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Abstract—Wire bonding is the most popular method to connect
signals between dies in System-in-Package (SiP) design remays.
Pad assignment, which assigns inter-die signals to die pad®
as to facilitate wire bonding, is an important physical desjn
problem for SiP design because the quality of a pad assignmen
solution affects both the cost and performance of a SiP desigIn substrate
this paper, we study a pad assignment problem, which prohikig
the generation of illegal crossings and aims to minimize théotal
signal wirelength, for die-stacking SiP design. We first cosider
the two-die cases and die-stacks with a bridging die, and psent
a minimum-cost flow based approach to optimally solve them in
polynomial time. We then describe an approach, which uses a In the simplest type of SiP design, all the dies in a die-stack
modified left edge algorithm and an integer linear programmig  are individually wire bonded to the package substrate aad th
technique, for pyramid die-stacks with no bridging die. Finally, gy pstrate can take care of interconnecting the dies to eeh o

we discuss extensions of the two approaches to handle additial . .

design constraints. Encouraging experimental results arshown and the Ol_JFS'de world. Assem_bly Compa_nles usually also_ have
to support our approaches. the capability to make direct die-to-die wire bond conrmudi

But die-to-die wire bonding can only be made when a die
is sufficiently larger than the die above it to allow enough
room for the die-to-die wire bond connections. In convamio
pyramid stacking, a smaller die is always stacked on top of a

I. INTRODUCTION larger one as in Figure 1.

Comparing System-in-Package (SiP) [2]-[4] with System- When it is requwed to make a stack of same sized dies or
. L . . ack a larger die on top of a smaller one, a spacer (a dummy
on-Chip (SoC), SiP is a more economical option than S I ) . .
. . layver of silicon) is used to provide space for the loop height
in many consumer electronic products because of the hi ; : .
: . . the lower wire bonds under the upper die. An example is
process complexity and cost associated with SoC. On the ot

hand, compared with traditional system integration wher;ﬁﬁown in Figure 2. In such case, the use of spacers between

Fig. 1. Wire bonding for die-stacking SiP design.

Index Terms—System-in-Package, pad assignment, wire bond-
ing, die-stack.

multiple dies with separate packaging are mounted on a P es will increase the total package thickness. The impmacef

. : . during bonding can also cause die deflection of the overhang
SiP has the advantages of smaller size, lower cost, higher . . . .
! unsupported die edges of the upper die. Moreover, diedo-di

performance, lower power, and shorter time to market. SO : : ;
- ) ; ) wire bond connections are also impossible.

today SiP is already widely used in consumer electronich suc

as cell phones. Currently, SiP design is mostly done by ad hoc =
methods and the quality of a design is heavily dependent on /‘ []) | infeasible
spacer

the designers’ expertise. Tool support specific to SiP deisig } /

still inadequate [3], [5]-[9]. -
Wire bonding [10] is the most popular method to connect

signals between different dies in SiP nowadays. As shown in

Flgure. l.a dle_St.aCl_(mg SIP des_lgn l.JSIng wm_a bonding hes tIgg. 2. Stacking a die on top of another die of equal or smaltes requires

following properties: (1) Dies with different sizes arecit@d  spacer insertion and prohibits die-to-die wire bonds.

and pad signals are connected by bonding wires. (2) Die pads

can only be located on die boundaries.

An important stage during the SiP physical design flow is

. . . . . . pad assignmentvhich assigns inter-die signals to die pads.
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which the upper and lower end points of witg are located. we present a minimum-cost flow [11] based approach to
Then, if the interval of wirew; is properly contained in the optimally solve them in polynomial time. We then describe
interval of wire w; (i.e., U; > U; and L; < L;), then a an approach, which consists of two stages, for pyramid die-
crossing between between, andw; is legal. For example, stacks with no bridging die. In the first stage, the left edge
Figure 3(a) shows one such legal crossing and Figure 3@yorithm (which was originally designed for the classical
shows why the two wires actually will not touch each otharhannel routing problem) [12] is modified to assign as many

by viewing it from a different angle. signals as possible to die pads. If there are remaining lsigna
whose pads cannot be determined in the first stage, our
(a) ﬂﬂ (b) approach proceeds to assign them to die pads using theiintege
g linear programming (ILP) technique [13] in the second stage
o — Extensive experiments are conducted and encouragingsesul
[

are reported to support our approaches. We also discussohow t
extend them to handle practical design constraints. To d¢isé b
Fig. 3. (a) A legal crossing. The interval of one wire is pndpeontained of our knO.WIedge’ our work is the first (.)ne WhICh a.ddresses
in the interval of another wire. (b) The corresponding wices have enough @ pad assignment problem for die-stacking SiP design.
clearance between them. The rest of this paper is organized as follows. Section Il
. _ states the assumptions and the problem formulation. Seitio
_ On the other hand, two types of crossing are considergdscrines our minimum-cost flow based approach. Section IV
illegal in this paper. The first type of illegal crossing is &ves the details of the two-stage approach. Section V ptese
crossing of two wires in which the upper pads of both wiregyiensions of the two approaches to satisfy additionalgdesi

are co-located on a die and the lower pads of both wires &gnstraints. The experimental results are reported in Sec-
co-located on another die. Figure 4 shows such a crossir®. T, vi. and we conclude the paper in Section VII.
other type of illegal crossing is shown in Figure 5 in which

U; < Uj and L; < Lj, and the four pads almost align into
a straight line when projected onto thxez plane. To make _
it more precise, one can introduce a user-specified constAntAssumptions

dis such that if either distancé, or d> shown in Figure 5(b)  For a SiP design, we assume that the dies are arranged as a
is less thardis, then the two wires are considered too closgtack where the die order and orientation are pre-deternine
The usual practice of design house is to avoid these two typesdie has a rectangular shape, and its pads are positioned
of crossing, as they present a hard task to the wire bondigigng its four sides. We also assume each signal needs to be
machine and they are likely to cause the final bonding wirggsigned to exactly two pads on different dies, and each die

Il. ASSUMPTIONS ANDPROBLEM FORMULATION

to touch. has adequate pads to accommodate associated signals. Note
G that it is possible that some signal may only have a pad on a
die which needs to be connected to a finger on the package

[ 0] substrate. For this case, we can treat the substrate as a die
F@’—o—o—’&)T sitting at the bottom of the die stack and each finger as a pad.

A pad assignment result for a signal must be one such that
Fig. 4. First type of illegal crossing. Two wires’ upper paate at the same POth upper and lower pads assigned to the signal are located
level and their lower pads are also at the same level. on the same side but on different dies. Therefore, the pad
assignment result for the one shown on the left of Figure 6 is

feasible for the signal while the one on the right is disafiow

For a signal involving more than two dies, we assume that it

has been converted to two-pad signals in advance.
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Fig. 5. Second type of illegal crossing. e

. . .Fjg. 6. (a) An allowed assignment. (b) A disallowed assignime
In this paper, we study a pad assignment problem which @ 9 ®) g

prohibits the generation of illegal crossings and aims to
minimize the total signal wirelength. We first consider the .
two-die cases and die-stacks with a bridging'dier which B. Problem Formulation

The pad assignment problem considered in this paper has
1The definition of bridging die will be introduced in sectiohi-B. A die- b 9 P hap

stack with die-to-substrate bonding wires only can be éebats a die-stack (€ following inputs. A set of dies, numbered by, ..., from
with a bridging die. top to bottom in the stack, and a set of signals, wo, ...,



are given. Each signal; is associated with two die numbers
U; and L;, representing the dies on which its upper pad and

lower pad should be located. For each die, a set of pads on
each side and their associated locations in the 3-dimeaision capacity  cost (&)
space are also given. &)
The pad assignment problem asks to assign each signal (1,0)
to two pads on the same side of di€s and L; such that supply
no illegal crossing is created and the sum of the wirelengths @)
of all signals (i.e., the total signal wirelength) is minzed. [e] 9
After pad assignment, we know which two pads are assigned () o j
to a signal and therefore the wirelength of this signal can <
be calculated. For simplicity, we use the Euclidean digtanc }g‘@
between the two pads to approximate the actual length of the )O@
bonding wire. ) \@
I1l. NETWORK FLOW BASED APPROACH FORTWO-DIE OR w@
= )
BRIDGING DIE CASES D i-;‘g@
In this section, we show that the pad assignment problem @) %\;@

for any die-stack with only two dies or die-stack containing

bridging die can be solved optimally in polynomial time by &ig. 7. Flow network for a two-die instance. A fictitious mimim-cost flow
minimum-cost flow based approach. is shown with bold edges.

A. Two-die Cases guaranteed to find an integral optimum flow in polynomial
For the case with only two dies, there is only one wire typ&ime [14]. Since all edges off have integral capacities and

i.e., each wire is from the top die to the bottom die. We came assume that each die has adequate pads to accommodate

reduce the two-die pad assignment problem to the minimusissociated signals, an integral minimum-cost flBwcan be

cost flow problem [11] as follows. found. We now explain how to produce the corresponding
Suppose we are givénsignals, and the pad seé&sand@ on pad assignment solution frorf. It is not hard to see that

the two dies, respectively. We will construct a flow networkhere will be k paths of the form:s — p, — ¢; — t

G = (V,E), whereV and E are the node and edge setssuch that all edges on each path are saturated (i.e., having

respectively. For each pad iR U @, there is a node irl/. a flow of 1); in addition, except the starting nodeand

A source nodes and a sink node are also added t&". For ending node, these paths are all node-disjoint. As a result, we

each padgy; € P and each pad; € @ (i.e., a pair of pads on can findk node-disjoint saturated edgés;, ¢;)'s from these

different dies), if they are on the same side, there is a tlitckc paths, and assign the given signals to the corresponding

edge fromp; to ¢; in E with the capacity being and the cost pads of these edges one by one in an arbitrary order. For

being the wirelength between andg;. In addition, there is example, in Figure 7, if there are six signals to be assigned,

a directed edge froms to each padp; in P and there is a and the bold edges are saturated edges found in a minimum-

directed edge from each pagd in () to ¢; the capacity and cost flow, then we can assign the six signals to the pairs of

cost of each of these edges are 1 and 0, respectively. Fingigds(ps, ¢1), (ps, ¢5), (Ps; g6), (P7,Q9)s (P10, q14)s (P11, Q16)-

the supply of nods is set tok and the demand of nodeis We call the minimum-cost flow based approach above MCF.

also set tok. We now state the optimality of MCF in the following theorem.
Figure 7 shows the flow network for an instance of the tw

die pad assignment problem, where each ngdg < i < 12)

represents a pad on the upper die, each ngde < j < 16)

represents a pad on the lower die, the number of signals Proof: Let S denote a two-die pad assignment problem

is six, andW L(p;, ¢q;) denotes the wirelength between twdnstancef be the number of signals, adéibe the correspond-

padsp; andg;. In this example, it is also assumed that padag flow network. Based on the way we buid, it is easy

in the set{p1, p2,ps, 41, 42, 93,94} ({p4,P5,P6,5,96,97,qs}, 10 see that each pad assignment solution (which may have

{p7, ps, P9, q9, 10, Q11, q12}, {P10, P11, P12, q13, Q14, 015, G16}, illegal crossings) ofS corresponds to a feasible flow @f,

respectively) are on the same side. and each feasible flow @ corresponds té&! pad assignment
After the flow networkG is built, we proceed to find a solutions (because there ackdifferent ways to assign the

minimum-cost flow of G. Note that one can regard this asignals to the pads df saturated edge®;, ¢;)'s). Moreover,

the problem of computing a minimum cost bipartite matchintpe total wirelength of a pad assignment solution is equal to

from P to @@ with fixed cardinalityk. It is well known that the cost of the corresponding feasible flow(of Therefore, if

for any minimum-cost flow problem instance with integralve can prove that the pad assignment solution produced from

edge capacities, if it is feasible, then there exists an- inte minimum-cost flow ofZ by MCF does not have any illegal

gral optimum solution and the network simplex algorithm isrossing, we can conclude that this pad assignment soligtion

YFheorem 1. The two-die pad assignment problem can be
optimally solved by MCF.



an optimal one because it also has the shortest wirelength. We can construct a flow network as shown in Figure 10 for
Assume that there exists one wire crossing or more in thiee three-die instance of Figure 9. A source negéds created
pad assignment solution produced from a minimum-cost flder the bridging dieQ and two sink node$p and ¢y are
F of G by MCF. SinceS has only two dies, each crossing mustreated for the two non-bridging dig3 and R, respectively.
be an illegal crossing of the first type. For each pair of wirddodes is connected to each nodewhich corresponds to a
which induce a crossing (see the left part of Figure 8), wead in the bridging die with a directed edge of capacity 1 and
can always swap the signals for the top pads of the wires (serst 0. Each nodg,; which corresponds to a pad in die is
the right part of Figure 8) to remove the crossing. In additio connected to noder with a directed edge of capacity 1 and
after the swap, the new wirelength will become shorter thaiost 0. Similarly, each node which corresponds to a pad in
the old wirelength, based on triangle inequality. We carlyappdie R is connected to nodi; with a directed edge of capacity
the swapping technique to each crossing until all crossinfisind cost 0. If pad; and pady; are on the same side, then we
are eliminated. The resultant pad assignment solution wdltld a directed edge from noggto nodep; of capacity 1 and
correspond to a feasible flow with cost smaller than that ebst equal to the wirelength between the two pads. Simjlarly
F. This contradicts thaF is a minimum-cost flow, and thusif pad ¢; and padr; are on the same side, then we add a
the pad assignment solution produced by MCF has no illegéitected edge from nodg to noder; of capacity 1 and cost

crossing. This completes our proof. B equal to the wirelength between the two pads. But there is no
edge between any pair of nodgs and r; because there is
P Py Ps Da P Dy Ps Py no signal connecting the two non-bridging dies. Finallye th
Q—O0—0— O—0O—0—=0 . . .
Swan i . supply at nodesq is set to the number of signals associated
o wap signals on Diel ; :

wd with the bridging die which is 7 in our instance. The demand
i at each sink node, is set to the number of signals associated

&,
W™ ey - k W,
q, %.~q, g g, G 9 45 ig 90 9s : o ) _
TH%—‘%&—% TIW% with non-bridging diex. In our instance, the demands of nodes

t, andt, are 3 and 4 since dieB and @ have three and four
signals, respectively.

Fig. 8. Swapping signals for top pads to get shorter wirdkeng

B. Bridging Die Cases

It is not uncommon for a multi-die SiP design to have a
bridging die. In such a SiP design, there is one die which we
call abridging diesuch that all the other dies are connected (1,0)
to it only but are not connected to one another. We call
the remaining dies non-bridging dies. For example, Figure 9
gives a three-die pad assignment instance wher&)die the
bridging die. We show that the pad assignment problem for a Gl
multi-die SiP design with a bridging die can also be cast as a
minimum-cost flow problem.

[7]

O O Dicr
h n
O 91 92 ROl 0
X Fig. 10. Flow network for the example in Figure 9. A fictitioonimum-cost
0q O Obien 90 : :
8 opP P2po flow is shown with bold edges.
Py Py L . . .
o © S e Similar to the two-die case, we can obtain an optimal
o 7 . "0 pad assignment solution from a minimum-cost flow of the
’ o o corresponding flow network. For example, in the minimum-
% & cost flow in Figure 10, there are three saturated edges of the
O o
form (¢;,p;) and four saturated edges of the fori, r;),
:;‘;’Eziz n g;Z}Q):-z%ecdefg all of which are node-disjoint. We can assign the three signa
Signals in dic R bd f g between dieg) and P to the three pairs of pads corresponding

to the three saturated edges of the fdign p,) and assign the
four signals between dieQ and R to the four pairs of pads
corresponding to the four saturated edges of the farnr;).

Fig. 9. A pad assignment problem instance with a bridging@ie It is not hard to see that we can generalize the above



construction even if there are more than two non-bridging
dies. Similar to the proof of Theorem 1, we can show that
the resultant pad assignment solution will not have angdlle
crossing of the first type. In addition, as all connectiongeha
one end at the bridging die, illegal crossing of the secopé ty

is impossible. Thus, the solution must have no illegal drass
Moreover, any two-die instance can be seen as a case with one
non-bridging die by regarding one of its two dies as a bridgin
die and the other die as a non-bridging die. Consequently,
any n-die (n > 2) pad assignment problem instance with

a bridging die can be transformed into an instance of the
minimum-cost flow problem and solved optimally. Thus we
have our second theorem below. Finish

Theorem 2. The pad assignment problem with a bridging di&'d- 11 The overall flow of our MLE+ILP approach.
can be optimally solved by MCF.

Pad assignment by
modified left edge algorithm

Yes

Assigning remaining signals to pads
by ILP

Finally, we note that all SiP designs utilizing die-to-stlae  assigned only to two pads with the same label. The tracks are
wire bonding only can be regarded as instances with a bridgigonstructed in this way for two reasons. First, the pads on
die by treating the substrate as the bridging die. In othgte same track will nearly fall in a straight line perpendécu
words, we can use the minimum-cost flow based approaghthe corresponding side. So assigning signals to the grack
to optimally handle all SiP designs utilizing die-to-sulg¢  will not result in unnecessarily long connections. Secan,
wire bonding only. Since the MCF method has no restrictiafssignment of signals to the tracks will not form the firstetyp
on the sizes of the dies, it also covers those SiP designs magléllegal crossing.
up of non-pyramid die-stack which normally employ die-to-
substrate wire bonding only.

IV. AN APPROACH FORPYRAMID DIE-STACKS WITH NO
BRIDGING DIE

In this section, we propose a pad assignment heuristic
for SiP designs made up of pyramid die-stack that has no
bridging die. Our approach consists of two stages. To reduce
the problem complexity, it focuses only on a certain subset

of the solution space in the first stage such that the left edge s L] \

. . p . . Track7 Track5 Track3 Trackl Track2 Track4 Track6 Track8
algorithm [12] can be modified and applied to assign as many
signals as possible to die pads. If there are remaining lsigna Length 3 : Trackl, Track2, Track3

whose pads cannot be determined in the first stage, an integer  Lensth2: Trackd, TrackS, Tracké

linear programming (ILP) based method is invoked in the Length 1+ Track?, Track$

second stage. Both stages are guaranteed not to generate” §ny2 Forming imaginary tracks.

illegal crossing. This approach is called MLE+ILP, and its . . . )

overall flow is shown in Figure 11. The details of each stage '"€ original left edge algorithm [12] is for solving the
are explained in the next two subsections. The experiment3gnnel routing problem, and therefore in order to modify an
results in section VI show that the two-stage approach c&RP!Y it to solve the pad assignment problem in the first stage

find a feasible solution with near optimal wirelength for alVe¢ Need to decide the set of available tracks and the set of
test cases within a short time. wires to be routed. In our pad assignment problem, each die

has four sides, and therefore we will consider pad assighmen
' ) - . for four sides simultaneously. For the example in Figureitl3,
A. First Stage: Modified Left Edge (MLE) Algorithm will form 12 tracks with lengths, 4 tracks with lengtl2, and

For each side of a die, we label all its padisom the center 4 tracks with lengthi at the beginning, as shown in Figure 14,
towards the two ends, starting with 1. The pads on differefghen four sides are considered together. Since each signal
dies but on the same side and with the same label will form &to be assigned to two pads on d@s and L;, the Signa|
imaginary track and the length of the track is determined byorms a wire to be routed with its two end points on dies
the difference of the largest and smallest die numbers amangand ;. Throughout the rest of this paper, signal and wire
all the dies covered by this track (see Figure 12). In thgill be used interchangably. For the example in Figure 13,
first stage, our approach tries to assign as many signalssg@fhalb is on Die1 and Die3, so there will be a wire from
possible to these imaginary tracks. That is, a signal can bg 1 to Die 3. Figure 14 shows all tracks and all wires

2A pyramid die-stack is assumed and the number of pads on édetos of the example in Figure 13, NOte that the Chann?' _routlng
an upper die is always less than or equal to that on the sareesid lower Problem assumes that the available tracks are unlimited and
die. have equal length, and the left edge algorithm tries to route



the wires using as few tracks as possible. However, in our padMVe start the assignment process and assign one wire at a
assignment problem, the tracks are limited and could hatime according to the sorted order of wires. When we process
different lengths, thus making our problem different frome t a wire, we look for a track that can accommodate it. If no track
channel routing problem. has room for the current wire, the wire fails to be assigned in
this stage. Every time after a wire from Digo Die j (i < j)
is assigned to a track, the pads from Die-1) to Die (j—1) in
the track can still be used later by other wires (see Figuje 15
hence we create a new track from Oie+ 1) to Die (j — 1)
T s~ f > P oes £ f and add it to the end of the set of tracks. Note that the origina
’—o’—o”—o’mo’—o’—o—‘ ’—o—o—oﬁo—o—o—‘ left edge algorithm does not c_reate such e_ltrack. We also nqte
Sidel Sided that when we assign a new wire to a particular track, there is
a small chance that it will produce an illegal crossing with a
previously assigned wire as in Figure 16. In this case, wk wil
G F—a—G—0 choose another track to assign the new wire.

Die3

Die4 Die4

Side3 Side4

Signalsindiel: abcejlmqrs

Signalsindie2: acd fghmopt
Signalsindie3: bi k n q r

Signalsindie4: d e fghijklnopst

Fig. 13. A SiP pad assignment instance. Fig. 15. After assigning wiran, the circled portion of the track between
but excludingw’s two end points can still be used by other wire.

Tracks:

12
O

S S—
: { 442
: i HIE ; ‘ ‘
Length3 x 12 Length2 x 4 Lengthl x 4
Fig. 16. A situation where illegal crossing can arise. Siggp® wire between
dies 1 and 3 have been assigned to track 1, then assigningeabetween
Wires: dies 2 and 4 to track 2 can result in an illegal crossing.
abc e j 1 m qr s . . .
| The wire assignment result produced for the example in
d|fgnh op Figure 13 is shown in Figure 17. Mapping the wire assign-

ment result back to the original SiP instance yields the pad
ik n assignment shown in Figure 18. We call the method used in
this stage the modified left edge (MLE) algorithm. As shall be
seen in Section VI, the majority of the signals can have their
Fig. 14. Tracks and wires for the instance in Fig.13. die pads assigned in the first stage.

After all the tracks and wires are created, we sort all tl]g_ Second Stage: ILP
wires to form an order for assignment. Wires are sorted In - ] ] )
increasing order of their upper end points as in the origafal If there.are wires Whlch can_not be aSS|gneq to die .pads
edge algorithm. If there is a tie for the upper end points, @ wifter the first stage, we will assign them by an integer linear
with higher lower end point (i.e., a shorter wire) is ordefiest Programming (ILP) based method in the second stage. In this
which is not required in the original left edge algorithm. |ALP formation, we have the following constants and variable

this way, if we cannot route all signals that have their upper
end points at the same die, we will choose to route the oneg Constants

that are shorter which will leave more resources for routing - T;:1<i<n
subsequent wires. We use this heuristic strategy because we The i-th wire type. The wire type of a signal is
want to route as many signals as possible if not all signais ca determined by its two associated die numbers. If

be routed in this stage. two signals have the same associated die numbers,



dhtfgop o Variables

ac T b q‘ " e i‘ 1‘ S‘ realize thej-th wire candidate for wire typ#;.

0k — i 1<j<0p,1<i<n
111 _ zit € {0,1}. If 2% is 1 in an ILP solution, it
Sorted wires J R J . .
means that thg-th wire candidate of wire typ&;
is selected; ifa:f* is 0, the wire candidate is not
lAssign to tracks selected.
ac bqrejls New tracks

For each wire typél;, it needs to select exactlyyr, wire
candidates, so we have the following constraints:

i Cr,;
Result (wire p cannot E 33'317 = NT” 1 S ) § n
be assigned) j=1

Fig. 17. Wire assignment by the modified left edge algorithm. Each unassigned pad can only be used by a wire candidate

or none, so we have the following constraints:

—odoEh i 2
n : i Pl VE;":PyeE;"

S Sariamcaricint
o & o0 & &5 o o6 o & & o For any two wire candidates, say tli¢h wire candidate of

wire typeT; and thej’-th wire candidate of wire typ&j, if

:chigl,lgkgm

Sidet e they cause an illegal crossing, we need to add the following
m e b i constraint to avoid the two wire candidates to be selected
PP . simultaneously:
{ i d % N
k ,:: 1 I :chL'Jr:c?'gl
’—0—0—0—6—6—0—‘ ’—0—0—0—6—6—0—‘ The objective is to minimize the total wirelength and hence
Sides Sided is stated as follows:
Fig. 18. Pad assignment result. n COn,
miny ST x W
they have the same wire type.is the total number ==t
of different wire types for the remaining signals. It is worth mentioning that this ILP formulation exactly
models our pad assignment problem, if the first stage of our

-~ Np:1<i<n approach is skipped.
The number of remaining signals with wire tyfie The advantage of formulating the pad assignment problem
as an integer linear program is that it is easily extendable
- Cr:1<i<n to consider additional constraints in pad assignment. But a
The number of wire candidates for wire type. disadvantage of ILP is that potentially it can be very time
This amount can be determined from the remainingPnsuming. To effectively control the size of the ILP, we
die pads. If a wire candidate causes an illeg&nay reduce the number of wire candidates generated by each
crossing with an already assigned wire, then wehassigned pad. For the wire candidates of a wire type that

will not create this wire candidate. can be generated by a pad, we only keep at nfostire
candidates which have shorter wirelengths than the others.
-whi1<j< Cr,1<i<n Now if we can find a solution to this new ILP problem, it
ThJe wirelength of thej-th wire candidate for wire must also be a solution to the original ILP problem but may
type 7. not be optimal. On the other hand, if there is no solution tbun
for this new ILP problem, the value d@® will be increased by
- P:1<k<m a fixed amount to get another new ILP problem to be solved.

The k-th unassigned pad. Here we only considefhe whole process is iterated until a solution is found, er th
those pads which may be used by unassignyajue of R reaches the upper limit but no solution is found.
signals.m is the total number of such unassigned

pads. V. EXTENSIONS
. Our proposed SiP pad assignment approaches are very flexi-
- E1<j<Cr,1<i<n ble. In this section, we show how they can be modified if there

E;* is the set of the two pads which are used tare additonal constraints on the pad assignment solutien. W



will consider side constraints and pre-assignment coingsra bottom,, righty, left,, andany, are set in such a way that
as examples. A designer may specify on which side of aasufficient number of pad pairs will be chosen on each side
SiP design a signal should go in or out of the dies that tib satisfy the given side constraints.

connects, which we call side constraintlf a signal has one A fictitious minmum-cost flowF' is shown in Figure 19
terminal pre-assigned to certain pad on a die, we call thisaad we can obtain an optimal pad assignment as follows.
pre-assignment constraidtOne special case is that if we reus@he pad pairs chosen b¥ are (q1,p;) and (gz,72) at the

a legacy die in a SiP design, then all signals in the legacy d@ side, (g3, p3) and (g4, p4) On the right side(qgs,r5) and

are pre-assigned to specific pads on the legacy die. (gs,76) at the bottom side, anfs, r7) on the left side of the
SiP design. For each non-bridging dig first we arbitrarily
A. Extending the MCF Approach assign each of its side-constrained signals to any chosen

Let us consider the 3-die instance in Figure 9 again. Suppd@¥ Pair associated with the corresponding side of the die
a desiger wants signalsandb to be assigned to the top side/VIthout repetition. Then each signal of die with no side
and signalc to be assigned to the right side, and the rest GPnstraint is assigned arbitrarily to any remaining chgsea
the signals can be assigned to any of the four sides. THXH! associated with the die without repetition. For exampl
a minimum-cost flow of the network in Figure 10 will notfor non-bridging dieP, its signals ares, ¢ ande. The pad

guarantee to give a feasible pad assignment satisfyingdee P2rs chosen for dig” by £ are (g1, p1), (¢3,ps) and(qs, pa).
constraints. Signalsa andc are assigned first as they are side-constrained.
To solve the above problem instance with side constraintdgnala can be assigned to pad pair,p:) at the top side
we need to modify the right hand side of the network iwhile signalc can be assigned to either pad pegs, ps) or
Figure 10. We replace nodg for each non-bridging die and Pad Pair (¢4, ps) on the right side. Finally, signal can be
their incident edges as follows. In general, we can disistyu 25Signed to the remaining chosen pad pair forRie
five types of signals which are (i) signals that must be assign
to the top side, (ii) signals that must be assigned to thebott
side, (iii) signals that must be assigned to the right sit®, (
signals that must be assigned to the left side, and (v) sgnal
that can be assigned to any side. For each non-bridging,die
we introduce nodesop,,, bottomy, right,, lefty, andany,
corresponding to the five possible types of signals assatiat
with die a. Nodetop, (bottomlrightylleft,) only has unit-
capacity incoming edges from nodes corresponding to pads
on the top (bottom/right/left) side of die. All these edges (7]
have cost 0. Nodeny, only has incoming edges from nodes
topa, bottomg, right,, andleft,. Each incoming edge of
node any, has infinite capacifyand zero cost. Finally, the
demand of nodeop,, (bottomylrightylieft,) is equal to the
number of signals in die: that need to be assigned to the top
(bottom/right/left) side. The demand of nodey,, is equal to
the number of signals in die that can be assigned to any
side.
The new flow network assuming signalsand b have to
be assigned to the top side, and signdias to be assigned
to the right side is shown in Figure 19. Note that signals Fig. 19. Flow network incorporating side constraints. Aifictis minimum-
and ¢ are associated with non-bridging di¢ while signalb cost flow is shown with bold edges. (Ed¢fottom g, anyg) carries a flow
is associated with non-bridging die di¢, so the number of ©f 2 while all other bold edges carry a unit flow.)

signals in dieP that need to be assigned to the top and the o
right sides are both 1, and the number of signals infliat The minimum-cost flow approach can be further extended

need to be assigned to the top side is 1. It is easy to see fifafi@ndle pre-assignment constraints. Suppose in addtion
by construction, each node corresponding to a pad (ngdes he side constraints for signais b andc, the designer has
pi’s, s in Figure 19) either has exactly one incoming edge'€-assigned digl's signald to padrs and dieQ's signale
and the capacity of that incoming edge is 1, or one outgoifgy P2d ¢s- Then a minimum-cost flow of the network in
edge and the capacity of that outgoing edge is 1. Hence, e&t8Ure 1_9 is no Ionger guaranteed to g:orrespond to a_f_eaS|bIe
pad will be used by at most one signal when a minimum-cd&gd assignment satisfying the pre-assignment constrétiss
flow is computed. In addition, the demands of nodes., because a minimum-cost flow in Figure 19 may not userpad
and/or padys. In order to enforce that pads andgs will be
3If both pads of the same wire are pre-assigned, it is a fixed wire and itisused as prescribed by the designer, we can make some slight

not necessary to assign pads for it. But we have to removei@lcandidates modifications in the previous flow network as below. First
that will produce an illegal crossing witty. ) !

4The capacity can be set to any value larger than the numbeorosidle- W€ Note that pads bE|0ngS _IO th(? non-bridging dig while
constrained signals in die. pad g5 belongs to the bridging di€). So, we set a demand




of 1 for noderg, remove its only outgoing edge, and reducan instance of minimum-cost flow problem and solved opti-
the demand of nodenygr by 1. On the other hand, we set anally even if there are side constraints and/or pre-assignm
supply of 1 for nodeys, remove its only incoming edge, andconstraints. The extended MCF approach is summarized in
reduce the supply of nodg, by 1. The resultant flow network Procedure 1.

is shown in Figure 20.

Procedure 1Extended MCF Approach

1: create a capacitated network model that includes nodes
topa, righty, bottomg, left,, anys, for each non-
bridging diec;
if instance is feasibléhen
compute a minimum cost flow solution;
E = set of all saturated edges of the fofm v) where
u is a pad on the bridging die and is a pad on a
non-bridging die;
5. assign each signal with pre-assigned pad to the edge in
E with matching pad;
6: assign each side constrained signal to any unassigned
edge inE on the required side;
7:  assign remaining signals to the remaining unassigned
edges inE;
8: else
9:  report no feasible solution;
10: end if

Hown

(1,0),

[6]

Fig. 20. Flow network incorporating side constraints and-@ssignment .

constraints. A fictitious minimum-cost flow is shown with Badges. B. Extending the MLE+ILP Approach

In this subsection, we see how to revise the MLE+ILP
proach introduced in section IV to satisfy side constsain

d/or pre-assignment constraints. For the first stageen th
i . . MLE+ILP approach, we can design a modified left edge
top side, (g3, ps) and (gs, 74) on the right side(gs, ps) and algorithm that honors side constraints as shown in Proeg2lur

(g6,75) at the bottom side, andys,7s) on the left side of v "aue note of which side (either TOP, BOTTOM, LEFT,
the SiP design. We assign signals to appropriate pad pa'rSoP]RIGHT) each track belongs to (line 2). When a wire
the following order: (i) signals with pre-assigned pads$), (i

. o . ) with side constraint (either TOP, BOTTOM, LEFT, or RIGHT)
signals with side constraints, and (iii) any other signklsst,

al t the ch d pairs that includ ki is processed, we will skip all tracks not on the correct
we singie out th€ chosen pad pairs that Include a pre-assiglg, (line 5). We assume thatde(w) is ANY if there is

pad and assign them to the d_esignated signals_. In our EXAMRE side constraint for wirav, otherwise it is either TOP,
the chosen pad paifgs,ps) includes pre-assigned pag BOTTOM, LEFT, or RIGHT which corresponds to one of
which 'S(’j dezgnar:(_adh f_ordS|g_nal, tagdf((Js,_T‘s)dllnSUdeS P the four possible sides. After finishing the wire assignment
assigned pads which is designated for signal S0, (¢5.ps) 1y, procedure 2, each track is put back to the original side it
is assigned to signal and (¢s,7s) to signald. Second, for comes from

each non-bridging diex, we arbitrarily assign each of its ; . . .
. . . L .Then in the second stage, an integer linear program is
side-constrained signals to any remaining chosen pad pair

. . . . . .. _constructed to assign the remaining signals not assigned in
associated with the corresponding side of the die W'thogt?age one. Le§ — {TOP, BOTTOM, LEFT, RIGHT;. To take
repetition. Finally, each remaining signal of dieis assigned

o . : ; .tthe side constraints into account, we first add the following
arbitrarily to any remaining chosen pad pair associateth WL ctants

the die without repetition. In our example, for non-bridgin i '
die P, we can assign its side-constrained signaland ¢ to o« Nf:l<i<n,o€eS

A fictitious minmum-cost flowF' is shown in Figure 20 a
and we can obtain an optimal pad assignment as fO||0V\é§
The pad pairs chosen b¥ are (¢1,p1) and (¢g2,71) at the

(q1,p1) and(gs, p3), respectively. For non-bridging dig, we The number of remaining signals that are of wire type
can assign its side-constrained sighdb (go, r1). Lastly, we T; and must be assigned to the side

can assign the two remaining signals of dieto (g4, 74) and . )

(g6,76) arbitrarily. « Xpitl<isno€S

We have shown that side constraints and pre-assignment A variablez}', 1 < j < Cr,, is in the setX[" if and
constraints can be handled at the same time. Note that the ©nly if its corresponding wire candidate is on the side
above construction is independent of the number of non-For each wire typel;, we need to select at leasty.
bridging dies. Hence, any-die (n > 2) pad assignment wire candidates for each side, so we add the following
problem instance with a bridging die can be transformed intoequalities to consider the side constraints:
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Procedure 2MLE Algorithm honoring side constraints assignments can be optimally determined by the proposed

1: sort all wires; minimum-cost flow approach. The details of the three designs

2: record which side each track comes from; are given in Table I, where wire typg, j) means that it is

3: for each wirew in sorted ordedo from Die i to Die j. Table Il also compares the assignment

4. for each track do results by the minimum-cost flow approach against the aaigin

5: if (side@w) = ANY or sidef) = side)) andt has assignments. Column Original shows the original wirelaagt
room forw that does not cross with any previouslyColumn MCF shows the results by the minimum-cost flow
assigned wirghen method. It can be seen that MCF efficiently reduced the total

6: assignw to t; wirelength by up t®6.2% (see the results in the Imp. column

7: /'let w be from diei to die j of Table I1). The MCF approach is very fast and the run time

8: if i+1<j5—1then was well under a second for each case.

o: create new track’ from diei + 1 to diej — 1; We also tried imposing side constraints and pre-assignment

10: putt’ at the end of the track list; constraints for the three industrial cases. Firstly, weduse

11: end if the minimum-cost flow approach to optimally re-assign all

12: break; signals assuming each signal must stay on its original given

13: end if side. The results are shown in Table Il under MCF-S. We

14:  end for can see that the total wirelengths are significantly impdove

15: end for compared to the original assignments. Secondly, we reh@n t

minimum-cost flow method when one die (a flash memory

die) has fixed pad assignments for all its signals. We report

the results under the MCF-P columns in the same table. Again

Z :EJT >N7,1<i<noeS we can obtain significant wirelength reduction comparedthéo t

valiex original assignments.

To address pre-assignment constraints, we can perforrr%n addition, we (_axpgrimented on ten randonjly_gengrated

) . "o . Instances of pyramid die-stacks that have no bridging dée an

an extra pre-processing step to assign all wires with pré

. ; > . their characteristics are listed in Table 1V. Table V shotus t
assignment consraints at the very beginning. SUpposeuN'redetailed results in each stage of our MLE+ILP approach for
is pre-assigned to a padon some die. Then we will assign

. . . the instances. Stage 1 is assignment by the modified left edge
wire w to the particular track that contains padbefore .algorithm and stage 2 is additional assignment by ILP. After

excecuting Procedure 2 and the ILP stage to assign othes.wwse[age 1, the majority of the wires were assigned to pads and
the assignment ratio was 79.31% on average. The run time for
Vl. EXPERIMENTAL RESULTS stage 1 was less than 0.01 second for all cases. The remaining
Our approaches were implemented in C++ and run on @jires were all assigned to pads in stage 2 by ILP. In each
Intel 2.4GHz Linux machine with 8GB memory. We usedase, we created an initial ILP instance with the wire caagid
CPLEX [15] to solve the ILP instances and LEDA [16] torangeR = 5. And if an ILP instance was infeasible, we would
solve the minimum-cost flow instances. increaseR by 2 iteratively until a feasible assignment could
First, we compared the efficiency of our minimum-cosie found. The number of iterations taken for all cases were
flow approach MCF against an optimal ILP-based methaidted in the last column of Table V. The second stage was
on several instances of the special case with two dies ondyso very fast and could finish in a few seconds for all cases.
The ILP method is to run our MLE+ILP approach directly Finally, we checked if it was computationally feasible to
from the second stage (i.e., skipping the MLE stage) amgrform pad assignment by ILP directly without reducing the
without setting the value of to control the amount of wire problem size by the modified left edge algorithm for the test
candidates. Hence, it is also an optimal method. The tesscagases in Table IV. We tried the ILP approach without limiting
were randomly generated assuming the pad pitch is 50um, {he wire candidate rang&. We also tried the ILP approach
thickness of a die is 6 mil (1 mil=25.4um), and the thicknesgith R set to 5 initially and increased it by 2 iteratively if the
of the film between adjacent dies is 1 mil. The details of théyrresponding ILP was infeasible. The results are shown in
test cases and the results are shown in Table I, where the Vi\ﬂ.b|e V1. Column ILP shows the results when no range was
columns show the total wirelength results. An optimal pagsed while column ILP-R shows the results with range. When
assignment solution produced from MCF could be compute@ range was used, the number of ILP constraints were very
quickly in less than a second for every instance. On thgrge and we ran out of memory in seven out of ten cases. The
other hand, when the pad assignment problem was modejgnbers of ILP variables and constraints for each approach a
as an integer linear program, too many ILP constraints weggown for reference.We set a time-limit of 10,000 seconds
generated and exceeded the memory limit of our system excgftthe ILP approach with no range and also for each iteration
for the three smallest instances. The numbers of ILP vas$abbt |LP-R. Experimental results show that without the help of
and constraints are shown in the last column. the modified left edge algorithm, the ILP instances with or
Next, we experimented on three real SiP designs obtained
from the industry. We note that they are instances Withsypen |Lp-R or MLE+ILP took multiple iterations, the numbess ILP
a bridging die as discussed in Section 1lI-B, so their padriables and constraints for the last iteration are regort
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TABLE |
COMPARISON OFMCF AND ILP ON TWO-DIE TEST CASES “-” DENOTES OUT OF MEMORY

MCF ILP
test | #of | #of | #of WL Time WL Time #varffconst
case | dies | wires | pads (um) (s) (um) (s)
casel| 2 40 96 7181.96 | <0.01 | 7181.96 | 0.31 572/34514
case2| 2 80 176 | 14363.92| <0.01 | 14363.92| 4.48 | 1932/425394
case3| 2 160 | 336 | 28727.84| 0.04 | 28727.84| 103.7 | 7052/5924354
cased| 2 240 | 496 | 43091.76| 0.07 - - -
case5| 2 320 | 656 | 57455.68| 0.13 - - -
case6| 2 400 | 816 | 71819.60| 0.20 - - -
case7| 2 480 | 976 | 86183.52| 0.27 - - -
TABLE I
RESULTS ON REAL DESIGNS
test #of | #of | #of | # of wires of each wire typel Original MCF
case | dies | wires | pads| (1,2) | (1,3) 2,3) WL (um) WL(um) Imp. | Time(s)
case8 3 58 197 26 0 32 55483.88 | 42416.03 | 23.6% 0.02
case9 3 38 155 15 23 0 212760.68| 135641.88| 36.2% 0.01
casel0| 3 141 | 483 41 0 100 221244.62| 169771.38| 23.3% 0.08

TABLE Il
RESULTS ON REAL DESIGNS WITH SIDE CONSTRAINTS AND PRBSSIGNMENT CONSTRAINTS

test MCF-S MCF-P

case WL(um) Imp. | Time(s) | WL(um) Imp. | Time(s)
case8 | 42458.14 | 23.5% 0.02 42612.43 | 23.2% 0.02
case9 | 135641.88| 36.2% 0.01 146516.41| 31.1% 0.01
casel0| 169822.76| 23.2% 0.06 170318.45| 23.0% 0.06

TABLE IV
DETAILED INFORMATION OF GENERAL TEST CASES
# of wires of each wire type
test #of | #of | #of
case | dies | wires | pads | (1,2) | (1.3) | (1,4 | (1.5 | (1.6) | 23) | (24) | 25) | (26) | (384)| (385) | (36) | (45) | (4,6) | (5.6)
casell| 4 160 352 19 22 35 0 0 31 26 0 0 27 0 0 0 0 0
casel2| 4 320 672 43 58 55 0 0 58 58 0 0 48 0 0 0 0 0
casel3| 4 640 | 1312 | 87 114 | 110 0 0 115 | 115 0 0 99 0 0 0 0 0
casel4| 5 160 340 16 11 11 14 0 17 16 11 0 12 28 0 24 0 0
casel5| 5 320 660 32 28 26 30 0 37 27 28 0 26 41 0 45 0 0
casel6| 5 640 | 1300 | 69 61 50 61 0 56 66 61 0 70 73 0 73 0 0
casel7| 6 160 336 4 10 6 8 8 14 14 5 7 12 8 8 12 16 28
casel8| 6 320 672 12 23 18 20 19 30 27 12 19 22 16 17 20 29 36
casel9| 6 640 | 1296 | 46 30 49 34 37 35 51 34 38 30 56 57 42 48 53
case20| 6 800 | 1632 | 59 38 65 45 45 44 60 46 51 41 64 69 52 58 63
TABLE V
DETAILED RESULTS OF EACH STAGE OMLE+ILP
stage 1 stage 2
# of # of
Time | assigned| assigned WL Time | assigned| assigned WL # of
test case| (s) wires % (um) (s) wires % (um) Iter
casell | <0.01 134 83.75 40578.07 | 0.02 26 16.25 10002.07 1
casel2 | <0.01 262 81.88 77206.07 | 0.16 58 18.12 21450.04 2
casel3 | <0.01 521 81.40 | 153514.39| 7.69 119 18.60 42734.46 5
casels4 | <0.01 131 81.88 41655.37 | 0.01 29 18.12 12600.69 1
casel5 | <0.01 264 82.50 85285.77 | 0.03 56 17.50 25334.00 1
casel6 | <0.01 508 79.38 | 165185.07| 0.08 132 20.62 59052.82 1
casel7 | <0.01 130 81.25 43091.76 | 0.03 30 18.75 15211.93 1
casel8 | <0.01 252 78.75 91390.44 | 0.78 68 21.25 35945.53 2
casel9 | <0.01 455 71.09 | 170930.64| 6.55 185 28.91 | 100829.31| 6
case20 | <0.01 570 71.25 | 215638.34| 10.53 230 28.75 | 123260.75| 6
Average 79.31 20.69

without range were often too large for an optimal solution tfor most of the cases and we report the best solutions found
be found in a reasonable amount of time. Timeouts occurrbdfore timeouts in Table VI. Comparing with our two-stage



approach, the total wirelength generated by ILP-R was only
0.85% smaller on average. Hence, the two-stage approach is
significantly more efficient than the ILP only approach with
little loss of quality.

VIl. CONCLUSIONS

In this paper, we formulated the SiP pad assignment prob-
lem and presented novel approaches to optimize the bonding
wirelength without creating illegal crossings. To the bebt
our knowledge, our work is the first that addresses the pad
assignment problem for die-stacking SiP design. The exper-
imental results demonstrated the efficiency and effectisen
of our approaches. In our formulation, we assume that the
orientation of dies are fixed. But since the number of dies is
limited in practice, if desired, one may try different oriation
combinations for the best wirelength.
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TABLE VI
COMPARISON BETWEENILP, ILP-R,AND MLE+ILP ON GENERAL TEST CASES"-" DENOTES OUT OF MEMORY

ILP ILP-R MLE+ILP
WL Time #varf#const WL # of Time #varf#const WL Time #varf#const
test case (um) (s) (um) Iter (s) (um) (s)
casell | 49972.38| 161.55| 11576/2580892| 49972.38 1 0.79 2440/10388 50580.14 | 0.02 158/1850
casel2 - - - 98217.35 1 588.39 2904/3556 98656.11 | 0.16 410/6930
casel3 - - - 195913.38| 1 10000 9640/41588 | 196248.85| 7.69 1587/85708
caseld | 54122.13| 10000 | 11480/1525452| 54122.13 1 10000 3000/12676 54256.06 | 0.01 161/628
casel5 - - - 110422.41| 1 10000 6200/26756 | 110619.77| 0.03 320/1574
casel6 - - - 223861.00f 1 10000 | 12600/54916 | 224237.89| 0.08 835/4558
casel7 | 58056.77| 10000 | 11620/1075454| 58059.08 1 10000 3500/14878 58303.69 | 0.03 275/1188
casel8 - - - 126149.74| 1 10000 7700/34030 | 127335.97| 0.78 904/9448
casel9 - - - 264067.02| 2 20000 | 21700/223582| 271759.95| 6.55 | 3938/241544
case20 - - - 332138.26| 1 10000 | 19700/88750 | 338899.09| 10.53 | 5532/459542
Ratio 1.0 1.0085
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