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As feature size is much smaller than the wavelength of illumination source of lithography equipments, resolution enhancement
technology (RET) has been increasingly relied upon to minimize image distortions. In advanced process nodes, pixelated mask
becomes essential for RET to achieve an acceptable resolution. In this paper, we investigate the problem of pixelated binary
mask design in a partially coherent imaging system. Similar to previous approaches, the mask design problem is formulated as
a nonlinear program and is solved by gradient-based search. Our contributions are four novel techniques to achieve significantly
better image quality. First, to transform the original bound-constrained formulation to an unconstrained optimization problem,
we propose a new noncyclic transformation of mask variables to replace the wellknown cyclic one. As our transformation is
monotonic, it enables a better control in flipping pixels. Second, based on this new transformation, we propose a highly efficient
line search-based heuristic technique to solve the resulting unconstrained optimization. Third, to simplify the optimization, instead
of using discretization regularization penalty technique, we directly round the optimized gray mask into binary mask for pattern
error evaluation. Forth, we introduce a jump technique in order to jump out of local minimum and continue the search.

1. Introduction

For modern very large-scale integration (VLSI) design, the
traditional VLSI physical design problems (e.g., floorplan-
ning [1–3], clustering [4, 5], placement [6], and routing)
used to play the critical role on coping with the ever-
increasing design complexity. However, as semiconductor
manufacturers move to advanced process nodes (especially
45 nm process and below), lithography has become a greater
challenge due to the fundamental constraints of optical
physics. Because feature size is much smaller than the
wavelength of illumination source (currently 193 nm), the
image formed on wafer surface is distorted more and
more seriously due to optical diffraction and interference
phenomena. The industry has been investigating various
alternatives (e.g., EUV lithography, E-beam lithography), but
none of them is ready in the foreseeable future. As a result,
semiconductor manufacturers have no choice but to keep
using the existing equipments in patterning the progressively
smaller features.

Given the limitation of lithography equipments, res-
olution enhancement technology (RET) such as optical
proximity correction (OPC), phase shift mask (PSM), and
double patterning has been increasingly relied upon to
minimize image distortions [7]. In recent years, pixelated
mask, which allows great flexibility in the mask pattern, has
become essential for RET to achieve better resolution.

For the design of pixelated mask, the most popular and
successful approach is to formulate it as a mathematical
program and solve it by gradient-based search [8–14].
Granik [8] considered a constrained nonlinear formulation.
Poonawala and Milanfar [9, 14, 15] proposed an uncon-
strained nonlinear formulation, and employed a regulariza-
tion framework to control the tone and complexity of the
synthesized masks. Ma and Arce [11, 16] presented a similar
unconstrained nonlinear formulation targeting PSM. Ma
and Arce [12, 16] focused on partially coherent illumination
and used singular value decomposition to expand the
partially coherent imaging equation by eigenfunctions into a
sum of coherent systems (SOCSs). All works discussed above
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utilized the steepest descent method to solve the nonlinear
programs. Ma and Arce [10] demonstrated that the conju-
gate gradient method is more efficient. The work of Yu and
Pan [17] is an exception to the mathematical programming
approach Instead, a model-based pixel flipping heuristic is
proposed.

In this paper, we focus on the design of pixelated binary
mask in a partially coherent imaging system (the techniques
proposed in this paper can all be easily extended to PSM
and other imaging systems). Similar to previous approaches,
we formulate the problem as an unconstrained nonlinear
program and solve it by iterative gradient-based search. The
main contributions of this paper are listed below.

(i) To transform the problem formulation from a
bounded optimization to an unconstrained one, we
propose a new noncyclic transformation of mask
variables to replace the widely used cyclic one. Our
transformation is monotonic and allows a better
control of flipping pixels.

(ii) Based on this new transformation, we present a
highly efficient line search-based technique to solve
the resulting unconstrained optimization. Because
of the non-cyclic nature of the transformation, the
solution space is not so rugged. Therefore, our
algorithm can find much better binary masks for the
inverse lithography problem.

(iii) A jump technique: as gradient-based search tech-
niques will be trapped at a local minimum, we intro-
duce a new technique named jump in order to jump
out of the local minimum and continue the search.

(iv) We apply a direct rounding technique to regularize
gray masks into binary ones instead of adding a dis-
cretization regularization penalty to the cost function
as in [14] and [16]. This simplifies the computation
and achieves better results as the experiment results
show.

The rest of this paper is organized as follows. The
formulation of the inverse lithography problem is explained
in Section 3. Section 4 describes in details the flow of our
algorithm and the four novel techniques that we proposed.
Section 5 presents the experimental results. The paper is
concluded in Section 6.

2. New Algorithmic Technique Used

The inverse lithography technique for mask design has been
proposed in [8, 15] in 2006 and has been widely discussed
in recent years as semiconductor manufacturers move to
advanced process nodes. But so far, there is not an effective
search method proposed because of the complicated solution
space of this problem. We introduce a novel transformation
for mask pixel, which enables an effective line search
technique.

3. Problem Formulation

In an optical lithography system, a photo mask is projected
to a silicon wafer through an optical lens. An aerial image
of the mask is then formed on the wafer surface, which
is covered by photoresist. After developing and etching, a
pattern similar to the one on the mask is formed on the
wafer surface. To simulate the pattern formation on the wafer
surface for a given mask, we first describe below a projection
optics model and a photoresist model. After that, we present
the formulation of the mask design problem.

3.1. Projection Optics Model. The Hopkins diffraction model
[13] is widely used to approximate partially coherent optics
systems. To reduce the computational complexity of the
Hopkins diffraction model, the Fourier series expansion
model [18] is a common approach. In this paper, we followed
this model.

The Fourier series expansion model approximates the
partially coherent imaging system as a sum of coherent
system (SOCS). Based on this model, the computation of
the aerial image I of a pixelated mask M is given in (1) and
illustrated in Figure 1. Here, the dimensions of the pixelated
mask and the image are m × n. The illumination source is
partitioned into N × N sources. u and are the Fourier series
coefficients and spatial kernels, respectively:

I(M) =
N·N∑

p=1

up

∣∣∣hp ⊗M
∣∣∣

2
. (1)

Note that the convolution h ⊗ M can be achieved in
frequency domain using fast Fourier transform F F T and
inverse fast Fourier transform F F T −1 as shown in the
following:

I(M) =
N·N∑

p=1

up

∣∣∣F F T −1
{
F F T

(
hp

)
·F F T (M)

}∣∣∣
2
.

(2)

3.2. Photoresist Model. To model the reaction of the pho-
toresist to the intensity of light projected on it, we use the
constant threshold model as follows

zi =
{

0 if Ii ≤ tr ,

1 if Ii > tr ,
(3)

where Ii and zi are the light intensity and the corresponding
reaction result of the photoresist at pixel i on the wafer
surface, respectively, and tr is the threshold of the photoresist.

Thus, the pattern z formed on the wafer surface can be
expressed as a function of the mask M based on (2) and
(3). In order to make z differentiable so that gradient-based
search can be applied, we approximate the above constant
threshold model with the sigmoid function

sigmoid(x) = 1
1 + e−a(x−v)

, (4)

where the parameter a determines the steepness of the
sigmoid function around x = v. The larger value of a is,
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Figure 1: Fourier series expansion model for partially coherent system.
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Figure 2: The sigmoid function with a = 10 and v = 0.

the steeper and hence the closer to the constant threshold
model the sigmoid function will be. The sigmoid function
with a = 10, v = 0 is illustrated in Figure 2.

Using the sigmoid function, the reaction of the photore-
sist at pixel i for a mask M is

zi(M) ≈ 1
1 + e−a(Ii(M)−tr )

. (5)

3.3. Our Inverse Lithography Problem Formulation. Inverse
lithography treats mask design as an inverse problem of
imaging. Given a target pattern ẑ, the problem is to find a
mask M∗ such that the corresponding pattern z(M∗) on the
wafer surface is as close to ẑ as possible [19].

The error between the target pattern ẑ and the generated
pattern z(M) for any mask M is commonly defined as

E(M) =
m·n∑

i=1

(ẑi − zi(M))2. (6)

So the inverse lithography problem is formulated as

M∗ = arg min∀i,Mi∈{0,1}E(M). (7)

Combining (5) and (6) with (7), the problem is written
as

M∗ = arg min∀i,Mi∈{0,1}
m·n∑

i=1

(
ẑi − 1

1 + e−a(Ii(M)−tr )

)2

, (8)

where Ii(M) is the light intensity at pixel location i calculated
by (2).

4. Line Search-Based Inverse
Lithography Technique

As the value of each pixel Mi should be 0 or 1, the inverse
lithography problem is an integer nonlinear program. To
make it easier to solve, a common approach is to relax
the integer constraints to 0 ≤ Mi ≤ 1 for all i [8–12,
14]. Therefore, the problem becomes a bounded non-linear
program. To further simplify the program, it is also common
to convert it into an unconstrained non-linear program [8–
12, 14]. It is achieved by a transformation Mi = T(βi) which
maps an unbounded variable βi into the range [0, 1]. (We will
discuss this transformation in Section 4.1.) The program is
then solved with respect to β’s domain.

This unconstrained non-linear program can be solved
by an iterative gradient-based search method. Starting from
some point β in the solution space, a search direction, which
can be decided based on the gradient of (6), is first found.
Then a step of a certain size along the search direction is
taken. Thus, a new point, which hopefully has less pattern
error, is reached. The search is repeated until the error cannot
be further reduced.

In this paper, we apply this iterative gradient-based
search method, which is outlined in Algorithm 1. Our
contributions are four novel techniques as described in
Sections 4.1, 4.2, 4.3, and 4.4 to reduce pattern error over
previous works.

In particular, we use the steepest descent method, that is,
the search direction is the negative of the local gradient of
(6). But our techniques are not limited only to the steepest
descent method. It should be applicable to other iterative
gradient-based search approaches like conjugate gradient
method.

4.1. Novel Transformation for Mask Pixel. As explained
above, to convert the inverse lithography problem into an
unconstrained optimization problem, we need a transforma-
tion T : R → [0, 1]. Then we can use an unbounded variable
βi to represent each pixel based on Mi = T(βi).

One such transformation is proposed by Poonawala and
Milanfar [14]:

Mi = 1 + cosβi
2

. (9)
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(1) Transform initial mask into β // Section 4.1
(2) Repeat
(3) Find the search direction d at β // Equation (12)
(4) Determine the step size S // Section 4.2
(5) βnew = β + S ∗ d
(6) Generate gray mask M = T(βnew) // Equation (11)
(7) // Round M to binary as described in Section 4.4
(8) Evaluate pattern error E(M) // Equations (2), (3), and (6)
(9) β = βnew

(10) Until pattern error is not improving

Algorithm 1: Generic framework for iterative gradient-based search. Note that specific details about our algorithm are given in the
comments.

This idea is widely adopted by later works [9–12]. We call it
the cosine transformation.

In gradient-based search, a line search along the search
direction is typically performed to determine the step size S
to get to a local minimum (step 4 in Algorithm 1). The line
search will be more effective if the function E(M) along the
search direction is smooth and, better yet, convex. However,
the cosine transformation is a cyclic function. It is clearly not
a one-to-one transformation. By increasing the value of βi,
Mi changes its value between 0 and 1 periodically. As a result,
when β is moving along any direction, E(M) may keep jump-
ing up and down as Mi keeps switching between 0 and 1.

To illustrate this, we consider the algorithm described
in Chapter 7 of Ma and Arce [16], which solved the same
problem formulation as our paper. It also applied the steepest
descent method, but it used the cosine transformation. The
pattern error function (6) is turned into the following:

E
(
β
) =

m·n∑

i=1

(
ẑi − 1

1 + e−a(
∑N·N

p=1 up|hp⊗((1+cosβ)/2)|2−tr )

)2

.

(10)

Using the software code and the target pattern (as shown
in Figure 3) provided by [16], when β is moved along the
negative gradient direction of (10), the function E(β) is
illustrated in Figures 4 and 5. It shows that the function
changes in a very chaotic manner. We have observed a large
number of experiments on different target patterns and
different current masks. The function E(β) always shows a
similar chaotic behavior. It makes line search very difficult.
In theory, the negative gradient points out the direction
for each pixel to be adjusted to achieve the minimal value
of pattern error. However, the gradient only provides the
direction of change at the local point. Because of the cyclic
property of (9), the pixels on the mask may be flipped to the
wrong direction if the step size S is not set appropriately. This
makes the gradient-based search method very ineffective. In
fact, the common practice in previous works [9–12, 14] is
to set the step size to some fine-tuned constant instead of
computed-by-line search.

Figure 3: Target pattern from [16] with 184× 184 pixels.

Figure 4: Pattern error based on cosine transformation.

We propose a new transformation for Mi based on the
sigmoid function (see (4)):

Mi = 1
1 + e−A(βi−TR) , (11)

where A is the steepness control parameter and TR specifies
the transition point of the function. A larger A will cause
the pixel values to be closer to 0 or 1. TR can be set to any
value and is set to 0 in this paper. We call this the sigmoid
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Figure 5: Enlarged version of Figure 4 with step size from = 0 to 25.

transformation. As the sigmoid transformation is a strictly
increasing function, when β is moved along any direction,
each mask pixel is flipped at most once.

Based on the sigmoid transformation, the gradient of (6)
is

∂E
(
β
)

∂β
= − a · A

⎧
⎨
⎩

N·N∑

p=1

up

[(
hp ⊗M

)
	 (ẑ − z)	 z

	(1− z)
]
⊗ h∗Tp

⎫
⎬
⎭

	M 	 (1−M)− a · A

·
⎧
⎨
⎩

N·N∑

p=1

up

[(
h∗p ⊗M

)
	 (ẑ − z)	 z

	(1− z)
]
⊗ hTp

⎫
⎬
⎭

	M 	 (1−M),

(12)

where 1 = [1, . . . , 1]T ∈ Rm×n, 	 is the element-by-
element multiplication operator, and h∗p is the conjugate
of hp. We have performed a large number of experiments
on different target patterns and different current masks.
When β is moved along the negative gradient direction,
the function E(β) is almost always unimodal. One typical
example is shown in Figures 6 and 7. (Note that not every
pixel can be flipped along the negative gradient direction, as
we will explain in Section 4.2.) This makes it feasible to apply
line search to heuristically minimize the pattern error. Note
that gradient calculation is very expensive due to the four
convolutions in (12). Hence, once a gradient is calculated, it
is desirable to perform line search to minimize the pattern
error as much as possible in order to reduce the number
of iterations (i.e., gradient calculations) of the gradient-
based search algorithm. As Figure 7 shows, by performing
line search along the negative gradient direction, the image
pattern error can be effectively reduced from around 3600 to
below 3100 in one iteration.
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Figure 6: Pattern error based on sigmoid transformation.
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Figure 7: Enlarged version of Figure 6 with percentage from 5.1%
to 9.0%.

4.2. Highly Efficient Line Search Technique. In this section, we
present a highly efficient line search technique to determine
the step size in step 4 in Algorithm 1 to minimize pattern
error. We observe that in each iteration, the shape of the
function E(β) along the direction of the negative gradient is
almost always like the curve shown in Figure 6. We employ
golden section method for line search. Golden section search
is an iterative technique which successively narrows the
search range.

Because the final optimized mask should be a binary one,
we need to round the gray mask, which is given by (11), to
binary according to some rounding threshold tm. In other
words,

M
binary
i

(
βi
) =

{
0, Mi

(
βi
)
< tm,

1, Mi
(
βi
) ≥ tm,

(13)

where Mbinary is the resulting binary mask. Here, we simply
set tm to 0.5.

When moving along the negative gradient direction, as
the value of each pixel Mi is changed monotonically due to
our new transformation, we can easily control the number of
pixels flipped (i.e., changed from below tm to above tm or vice
versa) during line search. This idea is explained below.
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Given the current mask specified by β and the negative
gradient direction d, (11) can be written as a function of S as

Mi(S) = 1
1 + e−A(βi−S×di−TR) . (14)

By substituting (14) into (13) and rearranging, we get the
following

if di ≥ 0,

M
binary
i (S) =

{
0, S > Si,

1, S ≤ Si,
(15)

if di < 0,

M
binary
i (S) =

{
0, S < Si,

1, S ≥ Si,
(16)

where

Si = βi −
(
lg(1/tm − 1)/ − A

)− TR

di
(17)

is the threshold on step size for flipping pixel i. At the current
mask, if a pixel’s value is less than tm and its negative gradient
is positive, or if a pixel’s value is larger than tm and its
negative gradient is negative, then the pixel will be flipped
when we apply a step size S larger than Si. Other pixels are
unflippable no matter how large step size S we use. So it
is easy to determine how many pixels can be flipped. To
control the number of pixels flipped during golden section
search, we first mark all flippable pixels along the negative
gradient direction. Then we calculate the threshold on step
size, Si, for each flippable pixel i. By sorting these thresholds
from smallest to largest, the number of pixels flipped can be
controlled by setting the value of S. For example, by using the
50th value of the sorted thresholds as the step size S, 50 pixels
will be flipped along the negative gradient. In golden section
search, the minimum and maximum sorted thresholds can
be used to define the search region. In this paper, we use a
segment in the region from the minimum to the maximum
sorted thresholds as our search region. The details will be
discussed in Section 5.

4.3. Jump Technique. Because of the noncyclic nature of our
transformation, the solution space is not so rugged. But
it is still extremely complicated with many local minima.
As gradient-based search techniques will be trapped at a
local minimum, we introduce a new technique named jump
in order to jump out of the local minimum and continue
the search. During the line search process, if the algorithm
cannot find a better solution along the search direction
(i.e., gets trapped at some local minimum), instead of
terminating, it will jump along the search direction with
a large step size to a probably worse solution. Then the
algorithm will continue the gradient-based search starting
from the new solution. If the step size is large enough, it is
likely that the algorithm will not converge to the previous

local minimum. At the end, the algorithm will return the best
local minimum that has been found. For example, if 2 jumps
happened, there would be 3 local minima, the first one was
found without jump, and the other 2 were found by 2 jumps.
Our program keeps recording the local minima and returns
the best one at last.

4.4. Direct Rounding of Gray Mask. In order to apply
gradient-based approach, it is unavoidable to relax the
integer constraints. As a result, the optimized mask becomes
a gray one. Because our goal is to generate a binary mask,
the optimized gray mask has to be rounded to a binary
one at last. A regularization framework was proposed in
[14, Section IV.A] and also in [16, Chapter 6.1] to bias the
output gray mask to be closer to binary. This regularization
approach adds to the objective function (i.e., (6)) a quadratic
penalty term for each pixel. However, it is still hard to
control the change in the image pattern error caused by
the rounding of the gray mask at the end. The optimized
gray mask may achieve a low pattern error. However, after
rounding the gray mask into binary, the pattern error often
increases dramatically. Instead of using the quadratic penalty
regularization framework, we propose to directly round the
optimized gray mask into a binary one in each iteration
before evaluating the pattern error. In this way, we simplify
the objective function and also guarantee that our search will
not be misled by inaccurate pattern error values. we observed
that it works well based on our experiments.

5. Experimental Results

We compare an implementation of our algorithm with the
program developed by Ma and Arce [16]. Both of the pro-
grams are coded in Matlab and executed on an Intel Xeon(R)
X5650 2.67 GHz CPU. The Matlab program of Ma and Arce
[16] is public, and we downloaded it from the publisher.
The runtime reported is CPU time, and the programs are
restricted to use a single core when running in Matlab.

In [16], the program uses cosine transformation and a
preset step size of 2. Besides, it applies regularization with a
quadratic penalty term as mentioned in Section 4.4. Isolated
perturbations, protrusions, and so forth are very hard to be
written by the mask writer, so in [16], it also applies another
regularization called complexity penalty term, which restricts
the complexity of optimized binary mask. The details can be
found in [14, Section IV.B] and also in [16, Chapter 6.2].
To have a fair comparison, we followed previous works and
our program applies the complexity penalty regularization
too. But as we mentioned in Section 4.4, our program does
not apply the quadratic penalty regularization but directly
rounds the optimized gray mask into a binary one instead
whenever pattern error is evaluated. In [16], the stopping
criteria of gradient-based search is set in an ad hoc manner
according to the target pattern. In order to fairly compare the
two programs on various masks, the same stopping criteria
are applied to both programs. The criteria are that if the
average pattern error over the last 30 iterations is larger than
the average pattern error over the 30 iterations before that,
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Table 1: Pattern and runtime comparison between [16] and ours.

No. Mask size
(pixel)

Pixel size
(nm)

Feature size
(nm)

Pattern error Runtime (s)

[16] (%) [16] with our runtime (%) Ours [16] (%) Ours

1 184 × 184 5.625 45 1512 (9.88) 1566 (13.81) 1376 192 (−49.61) 381

2 400 × 400 5.625 45 3308 (24.17) 3780 (41.89) 2664 13337 (13.24) 11778

3 2000 × 2000 5.625 45 108144 (8.55) 109267 (9.68) 99624 17918 (−0.38) 17986

4 2000 × 2000 5.625 45 61350 (10.72) 66516 (20.05) 55409 12457 (19.81) 10397

5 4000 × 4000 5.625 45 58410 (198.39) 58410 (198.39) 19575 78652 (16.34) 67603

6 2000 × 2000 4 32 101785 (75.18) 102100 (75.72) 58104 49333 (13.45) 43485

7 2000 × 2000 4 32 64252 (39.49) 75300 (63.47) 46063 51856 (−21.57) 66117

8 4000 × 4000 4 32 148356 (358.80) 148420 (358.99) 32336 62008 (43.35) 43255

9 4000 × 4000 4 32 52160 (153.30) 52160 (153.30) 20592 71489 (5.77) 67588

Average 97.61 103.92 4.49

(a) Optimized binary mask of [16] (b) Our optimized binary mask

(c) Image pattern of optimized binary mask of [16], error =
1512

(d) Image pattern of our optimized binary mask, error = 1376

Figure 8: Comparison of optimized binary mask and pattern error for target pattern no. 1.
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Figure 9: The convergence curve for target pattern no. 1.
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Figure 10: The convergence curve for target pattern no. 6.

the program will stop. For evaluation of pattern error in
both programs, in each iteration, the optimized gray mask
is rounded using (13). We use the same convolution kernel h
as the Matlab program of [16].

For the photoresist model, we use a = 25 and tr = 0.19
for the sigmoid function in (5). For the transformation of
mask variables from β, we use A = 4 and TR = 0 for the sig-
moid function in (11). The threshold tm in (13) is set to 0.5.

Based on our observation of many experiments, for the
first iteration of gradient-based search, the minimum pattern
error can almost always be achieved by flipping less than
10% of all pixels. One example is showed in Figures 6 and
7, where the minimum pattern error is at about 7.7%. Then
in the later iterations, this region remains nearly the same or
keeps shrinking. So for the first 2 iterations, we set the initial
search region of golden section search to be the region in
which the first 10% of overall pixels can be flipped along the
negative gradient direction. Our program keeps recording
the minimum location which is found in each iteration to
guide the search region for the next iteration. For example,
if in the current iteration, the minimum error is found at
5% of the overall pixels flipped, to be on the safe side, the
search region of the next iteration will be automatically set
as 1.5 times of 5%, which is 7.5%, of the pixels flipped. To
prevent this search region from shrinking too small, we set a
minimum as 2%. For the stop criteria of the golden section
search, we set it as 0.25%, which means that when the search
region shrinks to or below 0.25%, our program will stop
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Figure 11: The convergence curve for target pattern no. 7.

searching. As mentioned above for the jump technique, if
our program cannot find a better solution along the search
direction until it stops searching (i.e., gets trapped at some
local minimum), our program will take the best solution,
except the starting point of that line search, as a new solution,
although it is a worse solution. This means one jump.

The comparisons of pattern error of optimized binary
masks and runtime between our program and that of [16]
are shown in Table 1. We use 9 binary image patterns as
predefined targets. The outer and inner partial coherence
factors for 184 × 184 target pattern are set to 0.4 and 0.3,
respectively; for 400× 400 target pattern, are set to 0.975 and
0.8, respectively; for all 2000 × 2000 target patterns, are set
to 0.3 and 0.299, respectively; and for all 4000 × 4000 target
patterns, are set to 0.2 and 0.1995, respectively.

The pattern errors reported are calculated according
to the best binary mask generated for both programs.
All gradient-based methods strongly depend on a starting
solution. We followed the previous works and used the target
as the starting point to search. The runtimes listed in the last
two columns are based on the stopping criteria mentioned
above. As the table shows, our program always generates
better optimized binary mask which has significantly less
pattern error. The pattern errors of [16] are higher than ours
by 8.55% to 358.80%, with an average of 97.61%. Moreover,
the programn of [16] uses 4.49% more runtime than our
program on average.

We report the pattern error of the final binary mask
generated for the program of [16] with our program’s
runtime in column 6 of the table. For target patterns no. 1,
no. 3 and no. 7, the program of [16] stops earlier than ours.
To see if the program of [16] will converge to better solutions
if more runtime is allowed, we change the stopping criteria
to let it run until the same runtime as that of our program.
The result shows that the error gets worse in all 3 cases. If the
pattern error of the best binary mask generated is reported
instead, the result will be exactly the same as in column 5. It
indicates that the program fails to get out of the local minima
even with more time.

Target pattern no. 1 is obtained from [16]. We illustrate
the optimized binary masks and the corresponding image
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patterns for both programs in Figure 8. The pattern error
convergence curves are shown in Figure 9.

More pattern error convergence curves are shown in Fig-
ures 10 and 11 for target patterns no. 6 and no. 7, respectively.

Because the program we obtained from [16] is fine-tuned
for the target pattern no. 1 which is also obtained from [16],
the experiment result of our algorithm is not so much better
than that of [16]. However, based on the experiment results
of other target patterns which cover multiple mask sizes, pixel
sizes, and feature sizes, our algorithm has an overwhelming
advantage due to the application of line search engine which
is enabled by our novel transformation of mask pixel. Based
on the observation of Figures 10 and 11, the program of
[16] is very easy to be trapped because line search is not
applied and a fixed step size is used. On the other hand,
benefited from line search and jump technique, our program
has better performance. Even if our program is trapped,
the jump technique enables the algorithm to jump out and
continue the search.

6. Conclusion

In this paper, we introduced a highly efficient gradient-
based search technique to solve the inverse lithography
problem. We proposed a new noncyclic transformation of
mask variables to replace the well-known cyclic one. Our
transformation is monotonic, and it enables a much better
control in flipping pixels and the use of line search to
minimize the pattern error. We introduced a new technique
named jump in order to jump out of the local minimum and
continue the search. We used direct rounding technique to
simplify the optimization. The experimental results showed
that our technique is significantly more effective than the
state of the art. It produces better binary masks in a similar
runtime. The four techniques we proposed should be appli-
cable to other iterative gradient-based search approaches, like
the conjugate gradient method. We plan to incorporate our
techniques into other search methods in the future.
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