their effective printing regions as in Fig. 6(c),
all three characters can be packed onto the stencil as shown
in Fig. 6(d). Note that it is not a problem for the blank space
of a projection region to lie outside of the available character
area of the stencil [12] since it is easy to filter out the part of
the beam that falls outside the stencil.

Fig. 6. (a) Three characters and a stencil. (b) The approach in [8] considers
stencil design alone and cannot pack all three characters. (c) The character
patterns are relocated within their effective printing regions. (d) All three
characters can be packed after character and stencil co-optimization.

In this paper, we assume that a set of character patterns is
given. We also assume that standard cells are implemented
by the characters and all standard cells are of the same
height. Hence, the heights of the character pattern for different
characters are equal. However, the widths of the character
patterns are largely different. Selected characters are arranged
in a row-based manner on a stencil. To minimize wastage of
inter-row blank space, a character pattern is placed within its
projection region such that the top blank space and the bottom
blank space are equal. In this way, the bottom blank space of
a row of characters can completely overlap with the top blank
space of the row of characters below as in Fig. 7. As a result,
the number of rows that can fit into a stencil is fixed.

We introduce our notations and define the character and
stencil co-optimization problem below.

Fig. 7. Row-based stencil design.

• E denotes the width of the projection region for an e-
beam shot.

• S denotes the safety margin from the effective printing
region to the projection region boundary for an e-beam
shot.

• W denotes the width of the available character area of
the stencil.

• R denotes the number of character rows that can fit in
the stencil.

• wc denotes the width of the pattern of character c. For
simplicity, we will refer to the width of the pattern of a
character as the character width in the rest of the paper.

• rc denotes the number of occurrence of character c in a
circuit.

• nV SBc
denotes the number of e-beam shots required to

print character c by the VSB method.
Def 1 (Character and Stencil Co-Optimization): Given the

values of E, S, W , and R for an e-beam writing system,
and a set of character patterns extracted for a circuit with the
values of wc, rc, and nV SBc for each character c, select a
subset of character patterns and place them on the stencil in a
row-based manner to maximize the shot saving with character
projection for printing the entire circuit under the following
constraints: (1) The pattern of each character must lie within
the effective printing region. (2) The pattern of each character
cannot lie within the projection region of any other character.
(3) The patterns of all characters must lie within the available
character area of the stencil.

We call this the character and stencil co-optimization prob-
lem since the placement location of each selected character
on the stencil and the placement location of the pattern within
each selected character have to be optimized simultaneously
as in Fig. 6(d). It is easy to see that for each character c, its
width wc must satisfy wc ≤ E − 2S or the character pattern
cannot lie within the effective printing region of an e-beam
shot. So we will assume that wc ≤ E−2S for any character c
throughout the rest of the paper.

III. SINGLE-ROW CHARACTER PACKING

In this section, we consider the single-row character packing
(SRCP) problem, which is related to character and stencil co-
optimization. The SRCP problem is shown to be NP-complete.
On the other hand, we also derive some interesting theoretical
results which will be used as the basis for solving the character
and stencil co-optimization problem nearly optimally.

Def 2 (Single-Row Character Packing): Given a set of
character patterns, place them into a single row to minimize the
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row width subject to the constraints below: (1) The pattern of
each character must lie within the effective printing region. (2)
The pattern of each character cannot lie within the projection
region of any other character. (3) The patterns of all characters
must lie within the row.

A. SRCP is NP-Complete

The decision version of the SRCP problem is to determine
if a set of characters can all be packed into a single row of
width W .

Lemma 1: Determining if a set of characters can all be
packed into a single row of width W is NP-complete.
The proof of this lemma is included in the appendix.

The above lemma implies that the character and stencil
co-optimization problem is also NP-complete. Consider the
character and stencil co-optimization problem for a stencil
with only one row. The decision version of the single-row
character and stenicl co-optimization problem is to determine
if we can select a subset of characters from C and pack them
into a row of width W to achieve a shot saving of at least n.
If we take n to be

∑
c∈C rc(nV SBc

− 1), then determining if
we can select a subset of characters from C and pack them
into a row of width W to achieve a shot saving of at least
n =

∑
c∈C rc(nV SBc

− 1) is equivalent to determining if all
characters in C can be packed into a single row of width W .
But the latter problem is NP-complete by Lemma 1. Hence,
the character and stencil co-optimization problem must be NP-
complete.

Corollary 1: The character and stencil co-optimization prob-
lem is NP-complete.

B. Properties and Construction of Tight Packing

Since the SRCP problem is NP-complete, it is unlikely that
it can be solved optimally in polynomial time. However, we
show that if one can find a tight packing, it will not be far
from optimal. Moreover, we show that a tight packing of
k characters can be constructed in O(k log k) time.

We assume the characters in a packing are indexed from
left to right by 1, 2, 3, . . .. We call a packing tight if for any
two neighboring characters i and i+ 1, the right blank space
of character i and the left blank space of character i + 1 are
exactly equal and completely overlap. For example, Fig. 8(a)
shows a tight packing of six characters and Fig. 8(b) shows a
tight packing of five characters. Note that in Fig. 8, each thick
double arrow represents a distance of at least S. Hence, all
character patterns are within their respective effective printing
regions. Moreover, the pattern of each character is outside of
the projection regions of all other characters.

It is interesting to note that the expression for the width
of a tight packing depends on whether there is an even or
an odd number of characters. Moreover, the width of a tight
packing of an even number of characters depends on the width
of the left blank space of the first character while the width
of a tight packing of an odd number of characters does not.
For example, the width of the tight packing in Fig. 8(a) is
equal to w2 + w4 + w6 + 3E − s0 while the width of the
tight packing in Fig. 8(b) is equal to w1 + w3 + w5 + 2E.

Fig. 8. (a) A tight packing with an even number of characters. (b) A tight
packing with an odd number of characters. (Characters with even indexes are
shifted down a bit to show the projection regions of different characters more
clearly.)

In general, it is not difficult to see that for a tight packing of
k characters where k is even, the packing width is given by
w2+w4+ . . .+wk +kE/2− s0 where s0 is the width of the
left blank space of the first character. On the other hand, for
a tight packing of k characters where k is odd, the packing
width is given by w1 + w3 + . . .+ wk + (k − 1)E/2.

Alternatively, we may express the width of a tight packing in
terms of the effective widths of its characters as shown below.
The effective width of a character c is defined as (wc+E)/2.

Lemma 2: For a packing P of k characters, let W (P ) denote
the width of P , wi(P ) denote the width of the i-th character
(i = 1, 2, . . . , k), s0(P ) denote the width of the left blank
space of the first character, and sk(P ) denote the width of the
right blank space of the last character in P .
For a tight packing Pt,

W (Pt) =

k∑
i=1

(wi(Pt) + E)/2− s0(Pt)/2− sk(Pt)/2 (1)

For an arbitrary packing Pa,

W (Pa) ≥
k∑

i=1

(wi(Pa) + E)/2− s0(Pa)/2− sk(Pa)/2 (2)

Proof: For a tight packing Pt, the right blank space of
the i-th character and the left blank space of the (i + 1)-th
character are exactly equal and completely overlap for i =
1, 2, . . . , k − 1. So, its width can be expressed as W (Pt) =∑k

i=1 wi(Pt) +
∑k−1

i=1 si(Pt) where si(Pt) denote the width
of the right blank space of the i-th character in Pt.

For each character i in Pt, we have si−1(Pt) + wi(Pt) +
si(Pt) = E since its left and right blank spaces are equal to
si−1(Pt) and si(Pt), respectively. Hence,

∑k
i=1(si−1(Pt) +

wi(Pt) + si(Pt)) = kE. It implies that 2 ×
∑k−1

i=1 si(Pt) =
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kE−
∑k

i=1 wi(Pt)−s0(Pt)−sk(Pt). So, the width of a tight
packing Pt can be rewritten as

W (Pt) =

k∑
i=1

wi(Pt)/2 + (kE − s0(Pt)− sk(Pt))/2

=

k∑
i=1

(wi(Pt) + E)/2− s0(Pt)/2− sk(Pt)/2.

For an arbitrary packing Pa, we let gi(Pa) be the width of
the gap between the i-th and (i + 1)-th character patterns
in Pa for i = 1, 2, . . . , k − 1, and let g0(Pa) be s0(Pa)
and gk(Pa) be sk(Pa). Then Pa’s width can be expressed as
W (Pa) =

∑k
i=1 wi(Pa)+

∑k−1
i=1 gi(Pa). Note that gi−1(Pa)+

wi(Pa) + gi(Pa) ≥ E for each character i. It implies that
2 ×

∑k−1
i=1 gi(Pa) ≥ kE −

∑k
i=1 wi(Pa) − s0(Pa) − sk(Pa).

So,

W (Pa) ≥
k∑

i=1

(wi(Pa) + E)/2− s0(Pa)/2− sk(Pa)/2.

Equation (1) tells us that the width of any tight packing Pt

is less than the total effective width of its characters by
s0(Pt)/2 + sk(Pt)/2. In fact, we can show that the width
of any tight packing is not far from optimal.

Lemma 3: Given k characters, the width of any tight packing
is less than E − 2S away from the minimum width packing.

Proof: Consider a tight packing Pt and an optimal pack-
ing P ∗.

By Equation (1) and Equation (2), we get

W (Pt)−W (P ∗) ≤ (s0(P
∗) + sk(P

∗)− s0(Pt)− sk(Pt))/2

as
∑k

i=1 wi(Pt) =
∑k

i=1 wi(P
∗).

Since s0(P ∗) ≤ E − S − w1(P
∗) and sk(P ∗) ≤ E − S −

wk(P
∗), while s0(Pt) ≥ S and sk(Pt) ≥ S, it implies that

W (Pt)−W (P ∗)

≤ (E − S − w1(P
∗) + E − S − wk(P

∗)− S − S)/2
< E − 2S

Hence, the width of Pt is less than E − 2S away from the
width of P ∗.
In the following, we derive the necessary and sufficient
conditions for the existence of a tight packing under a given
character order. Subsequently, we propose some simple ways
to construct a tight packing given k characters.

Lemma 4: Suppose a character order is given and wi denotes
the width of the i-th character from the left. The necessary and
sufficient conditions for the existence of a tight packing under
the given character order are:

s0 ≥ S

E ≥ S + s0 + w1

s0 + w1 ≥ S + w2

E + w2 ≥ S + s0 + w1 + w3

s0 + w1 + w3 ≥ S + w2 + w4

E + w2 + w4 ≥ S + s0 + w1 + w3 + w5

Fig. 9. Conditions for a tight packing.

s0 + w1 + w3 + w5 ≥ S + w2 + w4 + w6

...

where s0 denotes the width of the left blank space of the first
character.

Proof: Refer to Fig. 9 which shows a tight packing. The
length of each double-headed arrow must be greater than or
equal to the safety margin S. Hence, we have

s0 ≥ S

(E − s0)− w1 ≥ S

(w1 + E)− (w2 + E − s0) ≥ S

(w2 + 2E − s0)− (w1 + w3 + E) ≥ S

(w1 + w3 + 2E)− (w2 + w4 + 2E − s0) ≥ S

(w2 + w4 + 3E − s0)− (w1 + w3 + w5 + 2E) ≥ S

(w1 + w3 + w5 + 3E)− (w2 + w4 + w6 + 3E − s0) ≥ S

...

After simplification and re-arrangement, we can get the con-
ditions listed in the lemma.

Lemma 5: A tight packing can be constructed with any
character as the first character and the remaining characters
ordered in decreasing width.

Proof: Note that the conditions in Lemma 4 will be
satisfied if w2 ≥ w3 ≥ . . . ≥ wk as long as it is also true
that s0 ≥ S, E ≥ S + s0 + w1, and s0 + w1 ≥ S + w2. If
we set s0 to E − S − w1, then s0 ≥ S, E ≥ S + s0 + w1,
and s0 + w1 ≥ S + w2 are all true since w1 ≤ E − 2S and
w2 ≤ E − 2S by assumption. Hence, a tight packing can be
constructed if the second to the last characters are ordered in
decreasing width.

Fig. 10 shows several tight packings of four characters with
widths 8, 7, 5 and 2. In this example, we assume E = 10 and
S = 1. In each tight packing, a different character is used as
the first character and the remaining characters are ordered in
decreasing width.

By Lemma 5, any character can be used as the first character
to construct a tight packing. A natural question is which
character should be chosen as the first character in order to
minimize the packing width. We answer the question in the
lemma below. In short, the character with the smallest width
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Fig. 10. Tight packings of four characters with widths 8, 7, 5 and 2. We
assume E = 10 and S = 1 here. Different characters are used as the first
character.

should be chosen as the first character. In the next section, we
will apply this result in our design of the character and stencil
co-optimization algorithm.

Lemma 6: Suppose the width of character cj (j = 1, 2,
. . . , k) is uj and u1 ≥ u2 ≥ . . . ≥ uk. Let Wj denote the
minimum tight packing width with cj as the first character and
the remaining characters ordered in decreasing width. Then,
W1 ≥W2 ≥ . . . ≥Wk.

Proof: We consider the cases for even and odd k sepa-
rately since the expression for the width of a tight packing
depends on whether there is an even or odd number of
characters.

Case 1: k is odd. Recall that for an odd number of charac-
ters, the width of a tight packing is given by w1 +w3 + . . .+
wk + (k − 1)E/2 where wi is the width of the i-th character
from the left in the packing. By definition, Wj is the minimum
tight packing width when the character sequence is (cj , c1, c2,
c3, . . . , cj−1, cj+1, cj+2, cj+3, . . . , ck). So,

Wj =



uj + u2 + u4 + . . .+ uj−1
+uj+2 + uj+4 + . . .+ uk
+(k − 1)E/2 if j is odd

uj + u2 + u4 + . . .+ uj−2
+uj+1 + uj+3 + . . .+ uk
+(k − 1)E/2 if j is even

Similarly, Wj+1 is the minimum tight packing width when
the character sequence is (cj+1, c1, c2, c3, . . . , cj , cj+2, cj+3,

cj+4, . . . , ck). So,

Wj+1 =



uj+1 + u2 + u4 + . . .+ uj−1
+uj+2 + uj+4 + . . .+ uk
+(k − 1)E/2 if j is odd

uj+1 + u2 + u4 + . . .+ uj−2
+uj + uj+3 + uj+5 + . . .+ uk
+(k − 1)E/2 if j is even

It implies that

Wj −Wj+1 =

{
uj − uj+1 if j is odd
0 if j is even

≥ 0

Hence, we have W1 ≥W2 ≥ . . . ≥Wk.
Case 2: k is even. Recall that for an even number of

characters, the width of a tight packing is given by w2 +
w4 + . . .+wk + kE/2− s0 where wi is the width of the i-th
character from the left in the packing and s0 is the left blank
space of the first character. s0 should be adjusted to minimize
the width, therefore s0 should be set to E −S −w1 since the
right blank space of the first character cannot be smaller than
the safety margin S. Then, the packing width can be expressed
as w2 + w4 + . . .+ wk + kE/2− (E − S − w1).

By definition, Wj is the minimum tight packing width when
the character sequence is (cj , c1, c2, c3, . . . , cj−1, cj+1, cj+2,
cj+3, . . . , ck). So,

Wj =



u1 + u3 + . . .+ uj−2
+uj+1 + uj+3 + . . .+ uk
+kE/2− (E − S − uj) if j is odd

u1 + u3 + . . .+ uj−1
+uj+2 + uj+4 + . . .+ uk
+kE/2− (E − S − uj) if j is even

Similarly, Wj+1 is the minimum tight packing width when
the character sequence is (cj+1, c1, c2, c3, . . . , cj , cj+2, cj+3,
cj+4, . . . , ck). So,

Wj+1 =



u1 + u3 + . . .+ uj−2 + uj
+uj+3 + uj+5 + . . .+ uk
+kE/2− (E − S − uj+1) if j is odd

u1 + u3 + . . .+ uj−1
+uj+2 + uj+4 + . . .+ uk
+kE/2− (E − S − uj+1) if j is even

It implies that

Wj −Wj+1 =

{
0 if j is odd
uj − uj+1 if j is even

≥ 0

Hence, we have W1 ≥W2 ≥ . . . ≥Wk again.
For the example in Fig. 10, u1 = 8, u2 = 7, u3 = 5 and

u4 = 2. According to Fig. 10, W1(= 28) ≥ W2(= 28) ≥
W3(= 26) ≥W4(= 26). This example confirms Lemma 6.
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IV. CASCO: ALGORITHM FOR CHARACTER AND STENCIL
CO-OPTIMIZATION

Here we present our main algorithm, CASCO, for char-
acter and stencil co-optimization. We want to maximize the
shot saving with character projection by selecting appropriate
characters, placing them properly in their effective printing
regions, and packing them tightly onto a stencil.

The shot saving of printing a character c by CP instead of
VSB is rc(nV SBC

−1) where rc is the number of occurrence of
character c in the circuit and nV SBc

is the number of e-beam
shots required to print c by VSB. We define the efficiency of
a character c as its shot saving per unit effective width, i.e.,
2rc(nV SBC

− 1)/(wc +E). Recall that the effective width of
character c is (wc + E)/2.

We will utilize a simple condition for checking whether a set
of characters C can be packed within a row without exceeding
the stencil width W in our algorithm. Suppose∑

c∈C
(wc + E)/2− (E − wmin(C))/2 ≤W (3)

where min(C) is the minimum width character in C, then all
characters in C can be packed within a row of the stencil. The
above is a sufficient condition since Lemma 5 and Equation (1)
imply that there exists a tight packing of C with width no more
than

∑
c∈C(wc +E)/2− (E − S −wmin(C))/2− S/2 if we

use min(C) as the first character and set the width of its left
blank space to E − S − wmin(C).

The CASCO algorithm is shown in Algorithm 1. We process
each character in decreasing order of efficiency in the for loop
from lines 3 to 12. The characters are inserted into the stencil
row by row until all rows are used up. It is worthy to note
that in lines 5 and 7, we simply insert a character into a row
without ordering or constructing any packing for the characters
in the row. But the character insertion criterion in line 4 can
ensure that we will never put too many characters into a row.
Only in line 13, we construct a tight packing for the characters
inserted into each row according to Lemma 5 with the row’s
minimum width character as its first character as suggested by
Lemma 6. The final for loop from lines 14 to 16 attempts to
greedily pack one extra character to the end of each row to
increase the shot saving.

Our next lemma shows a performance guarantee of CASCO.
Lemma 7: The shot saving by CASCO is more than (W −

wmax)/(W + E − S − wmin) of the optimal, where wmax

and wmin are the maximum width and minimum width over
all characters, respectively.

Proof: To prove our lemma, we first show that for any
optimal solution, the total effective width of all characters
cannot exceed R(W + E − S − wmin). Second, we argue
that the total effective width of all characters picked by
CASCO upon exiting the for loop at line 12 already exceeds
R(W − wmax).

1. We want to show that for any optimal solution, the total
effective width of all characters is no more than R(W +E −
S−wmin). Suppose O∗ is an optimal solution. Let P ∗j be the
packing of characters in row j of O∗.

By (2), W (P ∗j ) is at least
∑

c∈P∗
j
(wc + E)/2 − a∗j/2 −

b∗j/2 where a∗j is the width of the left blank space of the first

Algorithm 1 CASCO
1: Sort all characters in decreasing order of efficiency;
2: j = 1;
3: for each character x in sorted order do
4: if x can be inserted into row j according to Equation (3)

then
5: Insert x into row j;
6: else if j < R then
7: Insert x into row j + 1;
8: j = j + 1;
9: else

10: break;
11: end if
12: end for
13: For each row, construct a tight packing by putting its

minimum width character f first and then other characters
in decreasing width, and setting the left blank space of f
to E − S − wf ;

14: for each row j do
15: Tightly pack at the end of row j an unused character

with largest possible shot saving without exceeding the
stencil width, if possible;

16: end for

character and b∗j is the width of the right blank space of the
last character in P ∗j . Now, both a∗j and b∗j must be less than
E − S − wmin. So, W (P ∗j ) is at least

∑
c∈P∗

j
(wc + E)/2−

(E − S − wmin).
On the other hand, W (P ∗j ) must be no more than the stencil

width W . Hence,
∑

c∈P∗
j
(wc + E)/2 − (E − S − wmin) ≤

W (P ∗j ) ≤W which implies
∑

c∈P∗
j
(wc+E)/2 ≤W +(E−

S−wmin). As a result,
∑

c∈O∗(wc+E)/2 ≤ R[W+(E−S−
wmin)]. Therefore, the total effective width of all characters
in O∗ is bounded by R(W + E − S − wmin).

2. We want to show that the total effective width of all
characters picked by CASCO upon exiting the for loop at
line 12 is more than R(W − wmax). Let Cj be the set of
characters in row j upon exiting the for loop at line 12 of
CASCO.

We claim that for each row j,
∑

c∈Cj
(wc + E)/2 > W −

wmax. Otherwise, assume to the contrary that
∑

c∈Cj′
(wc +

E)/2 ≤ W − wmax for some row j′. Let c′ be the first
character following those characters inserted into row j′ in the
sorted list of line 1. If

∑
c∈Cj′

(wc+E)/2 ≤W −wmax, then∑
c∈Cj′

(wc +E)/2 + (w′c +E)/2− (E −wmin(Cj′∪{c′}))/2

≤ (W − wmax) + (w′c + E)/2 − (E − wmin(Cj′∪{c′}))/2
= W − (2wmax − wc′ − wmin(Cj′∪{c′}))/2 ≤ W . Therefore,
the character insertion condition in Equation (3) would have
been true and c′ would have been inserted into Cj′ by line 5.
Hence,

∑
c∈Cj′

(wc + E)/2 must be larger than W − wmax.
So,

∑
c∈Cj

(wc + E)/2 > W − wmax for all row j upon
exiting the for loop at line 12 of CASCO. Hence, the total
effective width of all characters picked by CASCO upon
exiting the for loop at line 12 exceeds R(W − wmax).

By parts 1 and 2 above, and the fact that all characters
picked by CASCO before exiting the for loop at line 12 have



8

higher shot saving per unit effective width than any other
characters, we can conclude that the shot saving by CASCO is
more than (W −wmax)/(W +E−S−wmin) of the optimal.

V. EXPERIMENTAL RESULTS

We have implemented our algorithm CASCO in C and
tested it on a Linux server with a 2.67 GHz Intel processor and
47 GB of memory. We compare CASCO with the methods in
[8] and [9] on stencil design for standard cell-based circuits.
We have obtained executable code and benchmarks from the
authors of [8] and [9].

In the first experiment, benchmarks 1D-1 to 1D-4 from
[9] were used. Each benchmark contains 1000 character can-
didates and the available area of the stencil is 1000µm ×
1000µm. Before we can use their benchmarks, we need to
define the effective printing region (or equivalently, the safety
margin) of each benchmark. For each benchmark, we set the
effective printing region to be the smallest value possible (i.e.,
the safety margin to be the biggest value possible) such that all
original character patterns are still within the effective printing
region.2

In Table I, we report the values of E and S for each
benchmark as well as the results of upper bound3, [8], [9],
and CASCO. Columns 4, 6, 9, and 12 report the number of
shots that can be saved if CP is also used. Columns 5, 7, 10,
and 13 report the number of characters that can be packed
in the stencil.4 The runtimes of [8], [9], and CASCO are
listed in columns 8, 11, and 14, respectively. It can be seen
that CASCO achieves near optimal shot saving on all four
benchmarks. Moreover, as CASCO exploits (1) the flexibility
of placing a character pattern anywhere within its enclosing
effective printing region to increase the amount of blank space
sharing between adjacent characters and (2) the flexibility that
the blank space of a character can lie outside of the available
character area of the stencil, the number of characters packed
in the stencil is about 4% to 5% more than [8] and [9]. It also
increases the shot saving by about 11% and 3% compared
to [8] and [9], respectively. Finally, CASCO is orders of
magnitude faster than the other two methods.

Besides the four benchmarks from [9], we created some
harder benchmarks (1D-1h to 1D-4h) for more testing. We
randomly generated 200 extra character candidates with char-
acteristics similar to other character candidates into each of the
original benchmarks while keeping the stencil size unchanged.
The results are shown in Table II. The shot savings by CASCO
are again less than 1% away from the upper bound values.
Comparing the results in Table II to the results in Table I,
we can observe that the solution quality of [8] degraded with

2In other words, S is set to the minimum original blank space on both
sides over all characters.

3Since we have shown in the proof of Lemma 7 that the total effective width
of all characters in an optimal solution cannot exceed R(W+E−S−wmin).
An upper bound on shot saving can be obtained by a linear relaxation of a
0-1 knapsack problem with capacity R(W +E − S −wmin) such that the
profit and weight of each item correspond to the shot saving and effective
width of each character in our problem.

4As the authors of [8] and [9] have given us the updated versions of their
codes, their results here are slightly better than those reported in [9].

#shots needed

Circuit VSB only [8] E-BLOW [9] CASCO

1D-1 770543 50809 27636 14491

1D-2 770543 93465 44263 27812

1D-3 770543 152376 78704 57698

1D-4 770543 193494 107460 79930

Normalized 25.97 2.98 1.59 1.00

1D-1h 922770 165471 85153 61167

1D-2h 922770 210722 117370 88986

1D-3h 922770 279757 169347 137811

1D-4h 922770 327572 207009 171594

Normalized 9.38 2.25 1.29 1.00
TABLE III

NUMBER OF SHOTS NEEDED BY FOUR DIFFERENT METHODS ON
BENCHMARKS FROM [9] AND ON HARDER BENCHMARKS.

harder benchmarks while the runtime of [9] increased quickly
with harder benchmarks. However, both the solution quality
and runtime are very stable for CASCO irrespective of the
difficulty of the benchmarks.

In Table III, we show the effectiveness of CASCO in
reducing the writing time of e-beam lithography, which is pro-
portional to the number of shots needed. For the benchmarks
from [8], the writing time of CASCO is 25.97× shorter than
a system using VSB only, 2.98× shorter than that of [8], and
1.59× shorter than that of [9]. For the harder benchmarks,
the writing time of CASCO is 9.38× shorter than a system
using VSB only, 2.25× shorter than that of [8], and 1.29×
shorter than that of [9]. For the harder benchmarks, inherently
a smaller fraction of all characters can be put in the stencil
and printed by CP, so the ratios are reduced compared to the
original benchmarks.

VI. CONCLUSIONS

We have introduced a new character and stencil co-
optimization problem to maximize the shot saving for the
method of character projection in e-beam lithography. We have
proved the NP-completeness of the problem and provided an
elegant approximation algorithm CASCO to solve the prob-
lem nearly optimally and very efficiently. CASCO performs
much better than the published state of the art [8] and [9]
mainly because it exploits the flexibility in the location of a
character pattern within its effective printing region. Finally,
we note that CASCO can be applied to the stencil design
of a multi-beam system [1], [2]. In a multi-beam system,
multiple beam columns furnished with their own stencils write
different regions of a wafer in parallel. The stencils for all
beam columns should be exactly the same and should not be
different from that of a single beam system since identical dies
are manufactured on a wafer.

APPENDIX: NP-COMPLETENESS PROOF FOR SRCP

In this appendix, we prove that the decision version of the
Single-Row Character Packing problem is NP-complete.
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Circuit Upper Bound [8] E-BLOW [9] CASCO

Name E(µm) S(µm) #shot saved #char. #shot saved #char. CPU(s) #shot saved #char. CPU(s) #shot saved #char. CPU(s)

1D-1 3.8 0.2 758577.9 986.2 719734 926 12.51 742907 935 2.66 756052 970 <0.0005

1D-2 4.0 0.3 745922.5 912.5 677078 854 10.49 726280 863 2.13 742731 898 <0.0005

1D-3 4.2 0.3 717776.8 805.1 618167 749 8.10 691839 758 3.45 712845 791 <0.0005

1D-4 4.4 0.3 696221.5 746.5 577049 687 6.78 663083 699 3.63 690613 734 <0.0005

Normalized 100.00% 100.00% 88.66% 93.14% 96.73% 94.29% 99.44% 98.34%
TABLE I

COMPARISON OF SHOT SAVING AND CHARACTERS PACKED BY CASCO AGAINST AN UPPER BOUND, [8] AND E-BLOW [9] ON BENCHMARKS FROM [9].

Circuit Upper Bound [8] E-BLOW [9] CASCO

Name E(µm) S(µm) #shot saved #char. #shot saved #char. CPU(s) #shot saved #char. CPU(s) #shot saved #char. CPU(s)

1D-1h 3.8 0.2 866746.5 988.7 757299 926 12.39 837617 938 5.58 861603 974 <0.0005

1D-2h 4.0 0.3 840517.7 914.8 712048 851 13.35 805400 865 4.35 833784 899 <0.0005

1D-3h 4.2 0.3 792379.0 808.6 643013 752 10.08 753423 763 3.81 784959 796 <0.0005

1D-4h 4.4 0.3 759893.0 748.6 595198 685 7.27 715761 699 13.23 751176 735 <0.0005

Normalized 100.00% 100.00% 82.89% 92.80% 95.43% 94.29% 99.13% 98.35%
TABLE II

COMPARISON OF SHOT SAVING AND CHARACTERS PACKED BY CASCO AGAINST AN UPPER BOUND, [8] AND E-BLOW [9] ON HARDER BENCHMARKS.

Lemma 1: Determining if a set of characters can all be
packed into a single row of width W is NP-complete.

Proof: First, the given problem is obviously in NP.
Next, we show that the partition problem [14], which is NP-
complete, polynomially transforms to the SRCP problem. The
partition problem is stated as follows. Given positive integers
v1, v2, . . ., vk, is there a subset T ⊆ {1, 2, . . . , k} such that∑

j∈T vj = V/2 where V =
∑k

j=1 vj?
Given a partition instance, we define a SRCP instance with

2k+2 characters where k of them have width v1, v2, . . ., vk,
and the remaining have width 0. The enclosure width E is set
to V and the safety margin S is set to 0. We now claim that
there is a subset T ⊆ {1, 2, . . . , k} such that

∑
j∈T vj = V/2

if and only if there is a packing of all 2k + 2 characters with
length (V + 2kE)/2.

(⇐) Suppose there exists a packing of the characters with
length (V + 2kE)/2. Assume in that packing, the character
widths from left to right are w1, w2, . . . , w2k+2. Note that
the distance d1 from the left of character 1 to the right of
character 2k+1 is at least w1+w3+ . . .+w2k+1+kE, while
the distance d2 from the left of character 2 to the right of
character 2k + 2 is at least w2 + w4 + . . . + w2k+2 + kE
as shown in Fig. 11. Hence, d1 + d2 ≥ V + 2kE. Now,
the length of the packing is the distance from the left of
character 1 to the right of character 2k + 2 which must be
greater than both d1 and d2. By our assumption, the length of
the packing is (V +2kE)/2, which implies (V +2kE)/2 ≥ d1
and (V + 2kE)/2 ≥ d2, and so V + 2kE ≥ d1 + d2. For all
the above to be true, d1, w1+w3+ . . .+w2k+1+kE, d2, and
w2+w4+. . .+w2k+2+kE must all be equal to (V +2kE)/2.
Therefore, w1+w3+. . .+w2k+1+kE = (V +2kE)/2, which
means w1 + w3 + . . . + w2k+1 = V/2. In other words, there
exists a subset T such that

∑
j∈T vj = V/2 for the given

partition instance.
(⇒) Suppose there exists a subset T such that

∑
j∈T vj =

Fig. 11. A packing of 2k + 2 characters.

V/2 for the given partition instance. We can construct a
packing of the characters with length (V +2kE)/2 as follows.

Let w1, w3, . . . , w2k+1 be the values of vj for all j ∈ T
together with k + 1 − |T | 0’s such that 0 = w1 ≤ w3 ≤
. . . ≤ w2k+1. Let w2, w4, . . . , w2k+2 be the values of vj for
all j ∈ T together with k + 1− |T | 0’s such that w2 ≥ w4 ≥
. . . ≥ w2k+2 = 0. Let s0, the width of the left blank space of
the first character, be E.

According to Lemma 4, we can construct a tight packing
in the order w1, w2, . . . , w2k+2 if the following conditions are
satisfied. (Note that the safety margin S is 0 by our assumption
here.)

s0 ≥ 0

E ≥ s0 + w1

s0 + w1 ≥ w2

E + w2 ≥ s0 + w1 + w3

s0 + w1 + w3 ≥ w2 + w4

E + w2 + w4 ≥ s0 + w1 + w3 + w5

s0 + w1 + w3 + w5 ≥ w2 + w4 + w6

...
E + w2 + w4 + . . .+ w2k ≥ s0 + w1 + w3 + . . .+ w2k+1
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s0 + w1 + w3 + . . .+ w2k+1 ≥ w2 + w4 + . . .+ w2k+2

Since s0 = E = V =
∑k

j=1 vj =
∑2k+2

j=1 wj , all the
inequalities above with s0 on the left hand side must be
satisfied. Moreover, since s0 = E, the rest of the inequalities
can be re-written as

w2 + w4 + . . .+ w2j ≥ w1 + w3 + . . .+ w2j+1 (4)

for j = 0, 1, . . . , k. Note that w2 +w4 + . . .+w2k+2 = w1 +
w3+ . . .+w2k+1 = V/2. And w2k+2 = 0 by our assumption,
which implies w2+w4+ . . .+w2k = w1+w3+ . . .+w2k+1.
In other words, Equation (4) holds for j = k. In addition,
since w2 ≥ w4 ≥ . . . ≥ w2k and w1 ≤ w3 ≤ . . . ≤ w2k+1,
by induction we can show that Equation (4) holds for j =
k− 1, k− 2, . . . , 1. Finally, Equation (4) also holds for j = 0
since w1 = 0 by assumption. Therefore, all the conditions
above are satisfied and by Lemma 4 we can construct a tight
packing in the order w1, w2, . . . , w2k+2.

Moreover, the width of the tight packing is w2+w4+ . . .+
wk+2+(2k+2)E/2−s0 = V/2+(2k+2)E/2−E = V/2+kE
= (V + 2kE)/2.
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