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ABSTRACT
In the inaugural International Symposium on Physical Design

(ISPD) at 1997, Prof. Te Chiang Hu has delivered the keynote ad-

dress “Physical Design: Mathematical Models and Methods” [1].

Without any question, Prof. Hu has made a lot of foundational and

profound contributions to physical design automation and to com-

puter science and mathematics in general. This paper highlights

several of Prof. Hu’s pioneer works related to flow and cut in a flow

network to commemorate his achievements.

CCS CONCEPTS
• Mathematics of computing → Network flows; • Theory of
computation → Network flows; • Hardware → Physical de-
sign (EDA);

KEYWORDS
Physical design automation; Network flow; Cut

ACM Reference Format:
Chris Chu. 2018. Pioneer Research on Mathematical Models and Methods

for Physical Design . In ISPD ’18: 2018 International Symposium on Physical
Design, March 25–28, 2018, Monterey, CA, USA. ACM, New York, NY, USA,

4 pages. https://doi.org/10.1145/3177540.3177565

1 INTRODUCTION
Finding a flow or a cut with specific property in a flow network has

a lot of applications in diverse fields. In VLSI design, a circuit can

be modeled as a network. A maximum flow in the network charac-

terizes the connectivity between two components in the circuit. A

minimum cut provides a partitioning of the circuit with the least

dependency between the two partitions. In addition, many opti-

mization problems in VLSI design can be transformed into either

a flow or a cut problem. For example, the Lagrangian multiplier

update problem in a Lagrangian relaxation based gate sizing al-

gorithm is formulated as a minimum cost flow problem [2]. The

layout decomposition problem in double patterning lithography is

reduced to a maximum cut problem in a flipping graph [3].
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Most researchers in design automation use network flow and cut

algorithms as tools to solve various problems in the design flow. Prof.

Hu is one of the few who has also made significant contributions

to the fundamental and theoretical aspects of network flow and

cut. In this paper, we will present a few selected works of Prof.

Hu on network flow and cut to pay tribute to his achievements.

Note that the selected papers is only a small subset of his work on

flow network research, and flow network research is only one of

his many research directions. Hopefully the selected papers can

illustrate the insightfulness, mathematical rigor and substantial

influence of his research.

2 MULTI-COMMODITY NETWORK FLOWS
Themulti-commodity flow problem hasmany practical applications,

e.g., modeling of messages in a communication network, different

goods in a transportation system, and traffic in a road network.

In VLSI design, routing in circuits can be modeled as a flow in a

network. To handle the routing of multiple nets, we can use a multi-

commodity flow model in which each of the nets is represented

by one commodity. Multi-commodity flow based approaches have

been applied to various formulations of VLSI routing problems (e.g.,

[4–8]).

Prof. Hu is one of the earliest researchers who works on the

multi-commodity flow problem. He presented the seminal paper

[9] which generalizes the max-flow min-cut theorem of Ford and

Fulkerson [10] to the problem of finding themaximum simultaneous

flows of two commodities.

Consider a connected network with positive arc capacities such

that the arc capacity from node Ni to Nj is the same as that from

nodeNj toNi . Supposekth kind of flow is from nodeNk to nodeNk ′

and is denoted by F (k ;k ′). Let f (k ;k ′) denote the value of F (k ;k ′).
Let c (k ;k ′) denote the capacity of the minimum cut separating node

Nk and node Nk ′ . As a generalization of cut, let a disconnecting

set for k pairs of nodes Ni , Ni′ (i = 1, 2, . . . ,k) be a set of arcs, the
removal of which will disconnect Ni from Ni′ (i = 1, 2, . . . ,k), and
no proper subset of which will have this property. The value of

a disconnecting set is the sum of capacities of the arcs in the set.

Let c (1, 2, . . . ,k ; 1
′, 2′, . . . ,k ′) be the value of the disconnecting set

whose value is minimum among all those separating Ni from Ni′

(i = 1, 2, . . . ,k). Let i − j denote that we condense Ni and Nj into

one node in the network. Consider two kinds of flow.

Theorem 1. (Max Bi-Flows Min-Cut Theorem) Two flows
F (1; 1

′) and F (2; 2
′) are feasible if and only if (1), (2), (3) below are
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all satisfied:

f (1; 1
′) ≤ c (1; 1

′) (1)

f (2; 2
′) ≤ c (2; 2

′) (2)

f (1; 1
′) + f (2; 2

′) ≤ c (1, 2; 1
′, 2′) (3)

The maximum sum of the two flows is equal to the minimum-cut
capacity of all cuts separating the two pairs of nodes; i.e.,

max[f (1; 1
′) + f (2; 2

′)] =min[c (1 − 2; 1
′ − 2

′), c (1 − 2
′
; 1
′ − 2)].

To prove this theorem, Prof. Hu has presented an algorithm sim-

ilar to the labeling method for finding maximum flow of a single

commodity to construct the two flows. The max-flow min-cut theo-

rem is later extended to multicommodity flows by Onaga [11] and

Iri [12].

3 MAXIMUM CONCURRENT FLOWS AND
MINIMUM CUTS

In VLSI physical design and other applications, we often need to

find the minimum cost cut separating a given pair of nodes. In [13],

Prof. Hu together with Prof. Cheng have generalized the problem

to finding all minimum cost cuts which separate all

(
n
2

)
pairs of

nodes. They showed that for arbitrary costs (e.g., usual cut [10],

weighted sparsest cut [14], or flux cut [15]), there are only n − 1

essential minimum cuts out of all 2
n−1 − 1 possible cuts.

Theorem 2. Given a network with n nodes and an arbitrary cut
cost function, we need at most n− 1 distinct cuts, such that for all pair
of nodes, one of the n − 1 cuts is the minimum cut separating the pair.

They have also presented an algorithm to find the set of essential

cuts with only n−1 calls to an oracle which generates the minimum

cut for a given node pair with respect to a given cost function.

Among the distinct cuts in the essential cut set, we may find the

global minimum cut which is the cut with minimum cost among

all 2
n−1 − 1 possible cuts. In [13], Prof. Hu and Prof. Cheng focused

on the ratio cut cost function, which is also called the weighted

sparsest cut [14]. The problem of finding the global minimum ra-

tio cut is NP-hard [16]. They proposed an approach by leveraging

the relationship between global minimum ratio cut and the maxi-

mum concurrent flow [17]. The maximum concurrent flow problem,

which maximizes the uniform flow demand between every pair of

nodes, can be formulated as a linear programming problem and

solved using column-generating techniques [18]. The saturated arcs

in the maximum concurrent flow define a K-way partition of the

network. Their key contribution is showing that if K ≤ 4, then

there exists a two-way partition of the partitioned K subsets which

is the global minimum ratio cut.

4 A REPLICATION CUT FOR TWO-WAY
PARTITIONING

In VLSI design, when a circuit is partitioned, it is often beneficial

to allow some cells to be replicated. For example, when a large

circuit is implemented by several FPGAs, the limited pin count

of FPGA chips and the significant delay and power overhead for

off-chip communications are often the bottleneck. By replicating
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Abstractaraph partitioning is crucial in multiple-chip design, 
floorplanning and mapping large logic networks into multiple 
FPGA’s. Replication logic can be used to improve the partition- 
ing. Given a network G with only two-pin nets and a pair of nodes 
s and t to be separated, we introduce a replication graph and 
an O(mn log (n2 /m) )  algorithm for optimum partitioning with 
replication and without size constraints, where m and n denote 
the number of nets and the number of nodes in G, respectively. 
In VLSI designs, each partition has size constraints and the 
given network contains multiple-pin nets. A heuristic extension is 
adopted to construct replication graphs with multiple-pin nets. 
Then we use a directed Fiduccia-Mattheyses algorithm in the 
constructed replication graph to solve the replication cut problem 
with size constraints. 

I. INTRODUCTION 
N VLSI circuit layout, a common problem is to partition I the cells (gates, circuits, devices, etc.) into parts, each part 

occupying a separate chip such that the number of interchip 
connections is minimized. In a graph model, a circuit can be 
represented by a network G. The nodes in G represent the cells 
and the nets in G represents the connection between cells. Each 
node is associated with the size of its respective cell and each 
net is associated with the cost (number of connections) of its 
respective net. The classical two-way partitioning problem is to 
partition the nodes of G into two subsets no larger than a given 
size, so as to minimize the total cost of the nets cut. With the 
size constraint on each subset of nodes, this problem is known 
to be NP-complete [7]. In the case of partitioning into two 
subsets without size constraints, we can derive an optimum 
solution using the max-flow min-cut approach [ 11. However, 
the method addresses only the case where no replication of 
cells is allowed. 

In practice, a given cell can be replicated and placed in two 
chips so as to reduce the number of interchip connections. 
For example, in Fig. l(a), the Min-Cut partitioning separating 
cells S and T has a cut cost of 13, while replicating R results 
in a cut cost of 4 as shown in Fig. l(b). In order to maintain 
the functional correctness of the duplicated circuit, each cell 
in the replicated circuit should collect the same input nets as 
that in the original circuit. For example, the R on right part of 
the cut in Fig. l(b) should have input nets from S and from 
T.  However, the nets from R to S are not replicated because 
S gets inputs from R on left part of the cut. This property 
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Fig. 1. 
replication. (b) Replicating R results a cut cost of 4. 

Effect of replication. (a) The min-cut has a cut cost of 13 without 

of replication is utilized to reduce the number of interchip 
connections in partitioning. 

In [4], Charney and Plato first propose the replication prob- 
lem. Later [12] and [14] propose heuristic approaches. Kring 
and Newton [12] extend the Fiduccia and Mattheyses (FM) 
algorithm to allow nodes to be duplicated explicitly during 
partitioning. In a recent paper by Hwang and El Gama1 [9], the 
replication problem is formulated as a problem to determine 
optimum replication sets for an existing partitioning. They 
find a partitioning (VI ,  Vz) with no replication first. Given the 
obtained partitioning, the max-flow min-cut algorithm is used 
to identify a set of nodes such that replicating the set will 
minimize the crossing net count. In this restricted problem 
that VI and Vz have to remain on their respective sides, the 
replication is optimal in the case with no size constraints. In 
the case with size constraints, if the resulted replication by the 
max-flow min-cut algorithm satisfies the constraint, it is kept as 
a solution. Otherwise, a directed FM heuristic which considers 
net directionality is applied to obtain a feasible solution. Their 
approach achieves a 21.3% reduction in crossing net count on 
average for the multiway partitioning, when compared with a 
recursive FM method. 

In this paper, we target the general replication problem 
which is not restricted to any prior partitioning. Given a 
network G with only two-pin nets and a pair of nodes s and 
t to be separated, we present an optimum algorithm to solve 
the replication partitioning problem without size constraints. 
We first formulate the partitioning as a linear programming 
problem. The formulation leads to the construction of a novel 
replication graph. Optimality is achieved by applying the 
maximum flow algorithm on the replication graph. The running 
time of this algorithm is O(mnlog(n’/m)) [8] where m and 
n is the number of nets and nodes, respectively. 

For VLSI applications, however, each partition has a maxi- 
mum size constraint. In addition, we should consider the case 
of networks containing multiple-pin nets. A heuristic extension 
is adopted to construct a replication graph for the case of 
networks with multiple-pin nets. Then we use a directed 
Fiduccia-Mattheyses method on the replication graph to derive 
a two-way replication partitioning of the original network. 

02784070/95$04.00 0 1995 IEEE 

Figure 1: Effect of replication. (a) The min-cut has a cut cost
of 13 without replication. (b) Replicating R results in a cut
cost of 4. [19]

some cells into multiple FPGAs, the demand in pin count and off-

chip communications can be reduced. The effect of replication in

reducing interchip connections is illustrated in Figure 1.

In [19], Prof. Hu and his collaborators have investigated the prob-

lem of two-way min-cut partitioning with cell replication. They

first considered networks with only two-pin nets and without con-

straints on partition size. Given two nodes s and t to be separated,

they introduced a novel replication graph such that an optimal

replication partition can be constructed from the maximum flow in

the replication graph. The replication graph is derived by first for-

mulating the replication partitioning problem as a linear program

and next interpreting its dual linear program as a network flow

problem. The replication graph corresponding to the network flow

can then be constructed. The structure of the replication graph is

illustrated in Figure 2 and an example is shown in Figure 3.

~ 
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-x/gi + xi8 + b, = 0 
i 

-x:j + xit + bt = 0 

(17) 

i 
X i , ~ i j , ~ i i  2 0 V i  E V,(Z,j) E E (19) 

(20) a, ,  at ,  b,  , bt : unrestricted. 

Inequalities (11) and (12) are derived with respect to each 
wij and uij respectively. Similarly, (13)-( 18) are derived with 
respect to each pi, q i ,  p , ,  p t ,  q, and qt. Eqs. (13-18) hold 
because pi , qi , p , ,  p t  , q, and qt are not restricted on sign in the 
primal formulation. Variables X i  , xij ,  and xii  are required to be 
nonnegative in (19) because their corresponding expressions 
(2)-(4) are inequality constraints. 

We can view the dual formulation as a network flow problem 
in G = (V, E )  by interpreting eij as the flow capacity, and 
xij as the flow of net (i, j ) .  Constraint (1 1) requires that the 
flow xij be not larger than the flow capacity cij on each net 
( i , j ) .  In (12), the set of nets are in a reversed direction and 
flow xC!zj is not larger than the capacity cji of net (j,i) in 
E. Corresponding to G = (V, E ) ,  we use G’ = (V’, E’) to 
denote the reversed graph. 

Constraint (13) has the total flow xij injected from node i 
into G be equal to -X i .  On the other hand, constraint (14) has 
the total flow x : ~  injected from node i’ into G’ be equal to Xi .  
Suppose we combine (13) and (14), we have 

i i 

This means that the amount of flow X i  which emanates from 
node i in G enters its corresponding node i’ in G’. 

Constraints (15HlS) indicate that a, and b, are the flow 
injections to node s in G and SI in its reversed network G’; 
at and bt are the flow ejections from node t in G and t‘ in its 
reversed network GI, respectively. Combining network G and 
G’ together, we have the maximum total flow, a, + b,, be the 
optimum solution of the minimum replication cut problem. 

B. The Optimum Partition 
Given a network G = (V, E )  and a pair of nodes s and t to 

be separated, we formally state the construction of replication 
graph and take an example to describe it. We then apply the 
maximum flow algorithm on the constructed replication graph 
to derive an optimum replication cut. The optimality of the 
derived replication cut is proved by using a network flow 
approach. 

Fig. 7. The replication graph G’ 

\ 3 

\ 

Fig. 8. The constructed replication graph of the network shown in Fig. 4. 

Construction of Replication Graph: Given a network G = 
(V,E)  and nodes s and t ,  we construct another network 
G’ = (V’, E’) where JV’J = IVJ with each node i’ in V’ 
corresponding to a node i in V, and (E’I = IEJ with each 
directed net ( j ’ ,  i’) in E’ in the reverse direction of net ( i , j )  
in E. We create super nodes s* and t* and nets (s* ,  s), (s*, SI ) ,  

( t ,  t* ) ,  and (t’, t*) with infinite capacity as shown in Fig. 7. 
From every node i in V except s and t ,  we add a directed 
net of infinite capacity to the corresponding node i‘ in V‘. We 
refer to the combined network as G*. 

Polynomial-Time Algorithm: The optimum replication cut 
problem with respect to node pair s and t and without size 
constraints can be solved by a maximum-flow minimum-cut 
solution of the network G* with s* as the source and t* as the 
sink of the flow 111. Suppose the maximum-flow minimum-cut 
solution partitions V by cut (X, X) with s E X and t E x and 
partitions V’ by cut (X’, X’) with s’ E X’ and t’ E X I .  Then 
a replication cut ( S ,  T )  of the original network with S = X ,  
T = {i I i’ E X’} and R = V - S - T is an optimum 
solution. Note that T is derived from the cut in node set V’. 
To simplify the notation, we shall use (X,X’) to denote the 
derived replication cut of G. 

Example: Given a network in Fig. 4, its replication graph 
G* is constructed as shown in Fig. 8. The maximum-flow 
minimum-cut of G* derives ( X , X )  = ( { s , a } , { b , c , t } )  
and ( X ’ , X ’ )  = ( { s ’ , a ’ ,b ’ , c ’ } ,  { t ’ } )  with a flow amount, 
5 (Fig. 8). Thus the sets S = { s , a }  and T = { t }  define an 
optimum replication cut (S, T )  with R = { b,  e}  and a cut 
cost equal to 5 (Fig. 9). 

The following theorem states the optimality of the solution. 
We use a network flow approach to prove the theorem. 

Theorem I :  The replication cut (S ,T )  = (X,X’) derived 
from the replication graph G* generates the minimum cut cost. 

Figure 2: Structure of replication graph G∗. [19]

From Figure 2, we can see that the replication graphG∗ basically
consists of a copy of the original graph G and another copy G ′

similar toG but with all arcs reversed. Each node inG is connected

to its corresponding nodes inG ′with an arc with infinite capacity. A
super source node s∗ (a super sink node t∗) connecting to the source
nodes (from the sink nodes) in G and G ′ with infinite capacity arcs

is also added.

The optimum replication cut of G with respect to node pair s
and t can be found by a maximum-flow minimum-cut solution of

G∗ with respect to node pair s∗ and t∗. Suppose the maximum-flow

minimum-cut solution partitions the nodes of G into X and X̄ and

the nodes ofG ′ into X ′ and ¯X ′ as illustrated in Figure 2. Let S = X ,

T = {i |i ′ ∈ ¯X ′} and R = V − S −T . Then the optimum solution is

to replicate R such that the two subsets are S ∪ R and T ∪ R.
To handle VLSI applications, the idea of replication graph is ex-

tended to release the requirement of separating two given nodes,
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P . = O ,  4 . = 1 ,  j C R  J J  

Fig. 4. A network G with five nodes and nine nets. 

(S-SJ (T-T) 

Fig. 6. The p potential and 4 potential of each node. 

e,= 1 
4,= 1 

P t = O  
4t=o 

Fig. 5. 
associated with cost c, , ,  potential difference w,, and u J 1 .  

Each node z is associated with potential p ,  and qx ; each net (i, 3 )  is 

the two sets S and T are not disjoint, which means that the 
replication cut ( S ,  T )  is not a feasible solution. 

111. REPLICATION CUT SEPARATING A PAIR 
OF NODES WITH TWO-PIN NET MODEL 

In this section, we focus on the case of networks containing 
only two-pin nets and relax the size constraints. For two-pin 
nets, we denote the cost of net ( i , j )  from node i to node j 
by cij. The size constraints are replaced by the separation of 
a pair nodes s and t. In other words, the replication cut (S, T )  
is subject to 

s E S , t E T  and S n T = 0 .  

In the following, we first use linear programming to for- 
mulate the replication cut problem. Then a dual formulation 
can be derived by linear programming transformation [ 131. We 
show that the dual formulation corresponds to a network flow 
problem on a replication graph. In subsection B, we describe 
the construction of the replication graph and the algorithm to 
find the optimum solution. The complexity of the algorithm is 
analyzed in subsection C. 

A. Primal Dual Formulation 
In this subsection, we first introduce the notations in terms 

of a network flow problem. We then describe a linear pro- 
gramming formulation of the replication cut problem. Using 
Lagrangian multiplier, we transform the problem into a dual 
formulation, which will derive the proposed replication graph. 

We adopt the linear programming formulation of network 
flow problem [ 11, [ 131, where each node is assigned a potential 
and a cut is represented by the difference of node potentials 
as shown in Fig. 5. With respect to the directed cut ( S  + S), 
we use wij to denote the potential difference between the cut 
from node i to node j .  The potential of each node i is denoted 
by pi. For nodes i in S ,  pi = 1, and for nodes a in S, p i  = 0. 
Thus all nets ( i ,  j )  in the cut set ( S  -+ S) have wij  = 1. The 
remaining nets have wij = 0. 

With respect to the directed cut (7' -+ T ) ,  we use uji with a 
reversed subscript ji to denote the potential difference between 

the cut from node 2 to node j (Fig. 5). The potential of each 
node i is denoted by qi. For nodes i in T ,  qi = 1, and for 
nodes i in T,  qi = 0. The potential difference uji has a reverse 
direction with net ( i ,  j )  because we set the potential on T side 
high and the potential on T side low. Thus, all nets ( i , j )  in 
the cut set (T -+ T )  have uji = 1. The remaining nets have 

Primal Linear Programming Formulation: The problem is 
uji = 0. 

to minimize the total cost of crossing nets 

0bj:min cijwij + cjiuij (1) 
( i , . i )€E  W E E  

subject to 

To minimize objective function (l), the equality of con- 
straint (2) holds, i.e., wij = pi  - p j ,  if pi  > p j ,  otherwise, 
wij = 0. Similarly, constraint (3) requires u;j = qi - q j  if 
q; >_ q j ,  otherwise, uij = 0. Expression (4) demands potential 
qi be not less than potential pi  for any node i in V. Since 
high potential pi  corresponds to set S ,  and high potential qi 
corresponds to set T ,  inequality (4) enforces S be a subset of 
T.  Consequently, the requirement that S n T = 8 is satisfied. 

Constraints (5)-(8) set the potentials of nodes s and t. 
Constraint (9) requires potential difference wij  and uij be 
nonnegative. Fig. 6 shows one ideal potential configuration 
of the solution. 

assigning 
dual variables (Lagrangian multiplier) xi j  to inequality (2) 
with respect to each net, to inequality ( 3 ) ,  X i  to inequality 
(4) with respect to node i ,  and as,  b,, at, bt to inequalities 
(5)-(8), respectively, we have the dual formulation as follows 

(10) 

Dual Linear Programming Formulation: By 

Obj: max a, + bs 

subject to 

(a) A network with five nodes and nine arcs.

~ 
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-x/gi + xi8 + b, = 0 
i 

-x:j + xit + bt = 0 

(17) 

i 
X i , ~ i j , ~ i i  2 0 V i  E V,(Z,j) E E (19) 

(20) a, ,  at ,  b,  , bt : unrestricted. 

Inequalities (11) and (12) are derived with respect to each 
wij and uij respectively. Similarly, (13)-( 18) are derived with 
respect to each pi, q i ,  p , ,  p t ,  q, and qt. Eqs. (13-18) hold 
because pi , qi , p , ,  p t  , q, and qt are not restricted on sign in the 
primal formulation. Variables X i  , xij ,  and xii  are required to be 
nonnegative in (19) because their corresponding expressions 
(2)-(4) are inequality constraints. 

We can view the dual formulation as a network flow problem 
in G = (V, E )  by interpreting eij as the flow capacity, and 
xij as the flow of net (i, j ) .  Constraint (1 1) requires that the 
flow xij be not larger than the flow capacity cij on each net 
( i , j ) .  In (12), the set of nets are in a reversed direction and 
flow xC!zj is not larger than the capacity cji of net (j,i) in 
E. Corresponding to G = (V, E ) ,  we use G’ = (V’, E’) to 
denote the reversed graph. 

Constraint (13) has the total flow xij injected from node i 
into G be equal to -X i .  On the other hand, constraint (14) has 
the total flow x : ~  injected from node i’ into G’ be equal to Xi .  
Suppose we combine (13) and (14), we have 

i i 

This means that the amount of flow X i  which emanates from 
node i in G enters its corresponding node i’ in G’. 

Constraints (15HlS) indicate that a, and b, are the flow 
injections to node s in G and SI in its reversed network G’; 
at and bt are the flow ejections from node t in G and t‘ in its 
reversed network GI, respectively. Combining network G and 
G’ together, we have the maximum total flow, a, + b,, be the 
optimum solution of the minimum replication cut problem. 

B. The Optimum Partition 
Given a network G = (V, E )  and a pair of nodes s and t to 

be separated, we formally state the construction of replication 
graph and take an example to describe it. We then apply the 
maximum flow algorithm on the constructed replication graph 
to derive an optimum replication cut. The optimality of the 
derived replication cut is proved by using a network flow 
approach. 

Fig. 7. The replication graph G’ 

\ 3 

\ 

Fig. 8. The constructed replication graph of the network shown in Fig. 4. 

Construction of Replication Graph: Given a network G = 
(V,E)  and nodes s and t ,  we construct another network 
G’ = (V’, E’) where JV’J = IVJ with each node i’ in V’ 
corresponding to a node i in V, and (E’I = IEJ with each 
directed net ( j ’ ,  i’) in E’ in the reverse direction of net ( i , j )  
in E. We create super nodes s* and t* and nets (s* ,  s), (s*, SI ) ,  

( t ,  t* ) ,  and (t’, t*) with infinite capacity as shown in Fig. 7. 
From every node i in V except s and t ,  we add a directed 
net of infinite capacity to the corresponding node i‘ in V‘. We 
refer to the combined network as G*. 

Polynomial-Time Algorithm: The optimum replication cut 
problem with respect to node pair s and t and without size 
constraints can be solved by a maximum-flow minimum-cut 
solution of the network G* with s* as the source and t* as the 
sink of the flow 111. Suppose the maximum-flow minimum-cut 
solution partitions V by cut (X, X) with s E X and t E x and 
partitions V’ by cut (X’, X’) with s’ E X’ and t’ E X I .  Then 
a replication cut ( S ,  T )  of the original network with S = X ,  
T = {i I i’ E X’} and R = V - S - T is an optimum 
solution. Note that T is derived from the cut in node set V’. 
To simplify the notation, we shall use (X,X’) to denote the 
derived replication cut of G. 

Example: Given a network in Fig. 4, its replication graph 
G* is constructed as shown in Fig. 8. The maximum-flow 
minimum-cut of G* derives ( X , X )  = ( { s , a } , { b , c , t } )  
and ( X ’ , X ’ )  = ( { s ’ , a ’ ,b ’ , c ’ } ,  { t ’ } )  with a flow amount, 
5 (Fig. 8). Thus the sets S = { s , a }  and T = { t }  define an 
optimum replication cut (S, T )  with R = { b,  e}  and a cut 
cost equal to 5 (Fig. 9). 

The following theorem states the optimality of the solution. 
We use a network flow approach to prove the theorem. 

Theorem I :  The replication cut (S ,T )  = (X,X’) derived 
from the replication graph G* generates the minimum cut cost. 

(b) The corresponding replication graph.

Figure 3: An example of replication graph. [19]

to allow multiple-pin nets, and to enforce size constraints on parti-

tions. Then the FM algorithm is extended to minimize a directed cut

cost under size constraints. The extended FM algorithm is applied to

the proposed replication graph to find a minimum-cost replication

cut.

The presented algorithms are both elegant and useful in practice

that their contribution is recognized by the 1997 IEEE Circuit and

System Society Best Paper Award.

5 OPTIMAL LINEAR ORDERING
A fundamental problem in VLSI placement is the optimal linear

placement problem, in which the gates of a circuit are placed along

a line with minimum total wirelength. A special version of optimal

linear placement is optimal linear ordering in which a weighted

graph is placed in uniformly spaced slots. The optimal linear order-

ing problem is useful for placement in chips with regular layout

fabrics like FPGA and gate array as well as for non-VLSI applica-

tions. Unfortunately, it is NP-complete [20].

In the seminal paper [21], Prof. Hu and his collaborator have

presented two interesting results on optimal linear ordering. First,

for an arbitrary graph, based on non-trivial relationship between

optimal linear ordering and network flow, they established a lower

bound on the total wirelength.

Theorem 3. For an arbitrary graph, the total cut capacity of the
n − 1 fundamental cuts constructed by the Gomory-Hu algorithm

[22] is a lower bound on the total wirelength of the optimal linear
ordering.

Second, they considered another case in which the graph is a

rooted tree. The rooted tree imposes a partial ordering on the nodes.

A node x should precedes a node y in the linear order if x is an

ancestor of y in the rooted tree. For a rooted tree, they presented an

algorithm which requires O (n logn) operations. They also showed

the equivalence of the optimal linear ordering problem for a rooted

tree to a job sequencing problem solved by Horn [23].

6 THE ORIENTATION OF MODULES BASED
ON GRAPH DECOMPOSITION

After the placement of a VLSI circuit, the modules can be flipped to

reduce wirelength and improve routability. This is a very practical

problem and many heuristic algorithms have been proposed, e.g.,

analytical method [24], neural network approach [25], simulated

annealing approach [26], simple greedy heuristics [27–30], linear

programming / mixed integer linear programming based heuristics

[31], and path-based optimization methodology [32]. An optimal

symbolic algorithm based on Boolean Decision Diagram (BDD) has

also been proposed but it can only be used for small size circuits as

it is very slow [33].

Prof. Hu and his collaborators are among the earliest who have

worked on the flipping problem [34]. They assumed that multi-pin

nets have already been decomposed into two-pin nets. They have

made several fundamental contributions.

First, they showed that the flipping problem can be transformed

into the minimum cut problem of a graphwith positive and negative

capacities. Given a circuit with n modules, they constructed a graph

with n + 1 nodes: n nodes represent the n modules which may be

flipped, and a supernode T . The graph has an interesting property

that for any cut, the cut value is equal to the change in the total

wirelength if all nodes on the same side as T are unflipped and all

those on the other side are flipped. Consequently, the minimum cut

implies a flipping solution with minimum wirelength. To achieve

this property, consider a net s connecting two modules u and v . Let
C1 be the change in wirelength when only v is flipped,

C2 be the change in wirelength when only u is flipped,

C3 be the change in wirelength when both u and v are flipped.

A triangle graph is devised as illustrated in Figure 4. The arc capac-

ities cuT , cvT , and cuv are uniquely determined by three simulta-

neous equations below:

cvT + cuv = C1 (4)

cuT + cuv = C2 (5)

cuT + cvT = C3. (6)

It is clear that for any cut of the triangle graph, the cut value

always equals to the wirelength change of s in the corresponding

flipping solution. To construct the graph for the whole circuit, we

just superimpose the triangle graphs of all nets.

Second, they also proved that the flipping problem is NP-complete

by reducing the minimum cut problem of a graph with positive

and negative capacities, which is NP-complete [20], to the flipping

problem.

Third, to handle large circuits in practical applications, tech-

niques were presented to decompose the graph into subgraphs and
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Fig. 1. A five-module example. 

e .  If module 3 is flipped (i.e., interchange its left and right sides), then 
nets b,  e, and e will have shorter distances but nets a and d will have 
longer distances. The problem, therefore, is to determine the optimum 
configuration by allowing every module to flip left to right as well as 
top to bottom so that the total distance between all nets is minimum. 
We call this problem the flipping problem or simply flipping. 

The flipping operation has been adopted in standard-cell and gate- 
array style layout systems [8]. A greedy approach is applied to 
scan the circuit module by module. A module is flipped if any 
improvement will result; otherwise, it remains the same. Execution 
proceeds until the successive flipping passes are profitless. Experience 
with many IC layouts has shown improvement in routability in many 
instances [8]. 

These systems have not been analyzed mathematically. We formu- 
late the orientation of modules as a graph problem and prove it to 
be NP-complete. The orientation problem is shown to be equivalent 
to finding a minimum cut of a graph with some arcs of negative 
capacities. In many cases, we can decompose the graph into subgraphs 
and reduce the search space for optimum orientation. We implement 
this algorithm and present experimental results in VLSI and PCB 
designs. We also discuss an open problem. 

11. FORMULATION 
Given n rectangular modules with arbitrary widths and heights, 

pins are fixed on the boundary of each module, e.g., Fig. 1. Given 
the placement and the initial orientation, we decompose all multipin 
nets into two-pin nets by using a minimum spanning tree model [9]. 
Let us assume that there are m two-pin nets. Our goal is to flip the 
modules to minimize the total net length, namely: 
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Obj: min):w,(Jr,, - ssJ1 + IY,, - Y<,() (1) 
9 = 1  

where U ' ,  is the weight of net s and, (ssz. y9$) and ( . P S I .  g3]) are the 
positions of the two pins connected by net s. 

Horizontal flipping does not affect the y coordinates of the pins 
and similarly vertical flipping does not alter the s coordinates. Since 
both flipping operations can be performed independently of each 
other, we shall discuss only horizontal flipping, which involves the 
x-coordinates of the pins. Merging of horizontal and vertical flippings 
is discussed in Section V. 

A. Graph Model 

Let us construct a graph G(17.E) with a capacity e,, associated 
with each arc ( i ,  j )  in E.  The node set V contains n + 1 nodes: 
n nodes represent the n modules which may be flipped, while a 
supernode T represents those modules which are not to be flipped. 
Suppose k modules are to be flipped, and R - k modules are to 
remain in their original orientations. We use a cut-line to partition 
V into a subset of k nodes and a subset of I L  - IC + 1 nodes. The 
subset of k nodes represents the k flipped modules, while the subset 

c2 

Fig. 2. Net s and its triangle graph. 

of n - I; + 1 nodes contains the supemode T along with 71 - k nodes 
that are to remain unchanged. We want the sum of the capacities 
of all arcs crossing this partition to be equivalent to total change in 
net length which results from flipping these k modules. Therefore, 
the basic problem is to determine these arc capacities so that this 
property holds. 

We determine all arc capacities of G( I -. E )  by considering one net 
at a time. Consider net s which connects two modules 11 and 73. We 
can calculate the increase or decrease in the length of net s if one or 
both of the modules are flipped. Let 

C1 be the additional length when only 1' is flipped, 
C2 be the additional length when only 11 is flipped, 
C3 be the additional length when both U and 2' are flipped. 

We devise a triangle graph (Fig. 2) of the three nodes, T ,  U ,  and 1 ' .  

For a three-node graph, four different cuts are possible. The cut in 
which all nodes reside on the same side of the partition represents 
the nonflipping case, while the other three cuts represent the three 
different flipping cases (Fig. 2). The arc capacities c , ~ .  c , . ~ ,  and 
c u ,  of the triangle graph are formulated to reflect the flipping costs 
C1, C2, and C3 [2]. 

c,7 + c u t  = c1 
c l r ~  +e, , ,  = (22 

r,,I +ct  7 = c3. (2) 

The three simultaneous equations uniquely determine the arc capac- 
ities c , , ~  . c , , ~ ,  and et,L.. Fig. 3 illustrates the arc capacities with 
respect to different relative positions between modules U and P .  

We superimpose the ni triangle graphs of the ni nets to construct 
the graph G( I -. E ) .  The construction takes O( in ) operations. 

Graph G(V,E)  Construction Algorithm 
1) Initialize I -  with n nodes representing n modules and one 

2) For each net s and its two connected modules U and I ! ,  do 
supernode T ,  and initialize E = 0. 

2.1) calculate e:,?,, and cy,r contributed by net s. 
2.2) For each e:] # 0 ( i  # j and i .  j E { U .  it. T } ) ,  do 

if arc ( i .  j )  E E ,  then update e,] t e,, + CG 
else, add arc ( i .  j )  to E with c,)  = cG. 

Fig. 4(a) illustrates the graph model G(1'. E )  of the circuit in 
Fig. 1. The minimum cut ({1,2,4,5} (3 ,  T } )  of G(I!-, E )  corresponds 
to the flipping of module set {1,2,4,5} [Fig. 4(b)]. The net length is 
reduced by 11 which derives the minimum cut capacity. 

The following theorem states that the flipping problem is equivalent 
to the minimum cut problem of G(17. E ) .  

Theorem 1 :  Given a flipping problem and G(T7. E )  created by the 
graph construction algorithm, a cut (A. I~?  - A )  that separates subset 
.-I from its complement I' - -4 with supernode T E 1). - A generates 
the minimum cut capacity iff the flipping of the corresponding 
modules in A minimizes the total net length. 

Proof: Let C(A.  I,? - A )  = Cut4,0tt.--/l cUu denote the total 
capacity of the arcs connected sets A and 1- - A. Using the graph 
construction algorithm and (2), we can derive that C(=l. 1' - A )  is 

1 

Figure 4: A net s connecting modulesu andv and its triangle
graph. [34]

to condense the nodes to speed up the search for minimum cut

without sacrificing optimality.
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