
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

RegularRoute: An Efficient Detailed Router
Applying Regular Routing Patterns

Yanheng Zhang and Chris Chu

Abstract— In this paper, we propose RegularRoute, an efficient
detailed router encouraging regular routing patterns. Regu-
larRoute is proposed for potentially better design rule satis-
faction based on a correct-by-construction methodology. Given
the underlying spacing-based design rules, 2-D global routing
solution, and 3-D detailed routing tracks, RegularRoute generates
a 3-D detailed routing solution in a bottom-up layer-by-layer
framework. At the beginning, local nets, i.e., nets or subnets that
are inside one G-cell, are routed using vertical spine routing
topology. Routing usage of local nets is treated as blockage when
assigning global segments. Then, for each layer we formulate
the problem of global segment assignment inside each panel, i.e.,
grouped routing tracks, as a maximum weighted independent
set (MWIS) problem. We propose a fast and effective heuristic
to solve the MWIS problem. Unassigned segments are partially
routed by a greedy technique. For the unrouted portion of each
segment, its terminals are promoted so that the assignment is
deferred to the upper layers. At the top layers, we apply the panel
merging and maze routing techniques to improve routability.
RegularRoute generates a detailed routing solution that satisfies
the basic spacing-based design rules. To satisfy all the design
rules, we propose an abstract idea of local optimization based
on local shift and rip-up-and-reroute, assuming that most design
rules are complex functions of local and neighboring geometries.
Because of the unavailability of proper academic grid-based
detailed routing benchmarks, we propose two sets of detailed
routing test cases derived from ISPD98 and ISPD05/06 place-
ment benchmark suites, respectively. Our experimental results
demonstrate the effectiveness and efficiency of RegularRoute.

Index Terms— Detailed routing, physical design, routing, VLSI
computer-aided design (CAD).

I. INTRODUCTION

BECAUSE of its enormous computational complexity,
VLSI routing is usually carried out through consecutive

global routing and detailed routing stages. In the global routing
stage, rough routing solutions are generated based on G-cell-
to-G-cell (i.e., global routing bin to perform global routing)
connections on the global routing grid graph. Detailed routing,
on the other hand, realizes routing paths honoring exact
geometrical constraints based on the global routing solution.
Detailed routing is an important design stage in the sense that
it is critical for design rule satisfaction and routing completion.

Manuscript received November 10, 2011; revised July 8, 2012; accepted
July 21, 2012.

The authors are with the Department of Electrical and Computer
Engineering, Iowa State Unviersity, Ames, IA 50010 USA (e-mail:
yanhengzhang@gmail.com; cnchu@iastate.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2012.2214491

The solution quality impacts various design metrics such as
timing, signal integrity, chip yield, etc.

Detailed routing has been extensively studied since the
1970s (e.g., [1] and [2]) but the topic is not frequently seen
in recent publications. For modern designs in which over-
the-cell routing is applied, the most common technique for
detailed routing is rip-up-and-reroute, such as the one in
Mighty [3]. However, such a sequential net-by-net approach is
ineffective in handling congested designs and usually creates
unnecessary detour. DUNE [4] and MR [5] proposed to handle
full-chip gridless routing by similar multilevel approaches,
in which the routing undergoes a coarsening as well as an
uncoarsening phase. But these multilevel routers still rely
on the sequential rip-up-and-reroute technique, and nets at
the upper levels of the hierarchy are routed based on inac-
curate information. There are several attempts that consider
nets in a more simultaneous manner during detailed routing.
Nam et al. [6] proposed a detailed router for field-
programmable grid arrays based on Boolean satisfiability.
Though this approach achieves good solution quality, the
runtime is extremely long. Zhou et al. [7] introduced track
assignment as an intermediate step between global and detailed
routing. In track assignment, segments extracted from global
routing solution are assigned to routing tracks. This problem
is NP-complete and is solved by a heuristic based on weighted
bipartite matching. However, the connections of a segment to
pins or segments in other layers are not completed during track
assignment. They are postponed to detailed routing, which
may fail to connect the different parts of a net. Mustafa [8]
presented an insightful technique to perform escape routing for
dense pin clusters, which is a bottleneck of detailed routing.
A multicommodity flow based optimal solution and a
Lagrangian relaxation based heuristic were proposed. Never-
theless, the technique was not meant to solve whole-chip-scale
detailed routing. Gester et al. [9] proposed an algorithm to
solve whole-chip routing based on a combinatorial approxima-
tion scheme for min-max resource sharing for global routing
and a shape-based data structure for detailed routing. However,
the algorithm proposed was for gridless routing and it was not
easily adaptive to solve grid-based routing problems.

With diminishing feature size, many complex design rules
are imposed to ensure manufacturability. It has been reported
that for a 32-nm process, the number of rules reaches several
thousands [10] and the design rule manual has roughly one
thousand pages [11]. The dramatic increase in the number
and complexity of the design rules makes detailed routing
progressively complicated and time consuming. We notice that

1063–8210/$31.00 © 2012 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

many of those complex rules are triggered only by nontrivial
routing patterns. Here we define regular patterns as those
avoiding jogs and unnecessary detours as much as possible.
Fig. 1 illustrates two routing solutions for the same problem.
The top one is irregular routing with many jogs and detours,
while the bottom one is regular routing which only uses
simple patterns. If only regular patterns are used, it is not
even necessary to check many design rules and the routing
solution would correct by construction. On the other hand, if
a routing solution is irregular, even though it may not violate
any design rule, it is likely to be detrimental to both yield and
routability. Moreover, regular routing introduces fewer vias
and jogs and less wirelength, and hence is better in terms of
timing, signal integrity, and power consumption. Note that the
regular routing approach is along the lines of the restrictive
design rule approach that the industry has started applying to
the device layers to enhance manufacturability. In this paper,
we extend it to the interconnect layers.

Potentially, regular routing may adversely affect routability
because it is more restrictive and may be less effective in
resolving congestion. But we will show that, with an appro-
priate algorithm, regular routing can be effective since the
solution space can be explored much more effectively and
efficiently. On the contrary, for routing with general patterns,
the solution space is much larger. But it is also much harder
to be explored. The best known approach is to route the
nets one by one using maze routing together with rip-up-and-
reroute. Such an approach is very time consuming (especially
if complicated design rules need to be checked repeatedly
throughout the routing process) and is prone to getting stuck
in local minima.

In this paper, we propose RegularRoute, an efficient
detailed router applying regular routing patterns for poten-
tially better design rule satisfaction. In RegularRoute, we
handle the detailed routing problem only with basic design
rules including the spacing rules for metal–metal, metal-via,
and via–via on each layer. The solution will be a valid
detailed routing solution with regular patterns and satisfies
the basic design rules. Assuming that all design rules are
complex functions involving local and neighboring geome-
tries, we propose the general idea of local optimization
based on local shift and rip-up-and-reroute to resolve the
design rule violations considering all rules. The entire flow
can be regarded as a two-phase framework to obtain better
design rule satisfaction by applying regular routing and local
optimization.

The two-phase framwork is a feasible and effective approach
for detailed routing for the following reasons.

1) In regular routing phase, we only consider basic design
rules to facilitate better efficiency with less restrictive
routing constraints.

2) The routing shapes around certain nets keep changing,
so it is inefficient for handling all design rules at early
phase of detailed routing. The primitive knowledge of
design rule violations might only impede the router to
resolve congestion.

3) Local optimization will be feasible by applying local
shift and a little rip-up-and-reroute given sufficient free

(a)

(b)

Fig. 1. (a) Nontrivial routing patterns. (b) Regular routing patterns.

space. The free space is manageable during regular
routing with a proper routing density target.

The novelties of this paper include the following.
1) We propose an efficient detailed routing algorithm called

RegularRoute for potential better design rule satisfaction
using regular routing patterns.

2) We introduce a new bottom-up layer-by-layer and panel-
by-panel framework in RegularRoute.

3) We propose to route local nets by vertical spine routing
topology (VSRT) and fix the solution when assigning
global segments.

4) We formulate the global segment assignment problem
for each panel as an maximum weighted independent set
(MWIS) problem. The formulation facilitates a certain
level of parallelism of assigning global segments in one
panel.

5) We employ various optimizing techniques including par-
tial assignment, terminal promotion, and panel merging
for better routability.

6) We propose the general idea of local optimization after
regular routing to satisfy most of the design rules. We
also propose to maintain free space in RegularRoute by
honoring detailed routing density target.

We have implemented RegularRoute and tested its perfor-
mance on detailed routing test cases derived from ISPD98
[12] and ISPD05/06 [13], [14] placement benchmarks, respec-
tively. Experimental results demonstrate the effectiveness and
efficiency of RegularRoute.

The rest of this paper is organized as follows. Section II
provides the problem formulation and an overview of
RegularRoute and the whole framework. Section III discusses
the methods used to route local nets. In Section IV, we intro-
duce techniques for assigning global segments. In Section V,
we present techniques for local optimization after regular
routing to satisfy all design rules. Experimental results are
given in Section VI.

II. PRELIMINARIES

In this section, we present the terminologies, problem for-
mulation, and the flow of RegularRoute and local optimization.

A. Terminologies and Problem Formulation

1) Terminologies: In this paper, because regular routing is
considered, we model the routing resource as a 3-D regular
grid graph. Each grid edge, i.e., the edge between two grid
points, can accommodate one unit of wire usage. Edges
that are covered by macros, preroutes, or other nets are not

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG AND CHU: AN EFFICIENT DETAILED ROUTER APPLYING REGULAR ROUTING PATTERNS 3

assignable. We define the space between grid points to make
sure the routed wires respect metal–metal spacing rule for
each layer. The spacing rules for metal–via and via–via are
specifically checked during the assignment.

Each layer of the routing grid has a preferred routing
direction, and the preferred directions of adjacent layers are
perpendicular to each other. We assume that the preferred
direction of lowest layer (metal 1) is horizontal. For each
layer, the routing usage that is in the preferred direction is
called preferred usage. Otherwise, the routing usage that is
perpendicular to the preferred direction is called nonpreferred
usage. A sequence of grid edges along the preferred routing
direction of each layer is called a routing track. Routing tracks
can be either regularly spaced or iregularly spaced in our
formulation.

2) Problem Formulation: The inputs are the underlying
spacing-based design rules, a placed netlist, and a correspond-
ing 2-D global routing solution. In this paper, we assume
that all pins are on metal 1.1 The detailed routing problem is
defined to route all nets in the netlist on the detailed routing
grid based on the 2-D global routing solution. The routed
usage should respect the underlying spacing-based design rules
i.e., metal–metal, metal–via, and via–via spacing rules.

Note that we are actually solving both layer assignment and
detailed routing since we employ 2-D global routing solution
as input. Common practices in global routing generate 3-D
solutions. But 2-D solutions are more favorable in our problem
because: 1) there are more constraints in 3-D solution as the
layer of each global route has been specified, the detailed rout-
ing problem would be more restrictive to solve, and 2) there is
insufficient detailed information to perform layer assignment
in global routing correctly (e.g., some global edges may have
larger capacity than reality). But we will discuss the extension
of RegularRoute to handle layer constraints in Section IV-G.

The primary objective of detailed routing is to complete
routing as many nets as possible. The secondary objectives
include minimizing nonpreferred usage, via count, and wire-
length. In industrial applications, common design metrics
include timing performance, signal integrity, power consump-
tion, chip yield, etc. These metrics can potentially be incor-
porated into our framework but they will not be dealt with in
this paper.

In our framework, the net or subnet that resides inside one
G-cell is named a local net. Local nets are not captured in
global routing. The 2-D global routing solution of each net is
reorganized into a set of global segments by breaking it at the
turning points. Each segment is a horizontal (or vertical) route
which spans multiple G-cells in a row (or column).

A valid detailed routing solution in our framework needs
the handling of both the local nets and the global segments.
In other words, the detailed routing could also be formulated
as assigning both the local nets and the global segments to the
routing tracks.

Ideally, each segment should be assigned to one track.
In order to make routing less restrictive, assigning a segment to

1RegularRoute could handle pins on other layers. The extension will be
discussed in Section IV-E.

G-Cell track
panel

Segments

Fig. 2. Definitions of track, segment, and panel.

Global Segment Extraction

Local Net Routing by Single Trunk V-Tree

Solve MWIS for Each Panel

Partial Assignment for Each Panel

Top Layer ?
NO

Terminal Promotion

Panel Merging and Maze Routing

Next Layer

Consider Bottom Layer

YES Regular Routing Phase

Local Shift for All Design Rules

Local Rip-up and Reroute
Local Optimization Phase

Fig. 3. Flowchart for RegularRoute and the proposed algorithm.

more than one track connected by short nonpreferred usage or
via is allowed but discouraged. We define a panel to be the col-
lection of all tracks on one layer within one row (for odd layer)
or one column (for even layer) of G-cells. Fig. 2 shows the
definitions of track, segment and panel. Note that each segment
can only be assigned to tracks on a deck of panels that are on
different layers but are associated with the same row/column
of G-cells spanned by the segment. In other words, it is natural
to perform the global segment assignment panel by panel.

B. Algorithm Flow

The flow of the proposed algorithm is illustrated in Fig. 3.
In the figure, there are two main blocks with dotted line. The
top one represents the regular routing phase and the bottom
one shows the local optimization phase. The highlighted region
represents the major steps for RegularRoute we implement to
solve regular routing.

RegularRoute starts with extracting and reorganizing global
segments by breaking the 2-D global routing solution. Then,
local nets are prerouted using VSRT. In the following global
segment assignment, the routed usage of local nets is treated
as blockages. Next, we perform global segment assignment
in a bottom-up layer-by-layer manner. At each layer, the
segment assignment of each panel is handled independently.
For each panel, we formulate global segment assignment using

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

regular routing patterns as an MWIS problem and solve it
by an effective heuristic. We then apply a partial assignment
technique to improve the utilization of each panel. If we do not
reach the top horizontal or vertical layers, for the unassigned
segments, we promote their terminals and defer their assign-
ment to the upper layers. For the unassigned segments at the
top layers, we propose a panel merging technique to provide
more flexibility by assigning the segments in the merged
panel. Maze routing is applied to further improve routability.
After RegularRoute, we obtain a valid detailed routing solution
with regular routing patterns satisfying the basic design rules.
A local optimization phase is then proposed to satisfy the rest
of the design rules. We propose local shift and rip-up-and-
reroute in local optimization.

III. LOCAL NET ROUTING

As the detailed routing problem we have formulated in
Section II-A, the net or subnet that resides inside one G-cell is
called a local net. In RegularRoute, local nets are routed before
assigning global segments. The routing solutions of the local
nets are marked as blockage in the following global segment
assignment.

In this section, we first introduce local net routing by VSRT.
We then demonstrate the topology that can better preserve
routing resources to be used in global segment assignment. We
will also provide techniques to resolve conflicts when routing
multiple local nets. The alternative flows for processing local
nets are discussed in the final part.

A. Vertical Spine Routing Topology

Spine routing has been proposed to predict the routing
usage or interconnect properties at early design stages [15]. In
this paper, we apply a topology, namely, the VSRT, to route
the local nets. Consider one local net inside a G-cell. The
x-coordinate of spine, i.e., the vertical trunk, is the median
of the x-coordinates of all pins. The spine spans from the
minimum y-coordinate to the maximum y-coordinate of all
pins. The spine is routed using metal 2. We connect each pin
to the spine with routes on metal 1, which we call a branch.
Fig. 4 shows an example of the vertical spine routing tree.

VSRT can be easily built in a time complexity which is
linear to the number of pins in a local net. In our test cases,
the average local net pin count is relatively small (around 3).
So the runtime is negligible compared to overall runtime.

Common practices to construct a routing topology include,
for instance, rectilinear Steiner minimum tree (RSMT) and
rectilinear minimum spanning tree. VSRT is applied to reserve
routing resources on metal 2. In Fig. 4, VSRT and RSMT are
compared for the same five-pin net. In metal 1, five horizontal
tracks are blocked in both cases. In metal 2, only one track is
blocked for VSRT, but three tracks are blocked for RSMT.
As VSRT blocks fewer tracks on metal 2, global segment
assignment would become easier for upper layers.

When building VSRT, the vertical spine coordinate is first
determined. If the total pin count is odd, the vertical spine
has only one location for minimum wirelength. Each branch
has only one location to connect to the spine. If there are

VSRT RSMT

G-Cell G-Cell

Fig. 4. Blocked track count for VSRT and RSMT.

multiple local nets inside one G-cell, possible conflicts among
these local nets can arise. To resolve these conflicts, we shift
both spine and branches locally by trying the neighboring
tracks. More specifically, we first determine the spine that is
not in conflict with other local nets. Then branches of each
local tree are connected to its spine. If there are persistent
conflicts, we make a detour of some connection to avoid the
conflict. If the simple local optimizing technique still cannot
resolve the conflict, we utilize routing resources at higher
metal layers (e.g., metals 3 and 4). In our experiments, most
local nets can be routed only using metal 1 and metal 2.
Detailed experimental results are presented in Section VI.

B. Alternative Flows and Discussion

In RegularRoute, we route local nets before assigning global
segments. There are alternative flows that process local nets
simultaneously with global segments or route local nets after
global segment assignment. There are reasons for our adopting
the flow in RegularRoute (i.e., route local nets first), which are
as follows.

1) Local nets have a lower level of flexibility than global
segments. A local net typically contains three to four
pins. The flexibility in terms of routing topology is less
than for nets that span over multiple G-cells.

2) Local nets usage involves small portion of track usage
and, if they are routed after global segment assignment,
it would bring much more routing blockages to upper
layers.

3) The via count would also be increased if local nets are
routed later.

4) It is also possible to route local nets and global segments
simultaneously by integrating local net routing into the
MWIS framework in Section IV-A. The negative effect
is the larger problem size. We observe that it is more
desirable to perform local net routing before global seg-
ment assignment for both routability and computational
complexity.

IV. GLOBAL SEGMENT ASSIGNMENT

In this section, we will present the technical details of
global segment assignment. First, we present how we assign
global segments with regular routing patterns in one panel. The
problem is converted into an MWIS. The problem is solved
by a fast and effective heuristic. Second, we discuss partial

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG AND CHU: AN EFFICIENT DETAILED ROUTER APPLYING REGULAR ROUTING PATTERNS 5

assignment for better routing resource utilization. Third, the
terminal promotion technique is discussed. It is an effective
technique to defer the unassigned segments to the upper
layers. Finally, we present the technique to handle unassigned
segments on the top horizontal and vertical layers, and we
develop effective panel merging to improve routability.

A. Global Segment Assignment for One Panel

In Section II-A, we mentioned that the global segment
assignment problem for each layer is solved in a panel-by-
panel framework. Solving the assignment problem in one
panel is a fundamental component. In this subsection, we
will investigate this problem. Without loss of generality, we
consider horizontal panels (metal 1, metal 3, etc.). The panel
is a collection of tracks inside one row of G-cells for the
horizontal case. The concept is introduced to facilitate global
segment assignment inside one row of G-cells, where hor-
izontal segments have same y-coordinate. As introduced in
Section II-A, a global segment is a horizontal or vertical route
in 2-D global routing solution that spans G-cells in one row
or column. The remaining portion of the net at either end of
a segment is represented by a terminal. When a segment is
assigned to a track, each of its ends should be connected to
its associated terminal. A terminal can be a pin, a partially
routed portion of a segment, or an attaching segment. An
attaching segment is a segment that shares one of its terminals
with the segment. The concept of terminal is illustrated in
Fig. 5. In this figure, we show two assigned segments. The
segment above is connected to a partial wire on the left and
a pin on the right. The segment below is connected to an
attaching segment that has not been assigned (dotted line) on
the left and a pin on the right. The route between an assigned
segment and its terminal is called a terminal connection route,
or simply a terminal route. Note that in Fig. 5 we assume the
pin and partial route are on the same layer with the segment,
but this is not necessarily true. We will have more discussion
on terminals in later subsections.

As the name suggests, regular routing suppresses the usage
of routing bends and jogs. In RegularRoute, our method to
assign a segment is to make it fully assigned to one track.
We introduce the concept of choice for assigning a segment
in regular routing. A choice is a valid candidate solution to
assign a segment using a regular routing pattern when other
global segments are ignored. A choice is determined by the
track being used and the terminal connection being routed.
In particular, a choice for a segment can be represented by
(t , R). t is a track in the panel that the segment would
be assigned to and R is the two-terminal connection route
consisting of a collection of short wires and vias. A simple
example is shown in Fig. 6. In this example, segment b has
one choice b1, and segment a have two choices a1 and a2.
Each choice specifies both the track and terminal connection
routes. The terminal connection routes are denoted as R1, R2,
and R3, respectively. For instance, terminal routes of choice
b1 contain two short wires for both terminals. One major
difference between our problem formulation and track routing
[7] is that our formulation seeks to generate a valid detailed

pin

partial wire

segment 1 terminal
route

attaching
segment

segment 2G-Cell

Fig. 5. Illustration of terminals: pin, partial wire, and attaching segment.

tracks

b1
a2

vertex

edge

t1

t2
t3

t4 b1(t3, R3) a2 (t3, R2)

a1 (t1, R1)

a1

R1
R2R3

R3

Fig. 6. Conflicting choices and the corresponding conflict graph.

routing solution for all nets, whereas a typical track routing
formulation neglects terminal connection issue. When there
is conflict between two choices, the two segments cannot
be coassigned in the way specified by the two choices. For
instance, there is a conflict between b1 and a2. It suggests
that segment a and segment b cannot be assigned to track t3
simultaneously as specified in choices b1 and a2. It is also
obvious that choices derived from the same segment should
conflict with each other. For example, a1 conflicts with a2.

We formulate the global segment assignment problem for
one panel as an MWIS problem. We model the conflicts
among the choices by a conflict graph, as shown in Fig. 6.
In the conflict graph, each choice is modeled as a vertex.
Each conflict between two choices is modeled as an edge.
Each vertex is assigned a weight specifying the priority of
the assignment represented by the routing objectives. Vertices
with higher weight need to be routed with higher priority. The
problem is therefore converted to choose the set of independent
vertices to maximize the total weight.

B. Weight Computation for Each Vertex

The weight assignment for each vertex is critical in the
MWIS problem. In RegularRoute, it contains both factors to
differentiate different segments as well as factors to differ-
entiate the choices derived from the same segment. The first
category of factors is utilized to weight different segments.
And the second category is used to weight choices derived
from the same segment.

In particular, we employ the following function to compute
the weight for a vertex (choice):

W (v) = L + α1 × � + α2 × ‖R‖ + α3 × F

� =
∑

b∈B (Db)
2

‖B‖ . (1)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

There are four major components in the function: L is the
segment length measured by number of detailed routing grids,
or more specifically, is equal to global routing length i.e.,
number of G-cells the segment travels times the number of
detailed routing grids in one G-cell; � is the global segment
density measured at each G-cell boundary; ‖R‖ represents
the total cost of the terminal connection route including short
wires and vias for both terminals; F is the total flexibility
length measured by number of detailed routing grids when the
segment has terminal connected to the attaching segment. They
will be introduced in more detail in the following context.

1) Segment Length: In (1), L represents the total number
of detailed grids that the segment spans, which is equal
to the number of G-cells times the detailed routing
grids in one G-cell as shown in Fig. 7(a). RegularRoute
encourages the assignment of longer segments, since
longer segments are harder to assign in regular routing.
If we assign short segments earlier, they are prone
to creating more local blockages and thus impede the
assignment of long segments later on. Another merit of
this component is that we encourage the utilization of
current panel/layer as much as possible to maximize the
routability.

2) Global Segment Density: We define the notion of global
segment density as the count of global segments cross-
ing each G-cell boundary. When there is high global
segment density, the segments are harder to be assigned
because of the higher chance of conflict. One segment
may pass a number of G-cell boundries, so we compute
the average quadratic segment density. In Fig. 7(b),
segment a passes through the first and second G-cell
boundary, and segment b passes through the second
and third G-cell boundary. Segment a is harder to be
assigned since it travels through more congested G-cells.
From another perspective, segment b is more flexible. If
segment b is assigned earlier, segment a might become
more restrictive to assign or even unassignable. In (1),
B is the set of G-cell boundaries the segment passes.
Db is the density of boundary b. We sum the quadratic
value of density and compute the average.

3) Terminal Connection: As introduced earlier in this
section, terminal connection route stands for the
collection of routes consisting of short wires and
vias connecting the assigned segment to both of its
terminals. For instance, R1, R2, and R3 in Fig. 6
represent terminal connection for segment a1, a2, and
b1, respectively. The example is also illustrated in
Fig. 7(c). The longer or more complicated the terminal
connection route is, the more constraints it imposes to
other segments. In order to compute the cost of terminal
connection route, we divide the terminal connection
usage into three categories: the preferred usage along
routing tracks, the via usage, and the nonpreferred usage.
Each category is weighted by a specific coefficient. For
instance, if via count is critical, we charge a higher
cost for the via usage in the terminal connection.
In our experiment, the weight of via is bigger than the
nonpreferred usage and the weight of preferred usage is

(d)

attaching
segment

t1
t2
t3

(b)

(c)

segment

high low

segment a

segment b

routed
wire

terminal
connection

t4 t5 t6

(a)

G-Cell

Fig. 7. (a) Segment length. (b) Global segment density for each G-cell
boundary. (c) Terminal connection route. (d) Assignment of attaching seg-
ments.

the lowest. Actually, the exact value of each coefficient
would bring no difference when we are trying to obtain
the most cost-efficient route.
There are various terminal connection routes. And
the variations in terminal routes would combine with
specific tracks to form an exponential number of
choices. To simplify the solution space, we simply
generate a terminal connection route by maze routing.2

We generate the most cost-efficient routing path and
use it as terminal connection route.

4) Attaching Segments: As noted earlier, the attaching
segment is the one that shares one of its terminals
with the segment. Since the two segments need to be
connected eventually, the convenience of assigning the
attaching segment (if has not been assigned yet) becomes
another factor to weight each choice. Choices that entail
more flexibility of assigning attaching segments in the
future are granted higher priority. In Fig. 7(d), we show
the assignment of one horizontal segment on the three
tracks (t1, t2, and t3). The vertical segment in dotted
line represents its attaching segment that has not been
assigned. The three vertical tracks are the candidate
tracks to assign the attaching segment (t4, t5, and t6).
There are three tracks that can be used to assign the
horizontal segment. But each track yields a different
number of vertical tracks which the attaching segments
can be assigned to without detour and short nonpreferred
usage. Note that the short nonpreferred usage is
detrimental to routability, as it potentially inhibits a
number of tracks from being used. For instance, if t2
is used, the attaching segment can only be assigned to
track t4 without detour and short nonpreferred usage.
On the contrary, if the attaching segment is assigned
to t6, then the route needs go up from the cross point
of t2 and t4 using a via and then a nonpreferred route
from t4 to t6 horizontally. The nonpreferred assignment
would block all the three tracks t4, t5, and t6. If cases

2We could reduce the use of maze routing by terminal promotion, which
will be discussed later.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG AND CHU: AN EFFICIENT DETAILED ROUTER APPLYING REGULAR ROUTING PATTERNS 7

like that frequently happens, the routability would be
significantly degraded. Similarly, if t1 is used, there will
be two tracks t4 and t5 assignable. The best one should
be t3, where all the three tracks are assignable. There-
fore, we use F as the total number of tracks that the
attaching segments can be assigned for both terminals.

Each component is important to weighing the vertex.
In general, the first two components are used to differenti-
ate segments and the second two components are used to
differentiate the choices derived from the same segment. In
the equation, there are three coefficients (α1, α2, and α3)
to leverage the significance of each factor and they are
experimentally determined. In our experiment

α1 = 0.1 ×
(

AvgDb

Tp

)2

α2 = 0.9 × 1

Wp

α3 = 0.3 × AvgSp

Wp
. (2)

In the above equations, AvgDb stands for average global
segment density of all G-cell boundaries in panel p. Tp is
the number of tracks in the panel. Wp is the width of panel.
AvgSp is the average spacing between tracks in the panel.

C. Heuristic to Solve MWIS

The MWIS problem is NP-complete [16]. Solving it opti-
mally takes a long time. (Typically there are hundreds of
panels for each layer and each panel contains thousands of
segments.) Alternatively, we develop an efficient and effective
heuristic that explores the special structure of the conflict
graph. To introduce the heurisitc, we first define the benefit
B(v) of assigning each vertex v

B(v) = W (v) − β × Wi (v) − γ × Wo(v)

β = 0.4 × W (v)

max(Wi (v), Wo(v))

γ = 0.2 × W (v)

max(Wi (v), Wo(v))
(3)

where W (v) represents the weight of vertex v, Wi is the sum
of weight for vertices with same-segment conflicts except v,
Wo(v) is the sum of weight for vertices with different-segment
conflicts, and β and γ are parameters for leveraging their
significance. In the experiment, β is set to be the fractional
ratio of W (v) against the maximum value of Wi (v) and Wo(v).
γ is set to be half of β to increase the priority for different-
segment conflicts.

In particular, Wi and Wo are defined with respect to the
clique formed by vertices with same-segment conflicts in the
conflict graph. Wi represents the sum of weights for vertices
inside the clique except the vertex itself, while Wo denotes the
sum of weights for all conflicting vertices (different-segment
conflicts) outside the clique. The cliques for vertices with
same-segment conflicts for two segments are illustrated in
Fig. 8. In particular, vertices A, B , C , and D form clique1.
And vertices E , F , and G form clique2. Our heuristic ranks

clique1

clique2

A

B

E

C

D

F

G

Fig. 8. Cliques formed by choices from two segments in the conflict graph.

partially
assigned

assigned
usage

blocking terminals

incident
terminal

Fig. 9. Partial assignment technique for unassigned segments.

vertices in the order of decreasing benefit. The vertex with
maximum benefit is chosen the corresponding global segment
is assigned. After assigning each vertex, we update the conflict
graph by deactivating all its conflicting vertices. The sum of
weight Wi and Wo of vertices are also updated. To facilitate
faster runtime, we utilize a heap data structure to store the
benefit of all vertices.

Vertices with larger weights and smaller sum of weights
for same-segment conflicts and different-segment conflicts are
granted higher priority. First, vertices with larger weights
indicates that the segment has higher criticality of assignment
as discussed in the last subsection. Second, a larger sum
weight of same-segment conflicts indicates that the segment
is more flexible, since the segment has more choices to
be assigned. Its assignment can be deferred so that more
restrictive segments are considered earlier. Third, vertices with
a larger sum weight for different-segment conflicts indicates
that the choice incurs more conflicts and such an assignment
should be disencouraged.

D. Partial Assignment

After solving the MWIS problem in one panel, there are
potentially a large number of unassigned segments, especially
for lower layers. In order to achieve better routing resource
utilization, we explore the assignment of segments beyond the
simple regular routing patterns defined in the MWIS problem.
We implement a partial assignment technique to assign part
of the unassigned segments.

For each unassigned segment, we assign part of the segment
starting from its terminals. Longer unassigned segments are
routed earlier. To evaluate a partial route, we employ the same
computing function as in (1). We tentatively assign the partial
route for the unassigned segment on all tracks in the panel.
The partial route with the highest weight is selected as the
formal partial assignment of the segment. The idea is briefly

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

illustrated in Fig. 9. Both terminals of the unassigned segment
are on the current layer. The partial routes of represent the
extension of wires from its terminals to the first blockage
met. Note that in this example we assume the terminals are
in the current layer. We will explain why this is true in later
parts of paper.

It is possible for an unassigned segment to become fully
assigned by two partial assignments from both terminals and
the nonpreferred usage in between. In the experiment, we see it
occur frequently, and the partial assignment technique greatly
improves the utilization of routing resources of the panel.
Besides this technique, it is alternatively feasible to incorporate
the partial assignment idea into the MWIS problem. In par-
ticular, we could enumerate some partial assignment choices
and take them in the algorithm. However, the extra vertices and
edges could lead to much longer execution times. So we apply
the partial assignment technique as a postprocessing stage after
solving the MWIS for each panel.

E. Terminal Promotion

1) Terminals on Lower Layers: We defer the assignment
of unassigned segments to upper layers. However, there are
terminal connection issues when the segment is assigned in
the upper layer but its terminals are located in lower layers.
Suppose a segment is assigned to metal 5 and its termi-
nals (pins) are located on metal 1. The terminal connection
becomes challenging when routing resources on lower layers
are restricted (e.g., routing tracks on lower layers are mostly
taken up). In the traditional track routing problem [7], great
efforts are made in rip-up-and-reroute to fix the terminal
connection problems.

The method used in RegularRoute to handle the terminal
connection problem is to promote terminals of unassigned
segments to the next layer before handling the next layer.
In this way, the terminals would be always localized on the
same layer with the segment. The idea is more effective for
congested panels where the routing resources are more restric-
tive. As stated earlier (Section IV-A), the main difference
of RegularRoute and track routing [7] is that RegularRoute
generates a valid detailed routing solution after assigning all
segments. Yet, track routing may spend a lot of rip-up-and-
reroute efforts on correcting a failed terminal connection.

In Fig. 10, we show how we promote the terminal to the
next layer. The horizontal tracks are the routing tracks on the
current layer and the dotted tracks are the tracks on the next
layer. The vertical short lines in light color are candidate via
locations. The terminal is located on track t1. We extend the
terminal with a short wire on track t1 and use one via guiding
up to the next layer.

2) Terminals on Upper Layers: In our problem, we assume
all pins to be on metal 1. We have to promote the terminals
after handling each of the metal layers. For the test cases
with pins on the upper layers, we also need to promote the
terminals of the assigned segments to the upper layers such
that there is no connection problem between the assigned
segments to their pins on the upper layers. Similarly, for the
assigned segments with attaching segments that have not been

current layer
tracks

next layer
tracks

assigned usage
in current layer

old
terminal

new
terminal

vias

t1

Fig. 10. Terminal promotion to avoid terminal connection failure.

assigned, we also need to promote the terminal of the assigned
segment to upper layers to prevent the connection issue with
its attaching segments.

We extend the terminal promotion to handle the upper layer
pins and attaching segments for the assigned segment. The
assigned segment is checked to see whether any of its terminals
need to be connected to upper layer pins or attaching segments,
and we promote its terminals. In theory, our algorithm is
applicable to test cases with pins on different metal layers.

F. Unassigned Segments on Top Layers

For unassigned segments on the top horizontal (vertical)
layers, there are no more metal layers to defer the assignment.
To further improve the routability, we apply panel merging and
eventually maze routing if the test case is congested.

All of our discussion till now was based on the assumption
that each segment should respect the 2-D global routing
solution. Or, in other words, the global routing solution
determines the panel each segment should be assigned to. It is
more flexible if one segment can be assigned in other panels
given they have sufficient routing resources to accommodate
the segment.

More specifically, for the panel with unassigned segments,
we try to merge the panel with several neighboring panels and
assign those segments in the merged panel. In the experiment,
we merge the neighboring one panel (the merged panel has
three panels). The number of neighboring panels merged can
be adjusted depending on the level of hardness and runtime.
The panel-merging technique is effective for the segments
near the panel boundary. The merging of panels eliminates
the boundary, and the segment becomes more flexible.

For very congested test cases, we propose to apply panel
merging in the lower layers instead of waiting till the top layer.
Actually, we could run the fast mode of RegularRoute (e.g.,
less choices) for an initial estimation and mark the panels with
many unassigned segments. In the next round, starting from
the bottom layer, we start panel merging for the congested
panels. This method is a tradeoff between solution quality and
runtime.

We eventually resort to a line probe maze routing for hard
test cases. Maze routing is the most flexible routing technique
but is detour-prone and time consuming. We adopt it as the
last effort in RegularRoute.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG AND CHU: AN EFFICIENT DETAILED ROUTER APPLYING REGULAR ROUTING PATTERNS 9

G. Global Routing Solution With Layer Constraint

In RegularRoute, one of the inputs is the 2-D global
routing solution; in other words, the global routing solution
does not bear layer assignment. Each global segment can be
assigned to any horizontal/vertical layers. Many industry rout-
ing tools generate 3-D global routing solution for alleviating
the complexity of the job of detailed routing. In this part,
we will discuss how we could extend current algorithm of
RegularRoute to handle the 3-D global routing solution as well
as the disadvantage of applying 3-D global routing solutions.

Different from the 2-D global routing solution, for each
global segment in the 3-D global routing solution there is a
specified layer range Ld , Lu . Ld specifies the lowest layer the
segment can be assigned to, and Lu specifies the highest layer.
In some cases, Ld equals Lu , which means that the segment
can be assigned only to one certain layer. In our algorithm, we
collect all unassigned segments for each layer and compute the
weight for each segment. We will add one more component
for layer constraint. We incorporate this component to evaluate
the benefit of the assignment of a particular global segment.
For instance, if a global segment can only be assigned to one
layer, we need to increase the weight to make sure the segment
can be assigned. On the contrary, if a segment does not have
any layer constraint, its weight is kept as before since this
segment is regarded as more flexible.

We adopt the 2-D global routing solution for more flexibility
when assigning global segments: 1) there are more constraints
in 3-D solution as the layer or layer range of each segment is
specified, and the detailed routing problem is more restrictive
to solve; 2) it is highly likely to encounter congestion issue
due to more constraints; and 3) there is insufficient detailed
and local information to perform layer assignment in global
routing correctly, e.g., the global capacity can hardly capture
the actual detailed routing bottlenecks.

V. LOCAL OPTIMIZATION FOR ALL DESIGN RULES

After solving the problem in the regular routing phase by
RegularRoute, we obtain the detailed routing solution for all
nets considering the basic design rules (simple spacing rules
for metal and via on each layer). However, it is required that
the detailed routing solution satisfies all design rules. In this
section, we will propose the general idea of local optimization
based on RegularRoute for satisfying the rest of the design
rules assuming that each design rule is a complex function of
the local and neighboring geometries.

A. Space Reservation by Density Control

With all design rules, we propose a two-phase flow (regular
routing and local optimization) to improve the efficiency of our
algorithm. Respecting all design rules throughout the entire
detailed routing seems to be a straightforward solution for
one detailed router. However, considering the complexity and
scale of the exponentially growing design rules, respecting
all design rules might become unacceptably ineffective and
inefficient. Besides, another drawback of obeying all design
rules throughout detailed routing is that unnecessary detours
of nets would be created to avoid design rule violations.

Usually, this detoured usage exacerbates the routing conges-
tion and introduces many more nontrivial routing patterns
which degrade the solution quality and chip manufacturability.
As discussed earlier, in the regular routing phase we focus
on routing as many nets as possible applying the regular
routing patterns with the basic design rules. RegularRoute is
the algorithm we employ to obtain the routing solution within
a short runtime. The generated solution is a valid detailed
routing solution respecting the basic design rules.

In this section, we will focus on optimizing the solution
based on regular routing to satisfy the rest of the design rules
by local optimization. To achieve the purpose, we need to
make sure that there is sufficient freedom for local adjustment
for routing shapes. Here the word “freedom” specifies the free
space around the routing shape, or, more specifically, is the
density of routing usage in a region around the shape. “Density
of region” stands for the ratio of total routing usage to the total
routing resource (capacity). We need to control the routing
density of each region to guarantee that there is sufficient free
space.

To facilitate density control, we divide the entire layout on
each layer into a number of regions. Each region contains
Q × Q G-cells or Tr tracks. The total routing resource Cr in
this region would become Tr × Wr , where Wr is the width
of the region. Then the density for each region would be
(Ur/Cr) or (Ur/Tr × Wr). Ur is the total routing usage inside
region r . To reserve space for local optimization, we control
the density of each region in the regular routing phase. When
applying RegularRoute, we make sure that the density of each
region is below a user-specified maximum allowable density.
In particular, we keep track of each region when assigning both
local nets and global segments. When the maximum density
is reached for one region, we no longer recommend assigning
any new usage.

The value of the maximum density has a great impact on
the success of assignment. Routing might become too hard to
accomplish if a relatively small maximum density is specified.
The experimental results will be shown in Section VI.

B. Local Optimization Techniques

Local optimization suggests applying adjustment locally for
satisfying all design rules. We apply local shift as the main
local optimization technique. For harder cases, we try rip-up-
and-reroute.

Local shift suggests shifting the entire or part of the routing
shapes to avoid design rule violations. Most design rules are a
combination of local constraints of neighboring shapes. With
sufficient reserved local space, it is feasible to satisfy all design
rules inside the region by local shift. For instance, in Fig. 11,
we show a partial solution after regular routing with four sets
of shapes (specified S1 to S4) and five routing tracks. S1 and
S3 are located on track t3, and S2 and S4 are located on
t2 and t4, respectively. The solution is valid for the regular
routing phase, as the routing usage is along the routing tracks
and it respects basic spacing rules including metal-to-metal,
metal-to-via, and via-to-via spacing. However, S1 contains a
double-via enclosure. In some process, it introduces a larger

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

S2

S1

S3

S4

S1

S2

S3

S4

(a) (b)

Fig. 11. (a) Before local shift is applied, there are three design rule
violations due to double-via metal enclosure. (b) After local shift, no design
rule violation exists.

spacing requirement than single vias. There are two run-to-run
spacing violations introduced by each S1–S2 and S1–S4. And
S1–S3 introduces one end-to-end spacing violation.

The double-via enclosure spacing rule is out of reach in reg-
ular routing. In the local optimization stage, we apply the local
shift to simply move the sets of shapes to avoid the violations.
As illustrated in Fig. 11, we shift S2 left to track t1 and shift S4
right to track t5 to avoid run-to-run spacing violations. And we
shift S1 up to avoid end-to-end spacing violations. This is only
a simple example how local shift works to restore the viola-
tions of the rest of the design rules. Addtionally, the idea could
be extended to better handle the emerging design for manufac-
turability (DFM) issues such as double patterning [17], [18]
and resolution enhancement techniques [19]. The methodology
can also be applied to design tools in other design phases to
obtain more even routing utilization [20]–[22].

However, if there is insufficient local space around, local
shift may not be always effective. When local shift cannot
work, we apply local rip-up-and-reroute for satisfying all
design rules inside the region. Different from the rip-up-and-
reroute we proposed in RegularRoute, we aim at design rule
satisfaction in addition to routability.

VI. EXPERIMENTAL RESULTS

All our experiments were performed on a machine with
a 2.67-GHz Intel Xeon CPU and 32 G memory. We derive
two sets of detailed routing test cases from ISPD98 [12] and
ISPD05/06 [13], [14] placement benchmark suites.

A. Generating Grid-Based Detailed Routing Test Cases

In the original ISPD98 placement benchmarks, pins are
located at the center of each standard cell, so we develop a
program to set the pin coordinates randomly inside the stan-
dard cell and make sure they satisfy the spacing requirement
at the bottom layer. The size of each module in the derived
test cases is the same as that of the IBMv2 [23] placement
benchmarks. We use Dragon [24] to generate the placed test
cases for ISPD98-derived test cases, and FastPlace 3.1 [25]
for ISPD05/06-derived test cases. We derive the global routing
test cases similar to the format defined by ISPD07/08 global
routing benchmarks [26], [27]. We then use FastRoute 4.0
[28], [29] to route the global routing test cases and generate

TABLE I

RESULTS FOR LOCAL NET ROUTING ON ISPD98 TEST CASES

VSRT RSMT

#local #unassign CPU metal 2 #unassign #unassign CPU metal 2 #unassign
Name nets local (s) usage (k) global local (s) usage (k) global

ibm01 1081 0 0.04 6.3 0 0 0.02 9.6 0

ibm02 1750 0 0.09 12.8 0 0 0.04 15.3 0

ibm07 4479 0 0.18 22.3 0 7 0.05 32.6 5

ibm08 5539 0 0.23 27.8 0 0 0.11 39.6 0

ibm09 5429 0 0.20 28.2 0 9 0.08 37.9 0

ibm10 2984 0 0.27 17.4 0 0 0.12 29.4 1

ibm11 6983 0 0.26 38.9 0 4 0.07 50.1 7

ibm12 2433 0 0.32 14.5 0 0 0.12 26.8 0

the 2-D global routing solution. Both the global routing test
case and the 2-D solution are imported into RegularRoute.
Because of the lack of available academic detailed routers, we
compared our results with an industrial router, i.e., WROUTE.
However, WROUTE does not recognize bookshelf placement
format or the global routing test case format we use. We
therefore converted the placed test cases by a publicly available
conversion tool3 to LEF/DEF format test cases which we could
import into WROUTE. The utility by default generates the
routing test case in LEF/DEF format for three layers. We
edited the LEF file for each test case to the exact number
of layers specified in the test case statistics (Tables II and III).
We also updated the pitch size to exactly the same as the case
for RegularRoute.

Although the test cases are in different formats, we made
sure the basic information (i.e., pitch size, module size, routing
region, routing layers) and basic design rules (metal-to-metal,
metal-to-via, and via-to-via spacing) were identical for both
test cases.4 In our experimental results, we apply the same set
of coefficients of RegularRoute for all test cases.

Note that, in our experimental results, it is not a
direct result comparison since in our flow we employ
FastRoute 4.0 to generate the global routing solution
and use RegularRoute for generating a detailed rout-
ing solution, while WROUTE completes both global
routing and detailed routing. However, it is still a meaningful
comparison since global routing is not a challenging part for
both our flow and WROUTEs. And WROUTE is believed to
perform a decent job in global routing. Hence global routing
should not be a major differentiating factor in the experimental
comparison.

B. Results of Local Net Routing

We first show RegularRoute’s performance on handling
local nets based on the vertical spine routing topology. We
report the final unassigned local nets, total CPU time, final
metal 2 usage, and unassigned global segment count. Here we
only use metals 1 and 2. We compare our results with the
RSMT topology.

3We use PlaceUtil executable developed by the University of Michigan,
http://vlsicad.eecs.umich.edu/BK/PlaceUtils/bin/Sol64.

4In the experimental result, we only generate solutions with basic spacing
rules.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG AND CHU: AN EFFICIENT DETAILED ROUTER APPLYING REGULAR ROUTING PATTERNS 11

TABLE II

RESULTS OF REGULARROUTE AND WROUTE FOR ISPD98 TEST CASES

Test case statistics FR4.0 RegularRoute WROUTE

#Loc. Avg. Max. Max. CPU #unass- CPU via wlen CPU via wlenName #Nets #Layers Grid #Seg.
Nets Deg. Seg. Pin (s) igned (s) ×10e5 ×10e5 viol. (s) ×10e5 ×10e5

ibm01 11 507 4 133×132 42 307 1081 3.85 238 463 0.47 0 3.17 0.84 6.9 0 47 0.84 7.1

ibm02 18 427 4 152×151 80 891 1750 4.23 366 616 2.71 0 14.4 2.9 15.9 3 155 3.0 16.1

ibm07 44 394 4 229×228 162 009 4479 3.7 507 877 8.51 0 34.3 3.8 39.9 12 190 3.8 40.6

ibm08 47 944 4 239×238 198 188 5539 4.13 568 1042 10.1 0 54.6 4.4 44.5 0 193 4.4 44.1

ibm09 50 393 4 243×242 179 942 5429 3.73 509 1016 6.11 0 43.1 3.9 37.0 0 184 3.9 37.4

ibm10 64 227 4 316×315 282 041 2984 4.19 640 1045 8.97 0 66.9 6.0 68.5 0 290 6.2 69.5

ibm11 66 994 4 276×275 230 365 6983 3.54 637 1140 15.7 0 68.1 4.8 53.2 23 287 5.1 53.8

ibm12 67 739 4 341×340 336 106 2433 4.34 736 1151 25.4 0 112.1 7.0 97.4 9 422 7.2 98.3

TABLE III

RESULTS OF REGULARROUTE AND WROUTE FOR ISPD05/06 TEST CASES

Test case statistics FR4.0 RegularRoute WROUTE

#Loc. Avg. Max. Max. CPU #unass- CPU via wlen CPU via wlen
Name #Nets #Layers Grid #Seg. Nets Deg. Seg. Pin (s) igned (s) ×10e6 ×10e7 viol. (s) ×10e6 ×10e7

adaptec1 219 243 6 893×892 988 418 54 374 4.28 1424 2594 141 0 622 1.5 8.4 0 1201 1.5 8.5

adaptec2 257 659 6 1174×1172 1 040 019 44 356 4.09 1533 3065 189 0 558 1.9 10.2 221 1344 2.0 10.4

adaptec3 466 293 6 1935×1946 1 887 820 44 356 4.01 2142 4950 342 0 1176 3.5 21.8 0 3939 3.6 22.1

adaptec4 515 300 6 1933×1945 1 812 333 85 000 3.70 1884 3820 289 4 1330 3.0 19.8 324 4424 3.2 20.4

adaptec5 867 344 6 1935×1946 3 506 216 135 795 3.99 2203 4518 698 14 2844 6.9 46.6 294 7729 7.2 47.2

newblue1 331 106 6 934×932 1 070 792 69 300 3.68 1442 2957 72 0 297 2.3 8.8 0 914 2.4 9.1

newblue5 1 257 334 6 2122×2132 4 515 965 238 712 3.87 2521 5957 702 6 2654 7.2 46.3 287 7097 7.8 48.8

newblue6 1 286 448 6 2310×2318 4 944 944 208 903 4.09 2718 5238 598 0 2445 8.5 39.9 0 6645 9.0 41.2

bigblue1 282 399 6 893×892 1 182 506 25 288 4.02 1410 2534 134 0 811 2.2 9.8 0 1802 2.2 9.7

bigblue2 576 618 6 1560×1568 1 826 150 92 945 3.60 1648 3804 249 0 1177 3.7 21.2 54 2856 3.9 22.0

In Table I, the first column lists all experimental test
cases. Owing to limited space, we only show the results
for the ISPD98-derived test cases. The next column shows
the total number of local nets for each test case. The fol-
lowing six columns show the results of VSRT and RSMT,
respectively. The RSMT is generated by FLUTE [30] using
default settings. First, #unassign local is the final unassigned
local nets. VSRT has no unassigned local nets. But RSMT
incurs some unassigned nets. Second, CPU is the runtime in
seconds. FLUTE runs faster than our algorithm. But the local
net routing runtime is trivial compared with global segment
assignment. So the runtime advantage is not important. Third,
metal 2 usage is the total usage on metal 2 after routing
local nets. VSRT introduces 20%–30% less metal 2 usage,
which saves more resources on metal 2. #unassign global is
the final unassigned global segment when either topology is
applied. RSMT may incur some unassigned global segments,
and further suggests RSMT is inferior in preserving routing
resources.

C. Results of RegularRoute for ISPD98 Test Cases

In Table II, we show the results for global segment
assignment of RegularRoute on the eight ISPD98 test cases.
We compare the results with WROUTE (version 3.0.61). Here
we focus on showing the results for RegularRoute, hence there
is no density control for each region as mentioned in Section V.
The test case statistics are shown in the first seven columns, for

total number of nets (#Nets), G-cell grids (Grid), total number
of global segments (#Seg.), total number of local nets (#Loc.
Nets), the average net degree for the whole netlist (Avg. Deg.),
maximum number of segments (Max Seg.) in one panel, and
maximum number of pins in one panel (Max Pin), respectively.
These statistics provide an overall idea about the complexity
of these test cases. The next column shows the runtime for
FastRoute 4.0 [28]. The global routing runtime indicates how
fast our detailed router is compared to the the global router.
The following columns show the results of RegularRoute and
WROUTE, respectively. #unassigned is the count of segments
that cannot be handled by RegularRoute. CPU is the runtime
in seconds. The WROUTE results are reported with similar
metrics except viol., which is the number of design rule
violations.

First, RegularRoute is capable of routing through all the
eight test cases. WROUTE, nevertheless, can route four test
cases without violation. Here the number of violation is the
number of spacing rule violation caused by the inability to
allocate the nets. Second, in terms of runtime, RegularRoute
is better compared to WROUTE, which spends a lot of runtime
on rip-up-and-reroute. Note that we have set up the same
design rules, which include the basic spacing rules for metal
and via on each layer. Besides the basic design rules, we
could incorporate more design metrics into our framework.
The weight function or cost function for solving the MWIS
problem can be thus extended to incorporate other design
objectives. In this case, potentially we see better chance for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE IV

RESULTS OF EFFECTIVENESS FOR EACH PROPOSED TECHNIQUE ON ISPD98 TEST CASES

Random w/o Partial w/o Terminal w/o Merge Ours
CPU #unass- CPU #unass- CPU #unass- CPU #unass- CPU #unass-Name
(s) igned (s) igned (s) igned (s) igned (s) igned

ibm01 2.94 0 3.06 6 2.85 10 3.17 0 3.17 0
ibm02 15.6 2 13.2 120 15.0 46 14.2 4 14.4 0
ibm07 36.0 0 31.2 223 36.2 26 33.8 8 34.3 0
ibm08 51.2 15 48.9 119 53.2 57 54.4 0 54.6 0
ibm09 47.8 3 40.2 46 42.1 20 42.5 0 43.1 0
ibm10 62.6 0 61.9 79 64.3 14 64.2 3 66.9 0
ibm11 69.7 8 63.4 92 66.5 22 67.1 0 68.1 0
ibm12 116.4 15 104.6 435 107.8 108 107.1 15 112.1 0

TABLE V

RESULTS OF REGULARROUTE FOR DENSITY CONTROL

100% 95% 90% 80%
CPU #unass- CPU #unass- CPU #unass- CPU #unass-Name
(s) igned (s) igned (s) igned (s) igned

ibm01 3.17 0 3.24 0 3.85 0 4.66 6
ibm02 14.4 0 16.8 0 17.6 12 25.3 23
ibm09 34.3 0 37.5 6 43.2 26 60.0 52
ibm10 54.6 0 58.2 0 66.3 15 71.1 59

sum_98 106.5 0 115.7 6 131.0 53 161.1 140
norm_98 1.0 - 1.064 - 1.198 - 1.632 -

adaptec1 622 0 632 0 713 16 837 133
adaptec2 558 0 564 0 588 0 722 38
adaptec3 1176 0 1202 0 1288 0 1465 76
adaptec4 1330 4 1545 18 1660 45 1770 166

sum_0506 3686 4 3943 18 4249 61 4794 413
norm_0506 1.0 1.0 1.053 4.5 1.136 15.3 1.304 103.3

satisfying all design rules, as more and more complicated
design rules are triggered by nontrivial routing patterns. The
good routing completion rate could also save additional effort
during the design rule clean-up stage and thus better manufac-
turability. Third, wlen stands for the sum of preferred usage
and nonpreferred usage for all local nets and global segments.
We achieve comparable results as with WROUTE. Forth, sim-
ilar to our earlier discussion, we note that WROUTE employs
both global routing and detailed routing in its framework.
However, in our part, we import the solution of FastRoute 4.0
into RegularRoute. Though the comparison is not complete,
it is still a meaningful one because the global routing in our
experiments is not challenging. WROUTE does a decent global
routing and it routes all nets without overflow in the global
routing part. For more details regarding the runtime of each
major step of RegularRoute, we break down the runtime on
average normed to total runtime for all ISPD98-derived test
cases in Fig. 12. We notice that most runtime is spent on
processing lower metal layers when the unassigned segment
count is high.

D. Results for ISPD05/06 Test Cases

In Table III, we show the complete results on 10 test cases
derived from ISPD05/06 [13], [14] placement benchmarks.
They are much bigger in problem size and more challenging in
complexity than the ISPD98-derived test cases. We only show

Fig. 12. Runtime breakdown for RegularRoute.

the results for 10 test cases (16 benchmarks in total) because
the other 6 test cases could not be routed by WROUTE
(because of some unknown machine or set-up issue). As men-
tioned earlier, these test cases are made by following a similar
procedure as for the ISPD98 test cases. We use FastPlace 3.1
[25] to place all the placement benchmarks with default set-
ting. Likewise, the results are also compared with WROUTE
and here we do not employ density control. We show the
number of unassigned segments (#unassigned), the CPU time,
the via count, and total wirelength for RegularRoute. We
additionally show the violation (viol.) count for WROUTE.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG AND CHU: AN EFFICIENT DETAILED ROUTER APPLYING REGULAR ROUTING PATTERNS 13

RegularRoute is capable of routing seven test cases without
unassigned segments, and WROUTE can route five test cases.
WROUTE is likely to incur a number of design violations.

E. Effectiveness of Proposed Techniques

We show the effectiveness of each technique we proposed
for RegularRoute in Table IV. In this part, we show the
experimental results for RegularRoute without each of the
techniques we have proposed. In particular, Random denotes
the adopted random ordering to process the vertices when
solving MWIS for each panel, instead of the heuristic for
ordering each segment choice based on weight and vertex
connection. In the table, random ordering shows unpredictable
behavior. It shows better results for three test cases with faster
runtimes. But the general routability is degraded as there
are five unroutable test cases. w/o Partial is RegularRoute
without partial assignment, as discussed in Section VI-D. The
routability of all test cases is degraded. Partial assignment is
an effective technique to improve the routability of regular
routing. w/o Terminal is RegularRoute without terminal pro-
motion as discussed in Section VI-E. All test cases are still not
routable, although the congestion degradation is mildly miti-
gated compared to the experiments without partial assignment.
For the last comparison, w/o Merge represents RegularRoute
without panel merging. The panel merging technique is helpful
for congested test cases on the top metal layers. Since some
test cases are not congested on the top layers with the rest of
the techniques, the routability improvement is not as obvious
as the last two techniques. Therefore, all the major techniques
in RegularRoute are important to effectively and efficiently
solve the regular routing problem for modern circuits.

F. Results of RegularRoute for Density Control

In Table V, we will present the results for RegularRoute
with density control as discussed in Section VI-B. We show
the results for four ISPD98 and four ISPD05/06 test cases
for the impact of density control of routing usage for all
regions. Note that the region consists of Q × Q G-cells.
In the experiment, we use 4 × 4 G-cells to form one region.
And experimental results will be shown for each test case on
the count of unassigned segments and execution time for the
maximum density of 100%, 95%, 90%, and 80%, respectively.
sum_98 and norm_98 specify the sum and norm of the results
for ISPD98 placement benchmark-derived test cases. Likewise,
sum_0506 and norm_0506 specify the ISPD05/06 placement
benchmark-derived test cases.

From the results, we notice that there is a minor impact for
maximum density of around 95%. Seven test cases are routable
given the density control for 95% out of the total capacity. If
the control becomes more restrictive, more segments become
unroutable. We notice that most of the unroutable segments
are longer segments that could not be easily fitted in. As the
trend continues, there will be major congestion if the density
limit goes below 80%.

VII. CONCLUSION

In this paper, we proposed an effective detailed routing
called RegularRoute for applying regular routing patterns.

The algorithm proceeds in a bottom-up layer-by-layer manner.
The problem for each layer was partitioned into subproblems
by panels. Inside each panel, the global segment assignment
problem was formulated as an MWIS problem. An effective
heuristic and a few postprocessing techniques were developed.
The generated solution by RegularRoute respects the basic
design rules. To satisfy rest of the design rules, we applied
local optimization based on local shift and rip-up-and-reroute.
We showed the experimental results of RegularRoute on
detailed routing test cases derived from academic placement
benchmark suites. In the future, we intend to further improve
the performance of RegularRoute and try to develop the
approach we proposed in local optimization. We will also try
to incorporate more design objectives to make our tool more
suitable for industrial applications. In addition, we would be
interested in making a parallel version of our tool for further
runtime reduction.

ACKNOWLEDGMENT

The authors would like to thank Dr. H. Leung for the valu-
able discussions which inspired their work and the Computer-
Aided Design Group, University of Michigan, Ann Arbor,
for the helpful placement utility tools to convert the book-
shelf placement format to the library exchange format/design
exchange format.

REFERENCES

[1] A. Hashimoto and J. Stevens, “Wire routing by optimizing channel
assignment within large apertures,” in Proc. ACM/IEEE Design Autom.
Conf., Jan. 1971, pp. 155–169.

[2] T. Yoshimura and E. Kuh, “Efficient algorithms for channel routing,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 1, no. 1,
pp. 633–647, Jan. 1982.

[3] H. Shin and A. Vincentelli, “A detailed router based on incremental
routing modifications: Mighty,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 6, no. 6, pp. 942–955, Nov. 1987.

[4] J. Cong, J. Fang, and K. Khoo, “DUNE-a multilayer gridless routing
system,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 20, no. 5, pp. 633–647, May 2001.

[5] Y. Chang and S. Lin, “MR: A new framework for multilevel full-
chip routing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 23, no. 5, pp. 793–800, May 2004.

[6] G. Nam, K. Sakallah, and R. Rutenbar, “A new FPGA detailed routing
approach via search-based Boolean satisfiability,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 21, no. 6, pp. 674–684, Nov.
2006.

[7] S. Batterywala, N. Shenoy, W. Nicholls, and H. Zhou, “Track assign-
ment: A desirable intermediate step between global routing and detailed
routing,” in Proc. Int. Conf. Comput.-Aided Design, 2002, pp. 59–66.

[8] M. Ozdal, “Detailed-routing algorithms for dense pin clusters in inte-
grated circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 28, no. 3, pp. 340–349, Mar. 2009.

[9] M. Gester, D. Muller, T. Nieberg, C. Panten, C. Schulte, and J. Vygen,
“Algorithms and data structures for fast and good VLSI routing,” in
Proc. ACM/IEEE Design Autom. Conf., Jun. 2012, pp. 459–464.

[10] D. Pan, M. Cho, and K. Yuan, “Manufacturability aware routing in
nanometer VLSI,” Found. Trends Electron. Design Autom., vol. 4, no. 1,
pp. 1–97, Jan. 2010.

[11] L. Capodieci, “Layout printability verification and physical design
regularity: Roadmap enablers for the next decade,” in Proc. EDPS, 2006.

[12] IBM-Place 1.0 Benchmark Suites. (1998) [Online]. Available:
http://er.cs.ucla.edu/benchmarks/ibm-place/

[13] ISPD05 Placement Contest Benchmarks. (2005) [Online]. Available:
http://www.sigda.org/ispd2005/contest.htm

[14] ISPD06 Placement Contest Benchmarks. (2006) [Online]. Available:
http://www.sigda.org/ispd2006/contest.htm

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[15] H. Chen, C. Qiao, F. Zhou, and C. Cheng, “Refined single trunk tree:
A rectilinear Steiner tree generator for interconnect prediction,” in Proc.
ACM Int. Workshop Syst. Level Interconnect Predict., 2002, pp. 85–89.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W.H. Freeman, 1979.

[17] Y. Lin, Y. Ban, D. Pan, and Y. Li, “DOPPLER: DPL-aware and OPC-
friendly gridless detailed routing with mask density balancing,” in Proc.
Int. Conf. Comput.-Aided Design, 2011, pp. 283–289.

[18] J. Gao and D. Pan, “Flexible self-aligned double patterning aware
detailed routing with prescribed layout planning,” in Proc. ACM/SIGDA
Int. Symp. Phys. Design, 2012, pp. 25–32.

[19] D. Ding, J. Gao, K. Yuan, and D. Pan, “AENEID: A generic lithography-
friendly detailed router based on post-RET data learning and hotspot
detection,” in Proc. ACM/IEEE Design Autom. Conf., Jun. 2011, pp.
795–800.

[20] Y. Zhang and C. Chu, “CROP: Fast and effective congestion refinement
of placement,” in Proc. Int. Conf. Comput.-Aided Design, 2009, pp. 344–
350.

[21] Y. Zhang and C. Chu, “RegularRoute: An efficient detailed router with
regular routing patterns,” in Proc. ACM/SIGDA Int. Symp. Phys. Design,
2011, pp. 45–52.

[22] Y. Zhang and C. Chu, “GDRouter: Interleaved global routing and
detailed routing for ultimate routability,” in Proc. ACM/IEEE Design
Autom. Conf., Mar. 2012, pp. 597–602.

[23] IBM-Place 2.0 Benchmark Suites. (2004) [Online]. Available:
http://er.cs.ucla.edu/benchmarks/ibm-place2/

[24] X. Yang, B. Choi, and M. Sarrafzadeh, “Routability-driven white space
allocation for fixed-die standard-cell placement,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 22, no. 4, pp. 410–419, Apr.
2003.

[25] N. Visvanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel
quadratic placement algorithm with placement congestion control,” in
Proc. Asia South Pacific Design Autom. Conf., 2007, pp. 135–140.

[26] ISPD07 Global Routing Contest Benchmarks. (2007) [Online]. Avail-
able: http://www.sigda.org/ispd2007/contest.htm

[27] ISPD08 Global Routing Contest Benchmarks. (2008) [Online]. Avail-
able: http://www.sigda.org/ispd2008/contest.htm

[28] Y. Xu, Y. Zhang, and C. Chu, “FastRoute 4.0: Global router with efficient
via minimization,” in Proc. Asia South Pacific Design Autom. Conf.,
2009, pp. 576–581.

[29] Y. Zhang, Y. Xu, and C. Chu, “FastRoute 3.0: A fast and high quality
global router based on virtual capacity,” in Proc. Int. Conf. Comput.-
Aided Design, 2008, pp. 344–349.

[30] C. Chu and Y. Wong, “FLUTE: Fast lookup table based rectilinear
steiner minimal tree algorithm for VLSI design,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 27, no. 1, pp. 70–83, Jan.
2008.

Yanheng Zhang received the B.S. degree in elec-
trical engineering and information science from the
University of Science and Technology of China,
Hefei, China, and the Ph.D. degree in computer engi-
neering from the Department of Electrical and Com-
puter Engineering, Iowa State University, Ames, in
2006 and 2010, respectively.

He is currently a Senior Member of the Tech-
nical Staff with the Placement Technology Group,
Cadence Design Systems, Inc., San Jose, CA. He
has authored or co-authored papers in conferences,

such as the Design Automation Conference, the International Conference
on Computer-Aided Design, and the International Symposium on Physical
Design. His current research interests include very large-scale integration
physical designs, specifically in algorithms for routing and congestion-driven
placement.

Dr. Zhang was a recipient of the SIGDA/ACM ISPD Global Routing Contest
Award in 2008.

Chris Chu received the B.S. degree from the Uni-
versity of Hong Kong, Hong Kong, in 1993, and the
M.S. and Ph.D. degrees from the University of Texas
at Austin, Austin, in 1994 and 1999, respectively, all
in computer science.

He is currently an Associate Professor with the
Electrical and Computer Engineering Department,
Iowa State University, Ames. His current research
interests include computer-aided design of very
large-scale integration physical design, and design
and analysis of algorithms.

Dr. Chu was a recipient of the IEEE TCAD Best Paper Award in 1999, the
IEEE TCAD Best Paper Award in 2010, the ISPD Best Paper Award in 2004,
the ISPD Best Paper Award in 2012, and the Bert Kay Best Dissertation Award
from the Department of Computer Sciences, University of Texas at Austin, in
1998 and 1999. He is currently an Associate Editor of the IEEE TCAD and
the ACM TODAES. He was on the technical program committees of several
major conferences, including the Design Automation Conference (DAC),
the International Conference on Computer-Aided Design, the International
Symposium on Physical Design, ISCAS, DATE, ASP-DAC, and SLIP.

