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Pad Assignment for Die-Stacking
System-in-Package Design

Wai-Kei Mak, Yu-Chen Lin, Chris Chu, and Ting-Chi Wang

Abstract—Wire bonding is the most popular method to connect
signals between dies in System-in-Package (SiP) design nowadays.
Pad assignment, which assigns inter-die signals to die padsso
as to facilitate wire bonding, is an important physical design
problem for SiP design because the quality of a pad assignment
solution affects both the cost and performance of a SiP design. In
this paper, we study a pad assignment problem, which prohibits
the generation of illegal crossings and aims to minimize thetotal
signal wirelength, for die-stacking SiP design. We first consider
the two-die cases and die-stacks with a bridging die, and present
a minimum-cost flow based approach to optimally solve them in
polynomial time. We then describe an approach, which uses a
modified left edge algorithm and an integer linear programming
technique, for pyramid die-stacks with no bridging die. Finally,
we discuss extensions of the two approaches to handle additional
design constraints. Encouraging experimental results areshown
to support our approaches.

Index Terms—System-in-Package, pad assignment, wire bond-
ing, die-stack.

I. INTRODUCTION

Comparing System-in-Package (SiP) [2]–[4] with System-
on-Chip (SoC), SiP is a more economical option than SoC
in many consumer electronic products because of the high
process complexity and cost associated with SoC. On the other
hand, compared with traditional system integration where
multiple dies with separate packaging are mounted on a PCB,
SiP has the advantages of smaller size, lower cost, higher
performance, lower power, and shorter time to market. So,
today SiP is already widely used in consumer electronics such
as cell phones. Currently, SiP design is mostly done by ad hoc
methods and the quality of a design is heavily dependent on
the designers’ expertise. Tool support specific to SiP design is
still inadequate [3], [5]–[9].

Wire bonding [10] is the most popular method to connect
signals between different dies in SiP nowadays. As shown in
Figure 1, a die-stacking SiP design using wire bonding has the
following properties: (1) Dies with different sizes are stacked
and pad signals are connected by bonding wires. (2) Die pads
can only be located on die boundaries.
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Fig. 1. Wire bonding for die-stacking SiP design.

In the simplest type of SiP design, all the dies in a die-stack
are individually wire bonded to the package substrate and the
substrate can take care of interconnecting the dies to each other
and the outside world. Assembly companies usually also have
the capability to make direct die-to-die wire bond connections.
But die-to-die wire bonding can only be made when a die
is sufficiently larger than the die above it to allow enough
room for the die-to-die wire bond connections. In conventional
pyramid stacking, a smaller die is always stacked on top of a
larger one as in Figure 1.

When it is required to make a stack of same sized dies or
stack a larger die on top of a smaller one, a spacer (a dummy
layer of silicon) is used to provide space for the loop height
of the lower wire bonds under the upper die. An example is
shown in Figure 2. In such case, the use of spacers between
dies will increase the total package thickness. The impact force
during bonding can also cause die deflection of the overhang
unsupported die edges of the upper die. Moreover, die-to-die
wire bond connections are also impossible.

Fig. 2. Stacking a die on top of another die of equal or smallersize requires
spacer insertion and prohibits die-to-die wire bonds.

An important stage during the SiP physical design flow is
pad assignmentwhich assigns inter-die signals to die pads.
Pad assignment is typically invoked after the partitioningof
the components of a system (or sub-system) into different dies.
After pad assignment, the subsequent floorplanning/placement
and routing stages can then be carried out. When we do pad
assignment, some wire crossings might be produced as in
Figure 3(a), Figure 4, and Figure 5. Nevertheless, some types
of crossings are in fact tolerable. Suppose the dies are indexed
from top to bottom,Ui andLi denote the indexes of the dies on
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which the upper and lower end points of wirewi are located.
Then, if the interval of wirewi is properly contained in the
interval of wire wj (i.e., Ui > Uj and Li < Lj), then a
crossing between betweenwi andwj is legal. For example,
Figure 3(a) shows one such legal crossing and Figure 3(b)
shows why the two wires actually will not touch each other
by viewing it from a different angle.

Fig. 3. (a) A legal crossing. The interval of one wire is properly contained
in the interval of another wire. (b) The corresponding wirescan have enough
clearance between them.

On the other hand, two types of crossing are considered
illegal in this paper. The first type of illegal crossing is a
crossing of two wires in which the upper pads of both wires
are co-located on a die and the lower pads of both wires are
co-located on another die. Figure 4 shows such a crossing. The
other type of illegal crossing is shown in Figure 5 in which
Ui < Uj andLi < Lj , and the four pads almost align into
a straight line when projected onto thex-z plane. To make
it more precise, one can introduce a user-specified constant
dis such that if either distanced1 or d2 shown in Figure 5(b)
is less thandis, then the two wires are considered too close.
The usual practice of design house is to avoid these two types
of crossing, as they present a hard task to the wire bonding
machine and they are likely to cause the final bonding wires
to touch.

Fig. 4. First type of illegal crossing. Two wires’ upper padsare at the same
level and their lower pads are also at the same level.

Fig. 5. Second type of illegal crossing.

In this paper, we study a pad assignment problem which
prohibits the generation of illegal crossings and aims to
minimize the total signal wirelength. We first consider the
two-die cases and die-stacks with a bridging die1 for which

1The definition of bridging die will be introduced in section III-B. A die-
stack with die-to-substrate bonding wires only can be treated as a die-stack
with a bridging die.

we present a minimum-cost flow [11] based approach to
optimally solve them in polynomial time. We then describe
an approach, which consists of two stages, for pyramid die-
stacks with no bridging die. In the first stage, the left edge
algorithm (which was originally designed for the classical
channel routing problem) [12] is modified to assign as many
signals as possible to die pads. If there are remaining signals
whose pads cannot be determined in the first stage, our
approach proceeds to assign them to die pads using the integer
linear programming (ILP) technique [13] in the second stage.
Extensive experiments are conducted and encouraging results
are reported to support our approaches. We also discuss how to
extend them to handle practical design constraints. To the best
of our knowledge, our work is the first one which addresses
a pad assignment problem for die-stacking SiP design.

The rest of this paper is organized as follows. Section II
states the assumptions and the problem formulation. Section III
describes our minimum-cost flow based approach. Section IV
gives the details of the two-stage approach. Section V presents
extensions of the two approaches to satisfy additional design
constraints. The experimental results are reported in Sec-
tion VI, and we conclude the paper in Section VII.

II. A SSUMPTIONS ANDPROBLEM FORMULATION

A. Assumptions

For a SiP design, we assume that the dies are arranged as a
stack where the die order and orientation are pre-determined.
A die has a rectangular shape, and its pads are positioned
along its four sides. We also assume each signal needs to be
assigned to exactly two pads on different dies, and each die
has adequate pads to accommodate associated signals. Note
that it is possible that some signal may only have a pad on a
die which needs to be connected to a finger on the package
substrate. For this case, we can treat the substrate as a die
sitting at the bottom of the die stack and each finger as a pad.
A pad assignment result for a signal must be one such that
both upper and lower pads assigned to the signal are located
on the same side but on different dies. Therefore, the pad
assignment result for the one shown on the left of Figure 6 is
feasible for the signal while the one on the right is disallowed.
For a signal involving more than two dies, we assume that it
has been converted to two-pad signals in advance.

Fig. 6. (a) An allowed assignment. (b) A disallowed assignment.

B. Problem Formulation

The pad assignment problem considered in this paper has
the following inputs. A set of dies, numbered by1, 2, ..., from
top to bottom in the stack, and a set of signals,w1, w2, ...,
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are given. Each signalwi is associated with two die numbers
Ui andLi, representing the dies on which its upper pad and
lower pad should be located. For each die, a set of pads on
each side and their associated locations in the 3-dimensional
space are also given.

The pad assignment problem asks to assign each signalwi

to two pads on the same side of diesUi and Li such that
no illegal crossing is created and the sum of the wirelengths
of all signals (i.e., the total signal wirelength) is minimized.
After pad assignment, we know which two pads are assigned
to a signal and therefore the wirelength of this signal can
be calculated. For simplicity, we use the Euclidean distance
between the two pads to approximate the actual length of the
bonding wire.

III. N ETWORK FLOW BASED APPROACH FORTWO-DIE OR

BRIDGING DIE CASES

In this section, we show that the pad assignment problem
for any die-stack with only two dies or die-stack containinga
bridging die can be solved optimally in polynomial time by a
minimum-cost flow based approach.

A. Two-die Cases

For the case with only two dies, there is only one wire type,
i.e., each wire is from the top die to the bottom die. We can
reduce the two-die pad assignment problem to the minimum-
cost flow problem [11] as follows.

Suppose we are givenk signals, and the pad setsP andQ on
the two dies, respectively. We will construct a flow network
G = (V,E), whereV and E are the node and edge sets,
respectively. For each pad inP ∪ Q, there is a node inV .
A source nodes and a sink nodet are also added toV . For
each padpi ∈ P and each padqj ∈ Q (i.e., a pair of pads on
different dies), if they are on the same side, there is a directed
edge frompi to qj in E with the capacity being1 and the cost
being the wirelength betweenpi andqj . In addition, there is
a directed edge froms to each padpi in P and there is a
directed edge from each padqj in Q to t; the capacity and
cost of each of these edges are 1 and 0, respectively. Finally,
the supply of nodes is set tok and the demand of nodet is
also set tok.

Figure 7 shows the flow network for an instance of the two-
die pad assignment problem, where each nodepi (1 ≤ i ≤ 12)
represents a pad on the upper die, each nodeqj (1 ≤ j ≤ 16)
represents a pad on the lower die, the number of signals
is six, andWL(pi, qj) denotes the wirelength between two
padspi and qj . In this example, it is also assumed that pads
in the set{p1, p2, p3, q1, q2, q3, q4} ({p4, p5, p6, q5, q6, q7, q8},
{p7, p8, p9, q9, q10, q11, q12}, {p10, p11, p12, q13, q14, q15, q16},
respectively) are on the same side.

After the flow networkG is built, we proceed to find a
minimum-cost flow ofG. Note that one can regard this as
the problem of computing a minimum cost bipartite matching
from P to Q with fixed cardinalityk. It is well known that
for any minimum-cost flow problem instance with integral
edge capacities, if it is feasible, then there exists an inte-
gral optimum solution and the network simplex algorithm is
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Fig. 7. Flow network for a two-die instance. A fictitious minimum-cost flow
is shown with bold edges.

guaranteed to find an integral optimum flow in polynomial
time [14]. Since all edges ofG have integral capacities and
we assume that each die has adequate pads to accommodate
associated signals, an integral minimum-cost flowF can be
found. We now explain how to produce the corresponding
pad assignment solution fromF . It is not hard to see that
there will be k paths of the form:s → pi → qj → t

such that all edges on each path are saturated (i.e., having
a flow of 1); in addition, except the starting nodes and
ending nodet, these paths are all node-disjoint. As a result, we
can findk node-disjoint saturated edges(pi, qj)’s from these
paths, and assign the givenk signals to the corresponding
pads of these edges one by one in an arbitrary order. For
example, in Figure 7, if there are six signals to be assigned,
and the bold edges are saturated edges found in a minimum-
cost flow, then we can assign the six signals to the pairs of
pads(p3, q1), (p5, q5), (p6, q6), (p7, q9), (p10, q14), (p11, q16).

We call the minimum-cost flow based approach above MCF.
We now state the optimality of MCF in the following theorem.

Theorem 1. The two-die pad assignment problem can be
optimally solved by MCF.

Proof: Let S denote a two-die pad assignment problem
instance,k be the number of signals, andG be the correspond-
ing flow network. Based on the way we buildG, it is easy
to see that each pad assignment solution (which may have
illegal crossings) ofS corresponds to a feasible flow ofG,
and each feasible flow ofG corresponds tok! pad assignment
solutions (because there arek! different ways to assign thek
signals to the pads ofk saturated edges(pi, qj)’s). Moreover,
the total wirelength of a pad assignment solution is equal to
the cost of the corresponding feasible flow ofG. Therefore, if
we can prove that the pad assignment solution produced from
a minimum-cost flow ofG by MCF does not have any illegal
crossing, we can conclude that this pad assignment solutionis
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an optimal one because it also has the shortest wirelength.
Assume that there exists one wire crossing or more in the

pad assignment solution produced from a minimum-cost flow
F of G by MCF. SinceS has only two dies, each crossing must
be an illegal crossing of the first type. For each pair of wires
which induce a crossing (see the left part of Figure 8), we
can always swap the signals for the top pads of the wires (see
the right part of Figure 8) to remove the crossing. In addition,
after the swap, the new wirelength will become shorter than
the old wirelength, based on triangle inequality. We can apply
the swapping technique to each crossing until all crossings
are eliminated. The resultant pad assignment solution will
correspond to a feasible flow with cost smaller than that of
F . This contradicts thatF is a minimum-cost flow, and thus
the pad assignment solution produced by MCF has no illegal
crossing. This completes our proof.
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Fig. 8. Swapping signals for top pads to get shorter wirelength.

B. Bridging Die Cases

It is not uncommon for a multi-die SiP design to have a
bridging die. In such a SiP design, there is one die which we
call a bridging diesuch that all the other dies are connected
to it only but are not connected to one another. We call
the remaining dies non-bridging dies. For example, Figure 9
gives a three-die pad assignment instance where dieQ is the
bridging die. We show that the pad assignment problem for a
multi-die SiP design with a bridging die can also be cast as a
minimum-cost flow problem.
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Fig. 9. A pad assignment problem instance with a bridging dieQ.

We can construct a flow network as shown in Figure 10 for
the three-die instance of Figure 9. A source nodesQ is created
for the bridging dieQ and two sink nodestP and tR are
created for the two non-bridging diesP andR, respectively.
NodesQ is connected to each nodeqi which corresponds to a
pad in the bridging die with a directed edge of capacity 1 and
cost 0. Each nodepi which corresponds to a pad in dieP is
connected to nodetP with a directed edge of capacity 1 and
cost 0. Similarly, each noderi which corresponds to a pad in
dieR is connected to nodetR with a directed edge of capacity
1 and cost 0. If padqi and padpj are on the same side, then we
add a directed edge from nodeqi to nodepj of capacity 1 and
cost equal to the wirelength between the two pads. Similarly,
if pad qi and padrj are on the same side, then we add a
directed edge from nodeqi to noderj of capacity 1 and cost
equal to the wirelength between the two pads. But there is no
edge between any pair of nodespi and rj because there is
no signal connecting the two non-bridging dies. Finally, the
supply at nodesQ is set to the number of signals associated
with the bridging die which is 7 in our instance. The demand
at each sink nodetα is set to the number of signals associated
with non-bridging dieα. In our instance, the demands of nodes
tp andtq are 3 and 4 since diesP andQ have three and four
signals, respectively.
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Fig. 10. Flow network for the example in Figure 9. A fictitiousminimum-cost
flow is shown with bold edges.

Similar to the two-die case, we can obtain an optimal
pad assignment solution from a minimum-cost flow of the
corresponding flow network. For example, in the minimum-
cost flow in Figure 10, there are three saturated edges of the
form (qi, pj) and four saturated edges of the form(qi, rj),
all of which are node-disjoint. We can assign the three signals
between diesQ andP to the three pairs of pads corresponding
to the three saturated edges of the form(qi, pj) and assign the
four signals between diesQ andR to the four pairs of pads
corresponding to the four saturated edges of the form(qi, rj).

It is not hard to see that we can generalize the above
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construction even if there are more than two non-bridging
dies. Similar to the proof of Theorem 1, we can show that
the resultant pad assignment solution will not have any illegal
crossing of the first type. In addition, as all connections have
one end at the bridging die, illegal crossing of the second type
is impossible. Thus, the solution must have no illegal crossing.
Moreover, any two-die instance can be seen as a case with one
non-bridging die by regarding one of its two dies as a bridging
die and the other die as a non-bridging die. Consequently,
any n-die (n ≥ 2) pad assignment problem instance with
a bridging die can be transformed into an instance of the
minimum-cost flow problem and solved optimally. Thus we
have our second theorem below.

Theorem 2. The pad assignment problem with a bridging die
can be optimally solved by MCF.

Finally, we note that all SiP designs utilizing die-to-substrate
wire bonding only can be regarded as instances with a bridging
die by treating the substrate as the bridging die. In other
words, we can use the minimum-cost flow based approach
to optimally handle all SiP designs utilizing die-to-substrate
wire bonding only. Since the MCF method has no restriction
on the sizes of the dies, it also covers those SiP designs made
up of non-pyramid die-stack which normally employ die-to-
substrate wire bonding only.

IV. A N APPROACH FORPYRAMID DIE-STACKS WITH NO

BRIDGING DIE

In this section, we propose a pad assignment heuristic
for SiP designs made up of pyramid die-stack that has no
bridging die. Our approach consists of two stages. To reduce
the problem complexity, it focuses only on a certain subset
of the solution space in the first stage such that the left edge
algorithm [12] can be modified and applied to assign as many
signals as possible to die pads. If there are remaining signals
whose pads cannot be determined in the first stage, an integer
linear programming (ILP) based method is invoked in the
second stage. Both stages are guaranteed not to generate any
illegal crossing. This approach is called MLE+ILP, and its
overall flow is shown in Figure 11. The details of each stage
are explained in the next two subsections. The experimental
results in section VI show that the two-stage approach can
find a feasible solution with near optimal wirelength for all
test cases within a short time.

A. First Stage: Modified Left Edge (MLE) Algorithm

For each side of a die, we label all its pads2 from the center
towards the two ends, starting with 1. The pads on different
dies but on the same side and with the same label will form an
imaginary track, and the length of the track is determined by
the difference of the largest and smallest die numbers among
all the dies covered by this track (see Figure 12). In the
first stage, our approach tries to assign as many signals as
possible to these imaginary tracks. That is, a signal can be

2A pyramid die-stack is assumed and the number of pads on each side of
an upper die is always less than or equal to that on the same side of a lower
die.
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Fig. 11. The overall flow of our MLE+ILP approach.

assigned only to two pads with the same label. The tracks are
constructed in this way for two reasons. First, the pads on
the same track will nearly fall in a straight line perpendicular
to the corresponding side. So assigning signals to the tracks
will not result in unnecessarily long connections. Second,any
assignment of signals to the tracks will not form the first type
of illegal crossing.

Fig. 12. Forming imaginary tracks.

The original left edge algorithm [12] is for solving the
channel routing problem, and therefore in order to modify and
apply it to solve the pad assignment problem in the first stage,
we need to decide the set of available tracks and the set of
wires to be routed. In our pad assignment problem, each die
has four sides, and therefore we will consider pad assignment
for four sides simultaneously. For the example in Figure 13,it
will form 12 tracks with length3, 4 tracks with length2, and
4 tracks with length1 at the beginning, as shown in Figure 14,
when four sides are considered together. Since each signalwi

is to be assigned to two pads on diesUi andLi, the signal
forms a wire to be routed with its two end points on dies
Ui andLi. Throughout the rest of this paper, signal and wire
will be used interchangably. For the example in Figure 13,
signal b is on Die1 and Die3, so there will be a wire from
Die 1 to Die 3. Figure 14 shows all tracks and all wires
of the example in Figure 13. Note that the channel routing
problem assumes that the available tracks are unlimited and
have equal length, and the left edge algorithm tries to route
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the wires using as few tracks as possible. However, in our pad
assignment problem, the tracks are limited and could have
different lengths, thus making our problem different from the
channel routing problem.

Fig. 13. A SiP pad assignment instance.
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Fig. 14. Tracks and wires for the instance in Fig.13.

After all the tracks and wires are created, we sort all the
wires to form an order for assignment. Wires are sorted in
increasing order of their upper end points as in the originalleft
edge algorithm. If there is a tie for the upper end points, a wire
with higher lower end point (i.e., a shorter wire) is orderedfirst
which is not required in the original left edge algorithm. In
this way, if we cannot route all signals that have their upper
end points at the same die, we will choose to route the ones
that are shorter which will leave more resources for routing
subsequent wires. We use this heuristic strategy because we
want to route as many signals as possible if not all signals can
be routed in this stage.

We start the assignment process and assign one wire at a
time according to the sorted order of wires. When we process
a wire, we look for a track that can accommodate it. If no track
has room for the current wire, the wire fails to be assigned in
this stage. Every time after a wire from Diei to Die j (i < j)
is assigned to a track, the pads from Die(i+1) to Die (j−1) in
the track can still be used later by other wires (see Figure 15),
hence we create a new track from Die(i+ 1) to Die (j − 1)
and add it to the end of the set of tracks. Note that the original
left edge algorithm does not create such a track. We also note
that when we assign a new wire to a particular track, there is
a small chance that it will produce an illegal crossing with a
previously assigned wire as in Figure 16. In this case, we will
choose another track to assign the new wire.

Fig. 15. After assigning wirew, the circled portion of the track between
but excludingw’s two end points can still be used by other wire.

Fig. 16. A situation where illegal crossing can arise. Suppose a wire between
dies 1 and 3 have been assigned to track 1, then assigning a wire between
dies 2 and 4 to track 2 can result in an illegal crossing.

The wire assignment result produced for the example in
Figure 13 is shown in Figure 17. Mapping the wire assign-
ment result back to the original SiP instance yields the pad
assignment shown in Figure 18. We call the method used in
this stage the modified left edge (MLE) algorithm. As shall be
seen in Section VI, the majority of the signals can have their
die pads assigned in the first stage.

B. Second Stage: ILP

If there are wires which cannot be assigned to die pads
after the first stage, we will assign them by an integer linear
programming (ILP) based method in the second stage. In this
ILP formation, we have the following constants and variables.

• Constants
– Ti: 1 ≤ i ≤ n

The i-th wire type. The wire type of a signal is
determined by its two associated die numbers. If
two signals have the same associated die numbers,
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Fig. 17. Wire assignment by the modified left edge algorithm.

Fig. 18. Pad assignment result.

they have the same wire type.n is the total number
of different wire types for the remaining signals.

– NTi
: 1 ≤ i ≤ n

The number of remaining signals with wire typeTi.

– CTi
: 1 ≤ i ≤ n

The number of wire candidates for wire typeTi.
This amount can be determined from the remaining
die pads. If a wire candidate causes an illegal
crossing with an already assigned wire, then we
will not create this wire candidate.

– WTi

j : 1 ≤ j ≤ CTi
, 1 ≤ i ≤ n

The wirelength of thej-th wire candidate for wire
typeTi.

– Pk: 1 ≤ k ≤ m

The k-th unassigned pad. Here we only consider
those pads which may be used by unassigned
signals.m is the total number of such unassigned
pads.

– ETi

j : 1 ≤ j ≤ CTi
, 1 ≤ i ≤ n

ETi

j is the set of the two pads which are used to

realize thej-th wire candidate for wire typeTi.

• Variables
– xTi

j : 1 ≤ j ≤ CTi
, 1 ≤ i ≤ n

xTi

j ∈ {0, 1}. If xTi

j is 1 in an ILP solution, it
means that thej-th wire candidate of wire typeTi

is selected; ifxTi

j is 0, the wire candidate is not
selected.

For each wire typeTi, it needs to select exactlyNTi
wire

candidates, so we have the following constraints:

CTi∑

j=1

xTi

j = NTi
, 1 ≤ i ≤ n

Each unassigned pad can only be used by a wire candidate
or none, so we have the following constraints:

∑

∀E
Ti
j

:Pk∈E
Ti
j

xTi

j ≤ 1, 1 ≤ k ≤ m

For any two wire candidates, say thej-th wire candidate of
wire typeTi and thej′-th wire candidate of wire typeTi′ , if
they cause an illegal crossing, we need to add the following
constraint to avoid the two wire candidates to be selected
simultaneously:

xTi

j + x
Ti′

j′ ≤ 1

The objective is to minimize the total wirelength and hence
is stated as follows:

min

n∑

i=1

CTi∑

j=1

xTi

j ×WTi

j

It is worth mentioning that this ILP formulation exactly
models our pad assignment problem, if the first stage of our
approach is skipped.

The advantage of formulating the pad assignment problem
as an integer linear program is that it is easily extendable
to consider additional constraints in pad assignment. But a
disadvantage of ILP is that potentially it can be very time
consuming. To effectively control the size of the ILP, we
may reduce the number of wire candidates generated by each
unassigned pad. For the wire candidates of a wire type that
can be generated by a pad, we only keep at mostR wire
candidates which have shorter wirelengths than the others.
Now if we can find a solution to this new ILP problem, it
must also be a solution to the original ILP problem but may
not be optimal. On the other hand, if there is no solution found
for this new ILP problem, the value ofR will be increased by
a fixed amount to get another new ILP problem to be solved.
The whole process is iterated until a solution is found, or the
value ofR reaches the upper limit but no solution is found.

V. EXTENSIONS

Our proposed SiP pad assignment approaches are very flexi-
ble. In this section, we show how they can be modified if there
are additonal constraints on the pad assignment solution. We
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will consider side constraints and pre-assignment constraints
as examples. A designer may specify on which side of a
SiP design a signal should go in or out of the dies that it
connects, which we call aside constraint. If a signal has one
terminal pre-assigned to certain pad on a die, we call this a
pre-assignment constraint.3 One special case is that if we reuse
a legacy die in a SiP design, then all signals in the legacy die
are pre-assigned to specific pads on the legacy die.

A. Extending the MCF Approach

Let us consider the 3-die instance in Figure 9 again. Suppose
a desiger wants signalsa andb to be assigned to the top side
and signalc to be assigned to the right side, and the rest of
the signals can be assigned to any of the four sides. Then
a minimum-cost flow of the network in Figure 10 will not
guarantee to give a feasible pad assignment satisfying the side
constraints.

To solve the above problem instance with side constraints,
we need to modify the right hand side of the network in
Figure 10. We replace nodetα for each non-bridging dieα and
their incident edges as follows. In general, we can distinguish
five types of signals which are (i) signals that must be assigned
to the top side, (ii) signals that must be assigned to the bottom
side, (iii) signals that must be assigned to the right side, (iv)
signals that must be assigned to the left side, and (v) signals
that can be assigned to any side. For each non-bridging dieα,
we introduce nodestopα, bottomα, rightα, leftα, andanyα
corresponding to the five possible types of signals associated
with dieα. Nodetopα (bottomα/rightα/leftα) only has unit-
capacity incoming edges from nodes corresponding to pads
on the top (bottom/right/left) side of dieα. All these edges
have cost 0. Nodeanyα only has incoming edges from nodes
topα, bottomα, rightα, and leftα. Each incoming edge of
nodeanyα has infinite capacity4 and zero cost. Finally, the
demand of nodetopα (bottomα/rightα/leftα) is equal to the
number of signals in dieα that need to be assigned to the top
(bottom/right/left) side. The demand of nodeanyα is equal to
the number of signals in dieα that can be assigned to any
side.

The new flow network assuming signalsa and b have to
be assigned to the top side, and signalc has to be assigned
to the right side is shown in Figure 19. Note that signalsa

and c are associated with non-bridging dieP while signalb
is associated with non-bridging die dieR, so the number of
signals in dieP that need to be assigned to the top and the
right sides are both 1, and the number of signals in dieR that
need to be assigned to the top side is 1. It is easy to see that
by construction, each node corresponding to a pad (nodesqi’s,
pi’s, ri’s in Figure 19) either has exactly one incoming edge
and the capacity of that incoming edge is 1, or one outgoing
edge and the capacity of that outgoing edge is 1. Hence, each
pad will be used by at most one signal when a minimum-cost
flow is computed. In addition, the demands of nodestopα,

3If both pads of the same wirew are pre-assigned, it is a fixed wire and it is
not necessary to assign pads for it. But we have to remove all wire candidates
that will produce an illegal crossing withw.

4The capacity can be set to any value larger than the number of non-side-
constrained signals in dieα.

bottomα, rightα, leftα, andanyα are set in such a way that
a sufficient number of pad pairs will be chosen on each side
to satisfy the given side constraints.

A fictitious minmum-cost flowF is shown in Figure 19
and we can obtain an optimal pad assignment as follows.
The pad pairs chosen byF are (q1, p1) and (q2, r2) at the
top side,(q3, p3) and (q4, p4) on the right side,(q5, r5) and
(q6, r6) at the bottom side, and(q8, r7) on the left side of the
SiP design. For each non-bridging dieα, first we arbitrarily
assign each of its side-constrained signals to any chosen
pad pair associated with the corresponding side of the die
without repetition. Then each signal of dieα with no side
constraint is assigned arbitrarily to any remaining chosenpad
pair associated with the die without repetition. For example,
for non-bridging dieP , its signals area, c and e. The pad
pairs chosen for dieP by F are(q1, p1), (q3, p3) and(q4, p4).
Signalsa andc are assigned first as they are side-constrained.
Signala can be assigned to pad pair(q1, p1) at the top side
while signalc can be assigned to either pad pair(q3, p3) or
pad pair(q4, p4) on the right side. Finally, signale can be
assigned to the remaining chosen pad pair for dieP .
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Fig. 19. Flow network incorporating side constraints. A fictitious minimum-
cost flow is shown with bold edges. (Edge(bottomR , anyR) carries a flow
of 2 while all other bold edges carry a unit flow.)

The minimum-cost flow approach can be further extended
to handle pre-assignment constraints. Suppose in additionto
the side constraints for signalsa, b and c, the designer has
pre-assigned dieR’s signald to padr8 and dieQ’s signale
to pad q5. Then a minimum-cost flow of the network in
Figure 19 is no longer guaranteed to correspond to a feasible
pad assignment satisfying the pre-assignment constraints. It is
because a minimum-cost flow in Figure 19 may not use padr8
and/or padq5. In order to enforce that padsr8 andq5 will be
used as prescribed by the designer, we can make some slight
modifications in the previous flow network as below. First,
we note that padr8 belongs to the non-bridging dieR while
pad q5 belongs to the bridging dieQ. So, we set a demand
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of 1 for noder8, remove its only outgoing edge, and reduce
the demand of nodeanyR by 1. On the other hand, we set a
supply of 1 for nodeq5, remove its only incoming edge, and
reduce the supply of nodesQ by 1. The resultant flow network
is shown in Figure 20.
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Fig. 20. Flow network incorporating side constraints and pre-assignment
constraints. A fictitious minimum-cost flow is shown with bold edges.

A fictitious minmum-cost flowF is shown in Figure 20
and we can obtain an optimal pad assignment as follows.
The pad pairs chosen byF are (q1, p1) and (q2, r1) at the
top side,(q3, p3) and (q4, r4) on the right side,(q5, p6) and
(q6, r6) at the bottom side, and(q8, r8) on the left side of
the SiP design. We assign signals to appropriate pad pairs in
the following order: (i) signals with pre-assigned pads, (ii)
signals with side constraints, and (iii) any other signals.First,
we single out the chosen pad pairs that include a pre-assigned
pad and assign them to the designated signals. In our example,
the chosen pad pair(q5, p6) includes pre-assigned padq5
which is designated for signale, and (q8, r8) includes pre-
assigned padr8 which is designated for signald. So,(q5, p6)
is assigned to signale and (q8, r8) to signald. Second, for
each non-bridging dieα, we arbitrarily assign each of its
side-constrained signals to any remaining chosen pad pair
associated with the corresponding side of the die without
repetition. Finally, each remaining signal of dieα is assigned
arbitrarily to any remaining chosen pad pair associated with
the die without repetition. In our example, for non-bridging
die P , we can assign its side-constrained signalsa and c to
(q1, p1) and(q3, p3), respectively. For non-bridging dieR, we
can assign its side-constrained signalb to (q2, r1). Lastly, we
can assign the two remaining signals of dieR to (q4, r4) and
(q6, r6) arbitrarily.

We have shown that side constraints and pre-assignment
constraints can be handled at the same time. Note that the
above construction is independent of the number of non-
bridging dies. Hence, anyn-die (n ≥ 2) pad assignment
problem instance with a bridging die can be transformed into

an instance of minimum-cost flow problem and solved opti-
mally even if there are side constraints and/or pre-assignment
constraints. The extended MCF approach is summarized in
Procedure 1.

Procedure 1Extended MCF Approach
1: create a capacitated network model that includes nodes

topα, rightα, bottomα, leftα, anyα, for each non-
bridging dieα;

2: if instance is feasiblethen
3: compute a minimum cost flow solution;
4: E = set of all saturated edges of the form(u, v) where

u is a pad on the bridging die andv is a pad on a
non-bridging die;

5: assign each signal with pre-assigned pad to the edge in
E with matching pad;

6: assign each side constrained signal to any unassigned
edge inE on the required side;

7: assign remaining signals to the remaining unassigned
edges inE;

8: else
9: report no feasible solution;

10: end if

B. Extending the MLE+ILP Approach

In this subsection, we see how to revise the MLE+ILP
approach introduced in section IV to satisfy side constraints
and/or pre-assignment constraints. For the first stage in the
MLE+ILP approach, we can design a modified left edge
algorithm that honors side constraints as shown in Procedure 2.
We take note of which side (either TOP, BOTTOM, LEFT,
or RIGHT) each track belongs to (line 2). When a wirew
with side constraint (either TOP, BOTTOM, LEFT, or RIGHT)
is processed, we will skip all tracks not on the correct
side (line 5). We assume thatside(w) is ANY if there is
no side constraint for wirew, otherwise it is either TOP,
BOTTOM, LEFT, or RIGHT which corresponds to one of
the four possible sides. After finishing the wire assignment
by Procedure 2, each track is put back to the original side it
comes from.

Then in the second stage, an integer linear program is
constructed to assign the remaining signals not assigned in
stage one. LetS = {TOP, BOTTOM, LEFT, RIGHT}. To take
the side constraints into account, we first add the following
constants.

• Nσ
Ti

: 1 ≤ i ≤ n, σ ∈ S

The number of remaining signals that are of wire type
Ti and must be assigned to the sideσ.

• XTi
σ : 1 ≤ i ≤ n, σ ∈ S

A variablexTi

j , 1 ≤ j ≤ CTi
, is in the setXTi

σ if and
only if its corresponding wire candidate is on the sideσ.

For each wire typeTi, we need to select at leastNσ
Ti

wire candidates for each sideσ, so we add the following
inequalities to consider the side constraints:
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Procedure 2MLE Algorithm honoring side constraints
1: sort all wires;
2: record which side each track comes from;
3: for each wirew in sorted orderdo
4: for each trackt do
5: if (side(w) = ANY or side(t) = side(w)) and t has

room for w that does not cross with any previously
assigned wirethen

6: assignw to t;
7: // let w be from diei to die j

8: if i+ 1 < j − 1 then
9: create new trackt′ from die i+ 1 to die j − 1;

10: put t′ at the end of the track list;
11: end if
12: break;
13: end if
14: end for
15: end for

∑

∀x
Ti
j

∈X
Ti
σ

xTi

j ≥ Nσ
Ti
, 1 ≤ i ≤ n, σ ∈ S

To address pre-assignment constraints, we can perform
an extra pre-processing step to assign all wires with pre-
assignment constraints at the very beginning. Suppose wirew

is pre-assigned to a padp on some die. Then we will assign
wire w to the particular track that contains padp before
excecuting Procedure 2 and the ILP stage to assign other wires.

VI. EXPERIMENTAL RESULTS

Our approaches were implemented in C++ and run on an
Intel 2.4GHz Linux machine with 8GB memory. We used
CPLEX [15] to solve the ILP instances and LEDA [16] to
solve the minimum-cost flow instances.

First, we compared the efficiency of our minimum-cost
flow approach MCF against an optimal ILP-based method
on several instances of the special case with two dies only.
The ILP method is to run our MLE+ILP approach directly
from the second stage (i.e., skipping the MLE stage) and
without setting the value ofR to control the amount of wire
candidates. Hence, it is also an optimal method. The test cases
were randomly generated assuming the pad pitch is 50um, the
thickness of a die is 6 mil (1 mil=25.4um), and the thickness
of the film between adjacent dies is 1 mil. The details of the
test cases and the results are shown in Table I, where the WL
columns show the total wirelength results. An optimal pad
assignment solution produced from MCF could be computed
quickly in less than a second for every instance. On the
other hand, when the pad assignment problem was modeled
as an integer linear program, too many ILP constraints were
generated and exceeded the memory limit of our system except
for the three smallest instances. The numbers of ILP variables
and constraints are shown in the last column.

Next, we experimented on three real SiP designs obtained
from the industry. We note that they are instances with
a bridging die as discussed in Section III-B, so their pad

assignments can be optimally determined by the proposed
minimum-cost flow approach. The details of the three designs
are given in Table II, where wire type(i, j) means that it is
from Die i to Die j. Table II also compares the assignment
results by the minimum-cost flow approach against the original
assignments. Column Original shows the original wirelengths.
Column MCF shows the results by the minimum-cost flow
method. It can be seen that MCF efficiently reduced the total
wirelength by up to36.2% (see the results in the Imp. column
of Table II). The MCF approach is very fast and the run time
was well under a second for each case.

We also tried imposing side constraints and pre-assignment
constraints for the three industrial cases. Firstly, we used
the minimum-cost flow approach to optimally re-assign all
signals assuming each signal must stay on its original given
side. The results are shown in Table III under MCF-S. We
can see that the total wirelengths are significantly improved
compared to the original assignments. Secondly, we re-ran the
minimum-cost flow method when one die (a flash memory
die) has fixed pad assignments for all its signals. We report
the results under the MCF-P columns in the same table. Again
we can obtain significant wirelength reduction compared to the
original assignments.

In addition, we experimented on ten randomly generated
instances of pyramid die-stacks that have no bridging die and
their characteristics are listed in Table IV. Table V shows the
detailed results in each stage of our MLE+ILP approach for
the instances. Stage 1 is assignment by the modified left edge
algorithm and stage 2 is additional assignment by ILP. After
stage 1, the majority of the wires were assigned to pads and
the assignment ratio was 79.31% on average. The run time for
stage 1 was less than 0.01 second for all cases. The remaining
wires were all assigned to pads in stage 2 by ILP. In each
case, we created an initial ILP instance with the wire candidate
rangeR = 5. And if an ILP instance was infeasible, we would
increaseR by 2 iteratively until a feasible assignment could
be found. The number of iterations taken for all cases were
listed in the last column of Table V. The second stage was
also very fast and could finish in a few seconds for all cases.

Finally, we checked if it was computationally feasible to
perform pad assignment by ILP directly without reducing the
problem size by the modified left edge algorithm for the test
cases in Table IV. We tried the ILP approach without limiting
the wire candidate rangeR. We also tried the ILP approach
with R set to 5 initially and increased it by 2 iteratively if the
corresponding ILP was infeasible. The results are shown in
Table VI. Column ILP shows the results when no range was
used while column ILP-R shows the results with range. When
no range was used, the number of ILP constraints were very
large and we ran out of memory in seven out of ten cases. The
numbers of ILP variables and constraints for each approach are
shown for reference.5 We set a time-limit of 10,000 seconds
for the ILP approach with no range and also for each iteration
of ILP-R. Experimental results show that without the help of
the modified left edge algorithm, the ILP instances with or

5When ILP-R or MLE+ILP took multiple iterations, the numbersof ILP
variables and constraints for the last iteration are reported.
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TABLE I
COMPARISON OFMCF AND ILP ON TWO-DIE TEST CASES; “-” DENOTES OUT OF MEMORY

MCF ILP
test # of # of # of WL Time WL Time #var/#const
case dies wires pads (um) (s) (um) (s)
case1 2 40 96 7181.96 <0.01 7181.96 0.31 572/34514
case2 2 80 176 14363.92 <0.01 14363.92 4.48 1932/425394
case3 2 160 336 28727.84 0.04 28727.84 103.7 7052/5924354
case4 2 240 496 43091.76 0.07 - - -
case5 2 320 656 57455.68 0.13 - - -
case6 2 400 816 71819.60 0.20 - - -
case7 2 480 976 86183.52 0.27 - - -

TABLE II
RESULTS ON REAL DESIGNS

test # of # of # of # of wires of each wire type Original MCF
case dies wires pads (1,2) (1,3) (2,3) WL(um) WL(um) Imp. Time(s)
case8 3 58 197 26 0 32 55483.88 42416.03 23.6% 0.02
case9 3 38 155 15 23 0 212760.68 135641.88 36.2% 0.01
case10 3 141 483 41 0 100 221244.62 169771.38 23.3% 0.08

TABLE III
RESULTS ON REAL DESIGNS WITH SIDE CONSTRAINTS AND PRE-ASSIGNMENT CONSTRAINTS

test MCF-S MCF-P
case WL(um) Imp. Time(s) WL(um) Imp. Time(s)
case8 42458.14 23.5% 0.02 42612.43 23.2% 0.02
case9 135641.88 36.2% 0.01 146516.41 31.1% 0.01
case10 169822.76 23.2% 0.06 170318.45 23.0% 0.06

TABLE IV
DETAILED INFORMATION OF GENERAL TEST CASES

# of wires of each wire type
test # of # of # of
case dies wires pads (1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6) (3,4) (3,5) (3,6) (4,5) (4,6) (5,6)

case11 4 160 352 19 22 35 0 0 31 26 0 0 27 0 0 0 0 0
case12 4 320 672 43 58 55 0 0 58 58 0 0 48 0 0 0 0 0
case13 4 640 1312 87 114 110 0 0 115 115 0 0 99 0 0 0 0 0
case14 5 160 340 16 11 11 14 0 17 16 11 0 12 28 0 24 0 0
case15 5 320 660 32 28 26 30 0 37 27 28 0 26 41 0 45 0 0
case16 5 640 1300 69 61 50 61 0 56 66 61 0 70 73 0 73 0 0
case17 6 160 336 4 10 6 8 8 14 14 5 7 12 8 8 12 16 28
case18 6 320 672 12 23 18 20 19 30 27 12 19 22 16 17 20 29 36
case19 6 640 1296 46 30 49 34 37 35 51 34 38 30 56 57 42 48 53
case20 6 800 1632 59 38 65 45 45 44 60 46 51 41 64 69 52 58 63

TABLE V
DETAILED RESULTS OF EACH STAGE OFMLE+ILP

stage 1 stage 2
# of # of

Time assigned assigned WL Time assigned assigned WL # of
test case (s) wires % (um) (s) wires % (um) Iter
case11 <0.01 134 83.75 40578.07 0.02 26 16.25 10002.07 1
case12 <0.01 262 81.88 77206.07 0.16 58 18.12 21450.04 2
case13 <0.01 521 81.40 153514.39 7.69 119 18.60 42734.46 5
case14 <0.01 131 81.88 41655.37 0.01 29 18.12 12600.69 1
case15 <0.01 264 82.50 85285.77 0.03 56 17.50 25334.00 1
case16 <0.01 508 79.38 165185.07 0.08 132 20.62 59052.82 1
case17 <0.01 130 81.25 43091.76 0.03 30 18.75 15211.93 1
case18 <0.01 252 78.75 91390.44 0.78 68 21.25 35945.53 2
case19 <0.01 455 71.09 170930.64 6.55 185 28.91 100829.31 6
case20 <0.01 570 71.25 215638.34 10.53 230 28.75 123260.75 6

Average 79.31 20.69

without range were often too large for an optimal solution to
be found in a reasonable amount of time. Timeouts occurred

for most of the cases and we report the best solutions found
before timeouts in Table VI. Comparing with our two-stage
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approach, the total wirelength generated by ILP-R was only
0.85% smaller on average. Hence, the two-stage approach is
significantly more efficient than the ILP only approach with
little loss of quality.

VII. CONCLUSIONS

In this paper, we formulated the SiP pad assignment prob-
lem and presented novel approaches to optimize the bonding
wirelength without creating illegal crossings. To the bestof
our knowledge, our work is the first that addresses the pad
assignment problem for die-stacking SiP design. The exper-
imental results demonstrated the efficiency and effectiveness
of our approaches. In our formulation, we assume that the
orientation of dies are fixed. But since the number of dies is
limited in practice, if desired, one may try different orientation
combinations for the best wirelength.
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TABLE VI
COMPARISON BETWEENILP, ILP-R, AND MLE+ILP ON GENERAL TEST CASES; “-” DENOTES OUT OF MEMORY

ILP ILP-R MLE+ILP
WL Time #var/#const WL # of Time #var/#const WL Time #var/#const

test case (um) (s) (um) Iter (s) (um) (s)
case11 49972.38 161.55 11576/2580892 49972.38 1 0.79 2440/10388 50580.14 0.02 158/1850
case12 - - - 98217.35 1 588.39 2904/3556 98656.11 0.16 410/6930
case13 - - - 195913.38 1 10000 9640/41588 196248.85 7.69 1587/85708
case14 54122.13 10000 11480/1525452 54122.13 1 10000 3000/12676 54256.06 0.01 161/628
case15 - - - 110422.41 1 10000 6200/26756 110619.77 0.03 320/1574
case16 - - - 223861.00 1 10000 12600/54916 224237.89 0.08 835/4558
case17 58056.77 10000 11620/1075454 58059.08 1 10000 3500/14878 58303.69 0.03 275/1188
case18 - - - 126149.74 1 10000 7700/34030 127335.97 0.78 904/9448
case19 - - - 264067.02 2 20000 21700/223582 271759.95 6.55 3938/241544
case20 - - - 332138.26 1 10000 19700/88750 338899.09 10.53 5532/459542
Ratio 1.0 1.0085


