
DID: Distributed Incremental Block Coordinate Descent for
Nonnegative Matrix Factorization

Tianxiang Gao, Chris Chu
Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA

{gaotx, cnchu}@iastate.edu

Abstract
Nonnegative matrix factorization (NMF) has attracted much
attention in the last decade as a dimension reduction method
in many applications. Due to the explosion in the size of data,
naturally the samples are collected and stored distributively in
local computational nodes. Thus, there is a growing need to
develop algorithms in a distributed memory architecture. We
propose a novel distributed algorithm, called distributed in-
cremental block coordinate descent (DID), to solve the prob-
lem. By adapting the block coordinate descent framework,
closed-form update rules are obtained in DID. Moreover, DID
performs updates incrementally based on the most recently
updated residual matrix. As a result, only one communication
step per iteration is required. The correctness, efficiency, and
scalability of the proposed algorithm are verified in a series
of numerical experiments.

1 Introduction
Nonnegative matrix factorization (NMF) (Lee and Seung
1999) extracts the latent factors in a low dimensional sub-
space. The popularity of NMF is due to its ability to learn
parts-based representation by the use of nonnegative con-
straints. Numerous successes have been found in document
clustering (Xu and Gong 2004; Lu, Hong, and Wang 2017a),
computer vision (Lee and Seung 1999), signal processing
(Gao, Olofsson, and Lu 2016; Lu, Hong, and Wang 2017b),
etc.

Suppose a collection of N samples with M nonnega-
tive measurements is denoted in matrix form X ∈ RM×N

+ ,
where each column is a sample. The purpose of NMF is to
approximate X by a product of two nonnegative matrices
B ∈ RM×K

+ and C ∈ RK×N
+ with a desired low dimen-

sion K, where K � min{M,N}. The columns of matrix
B can be considered as a basis in the low dimension sub-
space, while the columns of matrix C are the coordinates.
NMF can be formulated as an optimization problem in (1):

minimize
B,C

f(B,C) =
1

2
‖X −BC‖2F (1a)

subject to B,C ≥ 0, (1b)

where “≥ 0” means element-wise nonnegative, and ‖·‖F is
the Frobenius norm. The problem (1) is nonconvex with re-

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

spect to variables B and C. Finding the global minimum is
NP-hard (Vavasis 2009). Thus, a practical algorithm usually
converges to a local minimum.

Many algorithms have been proposed to solve NMF such
as multiplicative updates (MU) (Lee and Seung 2001),
hierarchical alternating least square (HALS) (Cichocki,
Zdunek, and Amari 2007; Li and Zhang 2009), alternating
direction multiplier method (ADMM) (Zhang 2010), and al-
ternating nonnegative least square (ANLS) (Kim and Park
2011). Amongst those algorithms, ANLS has the largest re-
duction of objective value per iteration since it exactly solves
nonnegative least square (NNLS) subproblems using a block
principal pivoting (BPP) method (Kim and Park 2011).
Unfortunately, the computation of each iteration is costly.
The algorithm HALS, on the other hand, solves subprob-
lems inexactly with cheaper computation and has achieved
faster convergence in terms of time (Kim and Park 2011;
Gillis and Glineur 2012). Instead of iteratively solving the
subproblems, ADMM obtains closed-form solutions by us-
ing auxiliary variables. A drawback of ADMM is that it is
sensitive to the choice of the tuning parameters, even to the
point where poor parameter selection can lead to algorithm
divergence (Sun and Fevotte 2014).

Most of the proposed algorithms are intended for central-
ized implementation, assuming that the whole data matrix
can be loaded into the RAM of a single computer node. In
the era of massive data sets, however, this assumption is of-
ten not satisfied, since the number of samples is too large
to be stored in a single node. As a result, there is a grow-
ing need to develop algorithms in distributed system. Thus,
in this paper, we assume the number of samples is so large
that the data matrix is collected and stored distributively.
Such applications can be found in e-commerce (e.g., Ama-
zon), digital content streaming (e.g., Netflix) (Koren, Bell,
and Volinsky 2009) and technology (e.g., Facebook, Google)
(Tan, Cao, and Fong 2016), where they have hundreds of
millions of users.

Many distributed algorithms have been published re-
cently. The distributed MU (Liu et al. 2010; Yin, Gao, and
Zhang 2014) has been proposed as the first distributed algo-
rithm to solve NMF. However, MU suffers from slow and
ill convergence in some cases (Lin 2007). Kannan, Ballard,
and Park (Kannan, Ballard, and Park 2016) proposed high
performance ANLS (HPC-ANLS) using 2D-grid partition

of a data matrix such that each node only stores a submatrix
of the data matrix. Nevertheless, six communication steps
per iteration are required to obtain intermediate variables so
as to solve the subproblems. Thus, the communication over-
head is significant. Moreover, the computation is costly as
they use ANLS framework. The most recent work is dis-
tributed HALS (D-HALS) (Zdunek and Fonal 2017). How-
ever, they assume the factors B and C can be stored in the
shared memory of the computer nodes, which may not be the
case if N is large. Boyd et al. (Boyd et al. 2011) suggested
that ADMM has the potential to solve NMF distributively.
Du et al. (Du et al. 2014) demonstrated this idea in an al-
gorithm called Maxios. Similar to HPC-ANLS, the commu-
nication overhead is expensive, since every latent factor or
auxiliary variable has to be gathered and broadcasted over
all computational nodes. As a result, eight communication
steps per iteration are necessary. In addition, Maxios only
works for sparse matrices since they assume the whole data
matrix is stored in every computer node.

In this paper, we propose a distributed algorithm based
on block coordinate descent framework. The main contribu-
tions of this paper are listed below.
• We propose a novel distributed algorithm, called dis-

tributed incremental block coordinate descent (DID). By
splitting the columns of the data matrix, DID is capable
of updating the coordinate matrix C in parallel. Leverag-
ing the most recent residual matrix, the basis matrix B is
updated distributively and incrementally. Thus, only one
communication step is needed in each iteration.

• A scalable and easy implementation of DID is derived us-
ing Message Passing Interface (MPI). Our implementa-
tion does not require a master processor to synchronize.

• Experimental results showcase the correctness, efficiency,
and scalability of our novel method.
The paper is organized as follows. In Section 2, the previ-

ous works are briefly reviewed. Section 3 introduces a dis-
tributed ADMM for comparison purpose. The novel algo-
rithm DID is detailed in Section 4. In Section 5, the algo-
rithms are evaluated and compared. Finally, the conclusions
are drawn in Section 6.

2 Previous Works
In this section we briefly introduce three standard algorithms
to solve NMF problem (1), i.e., ANLS, HALS, and ADMM,
and discuss the parallelism of their distributed versions.

Notations. Given a nonnegative matrix X ∈ RM×N
+ with

M rows and N columns, we use xri ∈ R1×N
+ to denote its

i-th row, xj ∈ RM×1
+ to denote the j-th column, and xij ∈

R+ to denote the entry in the i-th row and j-th column. In
addition, we use xrTi ∈ RN×1

+ and xTj ∈ R1×M
+ to denote

the transpose of i-th row and j-th column, respectively.

2.1 ANLS
The optimization problem (1) is biconvex, i.e., if either fac-
tor is fixed, updating another is in fact reduced to a nonneg-
ative least square (NNLS) problem. Thus, ANLS (Kim and

Park 2011) minimizes the NNLS subproblems with respect
to B and C, alternately. The procedure is given by

C := argminC≥0 ‖X −BC‖
2
F (2a)

B := argminB≥0 ‖X −BC‖
2
F . (2b)

The optimal solution of a NNLS subproblem can be
achieved using BPP method.

A naive distributed ANLS is to parallel C-minimization
step in a column-by-column manner and B-minimization
step in a row-by-row manner. HPC-ANLS (Kannan, Ballard,
and Park 2016) divides the matrix X into 2D-grid blocks,
the matrix B into Pr row blocks, and the matrix C into
Pc column blocks so that the memory requirement of each
node is O(MN

PrPc
+ MK

Pr
+ NK

Pc
), where Pr is the number

of rows processor and Pc is the number of columns proces-
sor such that P = PcPr is the total number of processors.
To really perform updates, the intermediate variables CCT ,
XCT , BTB, and BTX are computed and broadcasted us-
ing totally six communication steps. Each of them has a cost
of logP · (α+β ·NK), where α is latency, and β is inverse
bandwidth in a distributed memory network model (Chan et
al. 2007). The analysis is summarized in Table 1.

2.2 HALS
Since the optimal solution to the subproblem is not re-
quired when updating one factor, a comparable method,
called HALS, which achieves an approximate solution is
proposed by (Cichocki, Zdunek, and Amari 2007). The al-
gorithm HALS successively updates each column of B and
row of C with an optimal solution in a closed form.

The objective function in (1) can be expressed with re-
spect to the k-th column of B and k-th row of C as follows∥∥∥X −BC∥∥∥2

F
=
∥∥∥X −∑K

i=1 bic
r
i

∥∥∥ =
∥∥∥X −∑i6=k bic

r
i − bkcrk

∥∥∥2

F
,

Let A , X −
∑
i 6=k bic

r
i and fix all the variables except bk

or crk. We have subproblems in bk and crk
minbk≥0 ‖A− bkcrk‖

2
F , (3a)

mincrk≥0 ‖A− bkcrk‖
2
F (3b)

By setting the derivative with respect to bk or crk to zero and
projecting the result to the nonnegative region, the optimal
solution of bk and crk can be easily written in a closed form

bk :=
[
(crkc

rT
k)−1(AcrTk)

]
+

(4a)

crk :=
[
(bTk bk)−1(AT bk)

]
+

(4b)

where [z]+ is max{0, z}. Therefore, we have K inner-loop
iterations to update every pair of bk and crk. With cheaper
computational cost, HALS was confirmed to have faster con-
vergence in terms of time.

Zdunek and Fonal in 2017 proposed a distributed version
of HALS, called DHALS. They also divide the data matrix
X into 2D-grid blocks. Comparing with HPC-ANLS, the
resulting algorithm DHALS only requires two communica-
tion steps. However, they assume matrices B and C can be
loaded into the shared memory of a single node. Therefore,
DHALS is not applicable in our scenario where we assume
N is so big that even the latent factors are stored distribu-
tively. See the detailed analysis in Table 1.

2.3 ADMM
The algorithm ADMM (Zhang 2010) solves the NMF prob-
lem by alternately optimizing the Lagrangian function with
respect to different variables. Specifically, the NMF (1) is
reformulated as

minimize
B,C,W,H

1

2
‖X −WH‖2F (5a)

subject to B = W,C = H (5b)
B,C ≥ 0, (5c)

where W ∈ RM×K and H ∈ RK×N are auxiliary vari-
ables without nonnegative constraints. The augmented La-
grangian function is given by

L(B,C,W,H; Φ,Ψ)ρ =
1

2
‖X −WH‖2F + 〈Φ, B−W 〉

+ 〈Ψ, C −H〉+
ρ

2
‖B −W‖2F +

ρ

2
‖C −H‖2F (6)

where Φ ∈ RM×K and Ψ ∈ RK×N are Lagrangian mul-
tipliers, 〈·, ·〉 is the matrix inner product, and ρ > 0 is the
penalty parameter for equality constraints. By minimizing L
with respect to W , H , B, C, Φ, and Ψ one at a time while
fixing the rest, we obtain the update rules as follows

W := (XHT + Φ + ρB)(HHT + ρIK)−1 (7a)

H := (WTW + ρIK)−1(WTX + Ψ + ρC) (7b)
B := [W − Φ/ρ]+ (7c)

C := [H −Ψ/ρ]+ (7d)

Φ := Φ + ρ(B −W) (7e)
Ψ := Ψ + ρ(C −H) (7f)

where IK ∈ RK×K is the identity matrix. The auxiliary
variables W and H facilitate the minimization steps for B
andC. When ρ is small, however, the update rules forW and
H result in unstable convergence (Sun and Fevotte 2014).
When ρ is large, ADMM suffers from a slow convergence.
Hence, the selection of ρ is significant in practice.

Analogous to HPC-ANLS, the update of W and B can be
parallelized in a column-by-column manner, while the up-
date ofH andC in a row-by-row manner. Thus, Maxios (Du
et al. 2014) divides matrix W and B in column blocks, and
matrix H and C in row blocks. However, the communica-
tion overhead is expensive since one factor update depends
on the others. Thus, once a factor is updated, it has to be
broadcasted to all other computational nodes. As a conse-
quence, Maxios requires theoretically eight communication
steps per iteration and only works for sparse matrices. Table
1 summarizes the analysis.

3 Distributed ADMM
This section derives a distributed ADMM (DADMM) for
comparison purpose. DADMM is inspired by another cen-
tralized version in (Boyd et al. 2011; Hajinezhad et al. 2016),
where the update rules can be easily carried out in parallel,
and is stable when ρ is small.

As the objective function in (1) is separable in columns,
we divide matrices X and C into column blocks of P parts

1

2
‖X −BC‖2F =

P∑
i=1

1

2
‖Xi −BCi‖22 , (8)

where Xi ∈ RM×Ni
+ and Ci ∈ RK×Ni

+ are column blocks
ofX andC such that

∑P
i=1Ni = N . Using a set of auxiliary

variables Yi ∈ RM×Ni , the NMF (1) can be reformulated as

minimize
Yi,B,C

P∑
i=1

1

2
‖Xi − Yi‖2F (9a)

subject to Yi = BCi, for i = 1, 2, · · · , P (9b)
B,C ≥ 0. (9c)

The associated augmented Lagrangian function is given by

L(Yi, B,C; Λi)ρ =

P∑
i=1

1

2
‖Xi − Yi‖2F

+

P∑
i=1

〈Λi, Yi −BCi〉+

P∑
i=1

ρ

2
‖Yi −BCi‖2F , (10)

where Λi ∈ RM×K are the Lagrangian multipliers. The re-
sulting ADMM is

Yi := argmin
Yi

1

2
‖Xi − Yi‖22 +

ρ

2
‖Λi/ρ+ Yi −BCi‖2F

(11a)

Ci := argmin
Ci≥0

‖Λi/ρ+ Yi −BCi‖22 (11b)

B := argmin
B≥0

‖Λ/ρ+ Y −BC‖2F (11c)

Λi := argmax
Λi

〈Λi, Yi −BCi〉 (11d)

where Λ , [Λ1 Λ2 · · ·ΛP] and Y , [Y1 Y2 · · ·YP].
Clearly, the Yi update has a closed-form solution by taking
the derivate and setting it to zero, i.e.,

Yi :=
1

1 + ρ
(Xi − Λi + ρBCi) (12)

Moreover, the updates for Yi, Ci, and Λi can be carried out
in parallel. Meanwhile, B needs a central processor to up-
date since the step (11c) requires the whole matrices Y , C,
and Λ. If we use the solver BPP, however, we do not really
need to gather those matrices, because the solver BPP in fact
does not explicitly need Y ,C, and Λ. Instead, it requires two
intermediate variables W , CCT and H , (Λ/ρ+ Y)CT ,
which can be computed as follows:

W , CCT =

P∑
i=1

CiC
T
i , (13a)

H , (Λ/ρ+ Y)CT =

P∑
i=1

(Λi/ρ+ Yi)C
T
i . (13b)

Algorithm Runtime Memory per processor Communication time Communication volume
HPC-ANLS BPP O (MN/(PcPr) +MK/Pr +NK/Pc) 3(α+ βNK) logPr + 3(α+ βMK) logPc O (MKPc +NKPr)

D-HALS O (MNK(1/Pc + 1/Pr)) O (MN/(PcPr) +MK +NK) (α+ βNK) logPr + (α+ βMK) logPc O (MKPc +NKPr)
Maxios O

(
K3 +MNK/P

)
O (MN) 4(2α+ β(N +M)K) logP O ((M +N)KP)

DADMM BPP O (MN/P +MK) (α+ βMK) logP O (MKP)
DBCD O (MNK/P) O (MN/P +MK) K(α+ βMK) logP O (MKP)

DID O (MNK/P) O (MN/P +MK) (α+ βMK) logP O (MKP)

Table 1: Analysis of distributed algorithms per iteration on runtime, memory storage, and communication time and volume.

It is no doubt that those intermediate variables can be calcu-
lated distributively. Let Ui = Λi/ρ, which is called scaled
dual variable. Using the scaled dual variable, we can express
DADMM in a more efficient and compact way. A simple
MPI implementation of algorithm DADMM on each com-
putational node is summarized in Algorithm 1.

Algorithm 1: DADMM for each computational node
Input: Xi, Ci, B
Initialize P processors, along with Yi, B, Ci, Xi

repeat
1 Ui := Ui + (Yi −BCi)
2 Yi := 1

1+ρ (Xi − ρUi + ρBCi)

3 Ci := argminCi≥0 ‖Ui + Yi −BCi‖22
4 (W,H) := Allreduce(CiC

T
i , (Ui + Yi)C

T
i)

5 B := BPP(W,H)
until stopping criteria satisfied;

At line 4 in Algorithm 1, theoretically we need a master
processor to gather CiCTi and (Ui+Yi)C

T
i from every local

processor and then broadcast the updated value of CCT and
(U + Y)CT back. As a result, the master processor needs
a storage of O (MKP). However, we use a collaborative
operation called Allreduce (Chan et al. 2007). Leveraging
it, the master processor is discarded and the storage of each
processor is reduced to O (MK).

4 Distributed Incremental Block Coordinate
Descent

The popularity of ADMM is due to its ability of carrying out
subproblems in parallel such as DADMM in Algorithm 1.
However, the computation of ADMM is costly since it gen-
erally involves introducing new auxiliary variables and up-
dating dual variables. The computational cost is even more
expensive as it is required to find optimal solutions of sub-
problems to ensure convergence. In this section, we will pro-
pose another distributed algorithm that adapts block coordi-
nate descent framework and achieves approximate solutions
at each iteration. Moreover, leveraging the current residual
matrix facilitates the update for matrix B so that columns of
B can be updated incrementally.

4.1 Distributed Block Coordinate Descent
We firstly introduce a naive parallel and distributed algo-
rithm, which is inspired by HALS, called distributed block
coordinate descent (DBCD). Since the objective function in
(1) is separable, the matrixX is partitioned by columns, then

each processor is able to update columns of C in parallel,
and prepare messages concurrently to update matrix B.

Analogous to DADMM, the objective function in (1) can
be expanded as follows∥∥∥X −BC∥∥∥2

F
=
∑N
j=1

∥∥∥xj −Bcj∥∥∥2

=
∑N
j=1

∥∥∥xj −∑K
k=1 bkckj

∥∥∥2

By coordinate descent framework, we only consider one el-
ement at a time. To update cij , we fix the rest of variables as
constant, then the objective function becomes∑N

j=1

∥∥∥xj −∑
k 6=i

bkckj − bicij
∥∥∥2

. (14)

Taking the partial derivative of the objective function (14)
with respect to cij and setting it to zero, we have

bTi

(
bicij −

(
xj −

∑
k 6=i

bkckj

))
= 0. (15)

The optimal solution of cij can be easily derived in a closed
form as follows

cij :=

[
bTi (xj −

∑
k 6=i bkckj)

bTi bi

]
+

(16a)

=

[
bTi (xj −Bcj + bicij)

bTi bi

]
+

(16b)

=

[
cij +

bTi (xj −Bcj)
bTi bi

]
+

(16c)

Based on the equation (16c), the j-th column of C is re-
quired so as to update cij . Thus, updating a column cj has to
be sequential. However, the update can be executed in par-
allel for all j’s. Therefore, the columns of matrix C can be
updated independently, while each component in a column
cj is optimized in sequence.

The complexity of updating each cij is O (MK).
Thus, the entire complexity of updating matrix C is
O
(
MNK2/P

)
. This complexity can be reduced by bring-

ing xj − Bcj outside the loop and redefining as ej ,
xj −Bcj . The improved update rule is

ej := ej + bicij (17a)

cij :=

[
bTi ej
bTi bi

]
+

(17b)

ej := ej − bicij (17c)

By doing so, the complexity is reduced to O (MNK/P).
The analogous derivation can be carried out to update the

i-th column of matrix B, i.e., bi. By taking partial derivative

of the objective function (14) with respect to bi and setting
it to zero, we have equation

N∑
j=1

(
bicij −

(
xj −

∑
k 6=i

bkckj

))
cij = 0 (18)

Solving this linear equation gives us a closed-form to the
optimal solution of bi

bi :=

[∑N
j=1(xj −Bcj + bicij)cij∑N

j=1 c
2
ij

]
+

(19a)

=

[
bi +

∑N
j=1(xj −Bcj)cij∑N

j=1 c
2
ij

]
+

(19b)

=

[
bi +

(X −BC)crTi
cri c

rT
i

]
+

(19c)

Unfortunately, there is no way to update bi in parallel since
the equation (19c) involves the whole matrices X and C.
That is the reason why sequential algorithms can be easily
implemented in the shared memory but cannot directly be
applied in distributed memory. Thus, other works (Kannan,
Ballard, and Park 2016; Zdunek and Fonal 2017; Du et al.
2014) either use gather operations to collect messages from
local processors or assume small size of the latent factors.

By analyzing the equation (19a), we discover the potential
parallelism. We define a vector yj and a scaler zj as follows

yj , (xj −Bcj + bicij)cij = (ej + bicij)cij (20a)

zj , c2ij (20b)

The vector yj and scaler zj can be computed in parallel. Af-
ter receiving messages including yj’s and zj’s from other
processors, a master processor updates the column bi as a
scaled summation of yj with scaler z ,

∑N
j=1 zj , that is,

bi := [y/z]+ (21)

where y ,
∑N
j=1 yj . Thus, the update for matrix B can be

executed in parallel but indirectly. The complexity of updat-
ing bi is O (MN/P) as we reserve error vector ej and con-
currently compute yj and zj . The complexity of updating
entire matrix B is O (MNK/P).

By partitioning the data matrix X by columns, the update
for matrix C can be carried out in parallel. In addition, we
identify vectors yj’s and scalars zj’s to update matrixB, and
their computation can be executed concurrently among com-
putational nodes. A MPI implementation of this algorithm
for each processor is summarized in Algorithm 2.

4.2 Incremental Update for bi
The complexity of algorithm DBCD is O (MNK/P) per
iteration, which is perfectly parallelizing a sequential block
coordinate descent algorithm. However, the performance of
DBCD could be deficient due to the delay in network. In
principle, DBCD sends totally KP messages to a master
processor per iteration, which is even more if we implement
DBCD using Allreduce. Any delay of a message could cause

Algorithm 2: DBCD for each computational node
Input: xj , cj , B
repeat

// Update C
ej := xj −Bcj
for all i ∈ {1, 2, · · · ,K} do

Update cij using equations (17)
end
// Update B
for all i ∈ {1, 2, · · · ,K} do

ej = ej + bicij
yj = ejcij
zj = c2ij
(y, z) = Allreduce(yj , zj)
bi := [y/z]+
ej = ej − bicij

end
until stopping criteria satisfied;

a diminished performance. In contrast, the algorithm DID
has a novel way to update matrixB incrementally using only
a single message from each processor per iteration.

To successfully update matrix B, the bottleneck is to it-
eratively compute yj and zj for associated bi since once bi
is updated, the yj and zj have to be recomputed due to the
change occurred in matrixB from equation (19b). Neverthe-
less, we discovered this change can be represented as several
arithmetic operations. Thus, we in fact do not need to com-
municate every time in order to update each bi.

Suppose that after t-th iteration, the i-th column of matrix
B is given, i.e., bti, and want to update it to bt+1

i . Let E =
X−BC, which is the most current residual matrix after t-th
iteration. From equation (19c), we have

bt+1
i :=

[
bti +

EcrTi
cri c

rT
i

]
+

(22)

Once we update bti to bt+1
i , we need to update bi in matrix B

so as to get newE to update the next column ofB, i.e., bi+1.
However, we do not really need to recalculateE. Instead, we
can update the value by

E := E + btic
r
i − bt+1

i cri (23)

We define and compute a variable δbi as

δbi , bt+1
i − bti. (24)

Using the vector δbi, we have a compact form to update E

E := E − δbicri (25)

The updated E is substituted into the update rule of bi+1 in
equation (22), and using bti+1 we obtain

bt+1
i+1 :=

[
bti+1 +

(E − δbicri)crTi+1

cri+1c
rT
i+1

]
+

(26a)

=

[
bti+1 +

EcrTi+1

cri+1c
rT
i+1

−
cri c

rT
i+1

cri+1c
rT
i+1

δbi

]
+

(26b)

In the equation (26b), the first two terms is the same as gen-
eral update rule for matrix B in DBCD, where Eci+1 can
be computed distributively in each computational node. On
the other hand, the last term allows us to update the column
bi+1 still in a closed form but without any communication
step. Therefore, the update for matrix B can be carried out
incrementally and the general update rule is given by

bt+1
i :=

[
bti +

EcrTi
cri c

rT
i

−
∑
k<i(c

r
i c
rT
k)δbk

cri c
rT
i

]
+

(27)

Comparing to the messages used in DBCD, i.e., (yj , zj), we
need to compute the coefficients for the extra term, that is,
cri c

rT
k for all k < i. Thus, a message communicated among

processors contains two parts: the weighted current residual
matrix Wj , and a lower triangular matrix Vj maintaining the
inner product of matrix C. The matrices Wj and Vj are de-
fined as below

Wj ,

[| | · · · |
ejc1j ejc2j · · · ejcKj
| | · · · |

]
(28)

Vj ,

c21j 0 0 · · · 0
c2jc1j c22j 0 · · · 0

...
...

. . .
... 0

cKjc1j cKjc2j cKjc3j · · · c2Kj

 (29)

Using variables Wj and Vj , the update rule to columns of
matrix B becomes

bi :=

[
bi + wi/vii −

∑
k<i

(vik/vii)δbk

]
+

(30)

where wi is the i-th column of matrix W , vij is the i-th
component of j-th column of matrix V , and matricesW and
V are the summations of matrices Wj and Vj , respectively,
i.e., W ,

∑N
j=1Wj and V ,

∑N
j=1 Vj .

For each processor, they store a column ofX , a column of
C, and the matrixB. They execute the same algorithm and a
MPI implementation of this incremental algorithm for each
computational node is summarized in Algorithm 3. Clearly,
the entire computation is unchanged and the volume of mes-
sage stays the same as DBCD, but the number of communi-
cation is reduced to once per iteration.

5 Experiments
We conduct a series of numerical experiments to compare
the proposed algorithm DID with HALS, ALS, ADMM,
BCD, DBCD, DADMM, and HPC-ANLS. The algorithm
BCD is the sequential version of DBCD. Due to the ill con-
vergence of ADMM and Maxios in (Zhang 2010; Du et al.
2014), we derive DADMM in Section 3 and set ρ = 1 as
default. Since we assume M and K are much smaller than
N , HPC-ANLS only has column partition of the matrix X ,
i.e., Pc = P and Pr = 1.

We use a cluster1 that consists of 48 SuperMicro servers
each with 16 cores, 64 GB of memory, GigE and QDR

1http://www.hpc.iastate.edu/

Algorithm 3: DID for each computational node
Input: xj , cj , B
repeat

// Update C
ej := xj −Bcj
for all i ∈ {1, 2, · · · ,K} do

Update cij using equations (17)
end
Compute Wj and Vj from equations (28) and (29).
(W,V) := Allreduce(Wj , Vj)
// Update B
for all i ∈ {1, 2, · · · ,K} do

bt+1
i :=

[
bti + wi/vii −

∑
k<i(vik/vii)δbk

]
+

δbi := bt+1
i − bti

end
until stopping criteria satisfied;

(40Gbit) InfiniBand interconnects. The algorithms are im-
plemented in C code. The linear algebra operations use GNU
Scientific Library (GSL) v2.42 (Gough 2009). The Message
Passing Interface (MPI) implementation OpenMPI v2.1.03

(Gabriel et al. 2004) is used for communication. Note that
we do not use multi-cores in each server. Instead, we use a
single core per node as we want to achieve consistent com-
munication overhead between cores.

Synthetic datasets are generated with number of samples
N = 105, 106, 107 and 108. Due to the storage limits of the
computer system we use, we set the dimension M = 5 and
low rank K = 3, and utilize P = 16 number of computa-
tional nodes in the cluster. The random numbers in the syn-
thetic datasets are generated by the Matlab command rand
that are uniformly distributed in the interval [0, 1].

We also perform experimental comparisons on four real-
world datasets. The MNIST dataset4 of handwritten digits
has 70,000 samples of 28x28 image. The 20News dataset5 is
a collection of 18,821 documents across 20 different news-
groups with totally 8,165 keywords. The UMist dataset6
contains 575 images of 20 people with the size of 112x92.
The YaleB dataset7includes 2,414 images of 38 individuals
with the size of 32x32. The MNIST and 20News datasets are
sparse, while UMist and YaleB are dense.

The algorithms HALS, (D)BCD, and DID could fail if
‖bi‖ or ‖cri ‖ is close to zero. This could appear if B or C is
badly scaled. That means the entries of E = X − BC are
strictly negative. We avoid this issue by using well scaled
initial points for the synthetic datasets andK-means method
to generate the initial values for the real datasets. All the
algorithms are provided with the same initial values.

When an iterative algorithm is executed in practice, a
stopping criteria is required. In our experiments, the stop-

2http://www.gnu.org/software/gsl/
3https://www.open-mpi.org/
4http://yann.lecun.com/exdb/mnist/
5http://qwone.com/~jason/20Newsgroups/
6https://cs.nyu.edu/~roweis/data.html
7http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

0 1000 2000 3000 4000 5000 6000 7000

Time (seconds)

0

0.02

0.04

0.06

0.08

0.1

0.12

E
r /E

0

HALS

ANLS

ADMM

BCD

1500 2000 2500 3000 3500

5

10

15

×10
-3

(a) Sequential

0 100 200 300 400 500 600 700 800 900 1000

Time (seconds)

0

0.05

0.1

0.15

0.2

0.25

E
r /E

0

DBCD

HPC-ANLS

DADMM

DID

150 200 250 300

5

10

15

×10
-3

(b) Distributed

DBCD DID HPC-ANLS DADMM
0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
 (

s
e
c
o
n
d
s
)

Computation
Communication

(c) Computation v.s. communication

Figure 1: Convergence behaviors of different algorithms with respect to time consumption of communication and computation
on the dataset with N = 108 samples.

Number of iterations Time (seconds)
N HALS ANLS ADMM BCD HPC-ANLS DADMM DBCD DID HALS ANLS ADMM BCD HPC-ANLS DADMM DBCD DID
105 1281 141 170 549 141 170 549 549 16.88 56.59 45.88 10.61 4.31 3.46 1.42 1.17
106 225 238 115 396 238 115 396 396 36.86 630.43 476.83 95.24 50.47 37.06 14.04 8.61
107 596 1120 1191 654 1120 1191 654 654 587.47 29234.61 31798.51 909.76 2372.47 2563.47 126.01 106.60
108 339 163 97 302 163 97 302 302 3779.11 43197.12 27590.16 8808.92 10172.55 5742.37 785.57 610.09

MNIST 495 197 199 492 197 199 492 492 705.32 395.61 610.65 942.68 31.84 46.17 170.65 133.50
20News 302 169 169 231 169 169 231 231 2550.02 745.28 714.61 2681.49 131.12 172.69 651.52 559.70
UMist 677 1001 953 622 1001 953 622 622 314.72 657.14 836.76 422.11 492.72 471.01 92.49 82.34
YaleB 1001 352 224 765 352 224 765 765 223.58 201.22 149.35 236.13 50.69 40.61 44.08 36.45

Table 2: Performance comparison for algorithms on synthetic and real datasets with P = 16 number of computing nodes.

ping criteria is met if the following condition is satisfied∥∥Et∥∥2

F
≤ ε

∥∥E0
∥∥2

F
, (31)

where Et is the residual matrix after t-th iteration. Through-
out the experiments, we set ε = 10−6 as default. In addition,
we combine the stopping criterion with a limit on time of
24 hours and a maximum iteration of 1000 for real datasets.
The experimental results are summarized in the Table 2.

Correctness In principle, the algorithms HALS, (D)BCD,
and DID have the same update rules for the latent factors
B and C. The difference is the update order. The algorithm
DID has the exact same number of iterations as BCD and
DBCD, which demonstrates the correctness of DID.

Efficiency As presented in Table 2, DID always converges
faster than the other algorithms in term of time. HALS and
BCD usually use a similar number of iterations to reach the
stopping criteria. ANLS and ADMM use much fewer iter-
ations to converge. Thanks to auxiliary variables, ADMM
usually converges faster than ANLS. Figure 1(a) shows that
comparing with HALS, BCD actually reduces the objective
value a lot at the beginning but takes longer to finally con-
verge. Such phenomenon can also be observed in the com-
parison between ANLS and ADMM. In Figure 1(b), DID
is faster than DBCD. The reason is shown in Figure 1(c)
that DID involves much less communication overhead than
DBCD. Based on the result in Table 2, DID is about 10-
15% faster than DBCD by incrementally updating matrixB.
(HPC-)ANLS works better in MNIST and 20News datasets
because these datasets are very sparse.

Scalability As presented in Table 2, the runtime of DID
scales linearly as the number of samples increases, which is
much better than the others. It can usually speed up a factor
of at least 10 to BCD using 16 nodes. (D)ADMM is also
linearly scalable, which is slightly better than (HPC-)ANLS.
Due to the costly computation, (D)ADMM is not preferred
to solve NMF problems.

6 Conclusion
In this paper, we proposed a novel distributed algorithm DID
to solve NMF in a distributed memory architecture. Assume
the number of samplesN to be huge, DID divides the matri-
ces X and C into column blocks so that updating the matrix
C is perfectly distributed. Using the variables δb, the ma-
trix B can be updated distributively and incrementally. As a
result, only a single communication step per iteration is re-
quired. The algorithm is implemented in C code with Open-
MPI. The numerical experiments demonstrated that DID has
faster convergence than the other algorithms. As the up-
date only requires basic matrix operations, DID achieves
linear scalability, which is observed in the experimental re-
sults. In the future work, DID will be applied to the cases
where updating matrix B is also carried out in parallel. Us-
ing the techniques introduced by (Hsieh and Dhillon 2011)
and (Gillis and Glineur 2012), DID has the possibility to be
accelerated. How to better treat sparse datasets is also a po-
tential research direction.

References
Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; and Eckstein, J.
2011. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations
and Trends in Machine Learning 1–122.
Chan, E.; Heimlich, M.; Purkayastha, A.; and Van De Geijn,
R. 2007. Collective communication: theory, practice, and
experience. Concurrency and Computation: Practice and
Experience 1749–1783.
Cichocki, A.; Zdunek, R.; and Amari, S.-i. 2007. Hier-
archical als algorithms for nonnegative matrix and 3d ten-
sor factorization. In International Conference on Indepen-
dent Component Analysis and Signal Separation, 169–176.
Springer.
Du, S. S.; Liu, Y.; Chen, B.; and Li, L. 2014. Maxios: Large
scale nonnegative matrix factorization for collaborative fil-
tering. In Proceedings of the NIPS 2014 Workshop on Dis-
tributed Matrix Computations.
Gabriel, E.; Fagg, G. E.; Bosilca, G.; Angskun, T.; Dongarra,
J. J.; Squyres, J. M.; Sahay, V.; Kambadur, P.; Barrett, B.;
Lumsdaine, A.; Castain, R. H.; Daniel, D. J.; Graham, R. L.;
and Woodall, T. S. 2004. Open MPI: Goals, concept, and
design of a next generation MPI implementation. In Pro-
ceedings, 11th European PVM/MPI Users’ Group Meeting,
97–104.
Gao, T.; Olofsson, S.; and Lu, S. 2016. Minimum-volume-
regularized weighted symmetric nonnegative matrix factor-
ization for clustering. In 2016 IEEE Global Conference on
Signal and Information Processing (GlobalSIP), 247–251.
IEEE.
Gillis, N., and Glineur, F. 2012. Accelerated multiplica-
tive updates and hierarchical als algorithms for nonnegative
matrix factorization. Neural computation 1085–1105.
Gough, B. 2009. GNU scientific library reference manual.
Network Theory Ltd.
Hajinezhad, D.; Chang, T.-H.; Wang, X.; Shi, Q.; and Hong,
M. 2016. Nonnegative matrix factorization using admm:
Algorithm and convergence analysis. In 2016 IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 4742–4746. IEEE.
Hsieh, C.-J., and Dhillon, I. S. 2011. Fast coordinate de-
scent methods with variable selection for non-negative ma-
trix factorization. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data
mining, 1064–1072. ACM.
Kannan, R.; Ballard, G.; and Park, H. 2016. A high-
performance parallel algorithm for nonnegative matrix fac-
torization. In Proceedings of the 21st ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Program-
ming, 9. ACM.
Kim, J., and Park, H. 2011. Fast nonnegative matrix factor-
ization: An active-set-like method and comparisons. SIAM
Journal on Scientific Computing 3261–3281.
Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factor-
ization techniques for recommender systems. Computer.

Lee, D. D., and Seung, H. S. 1999. Learning the parts of
objects by non-negative matrix factorization. Nature 788–
791.
Lee, D. D., and Seung, H. S. 2001. Algorithms for non-
negative matrix factorization. In Advances in neural infor-
mation processing systems, 556–562.
Li, L., and Zhang, Y.-J. 2009. Fastnmf: highly efficient
monotonic fixed-point nonnegative matrix factorization al-
gorithm with good applicability. Journal of Electronic Imag-
ing 033004–033004.
Lin, C.-J. 2007. On the convergence of multiplicative up-
date algorithms for nonnegative matrix factorization. IEEE
Transactions on Neural Networks 1589–1596.
Liu, C.; Yang, H.-c.; Fan, J.; He, L.-W.; and Wang, Y.-M.
2010. Distributed nonnegative matrix factorization for web-
scale dyadic data analysis on mapreduce. In Proceedings of
the 19th international conference on World wide web, 681–
690. ACM.
Lu, S.; Hong, M.; and Wang, Z. 2017a. A Stochastic Non-
convex Splitting Method for Symmetric Nonnegative Matrix
Factorization. In Singh, A., and Zhu, J., eds., Proceedings of
the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learn-
ing Research, 812–821. Fort Lauderdale, FL, USA: PMLR.
Lu, S.; Hong, M.; and Wang, Z. 2017b. A nonconvex split-
ting method for symmetric nonnegative matrix factorization:
Convergence analysis and optimality. IEEE Transactions on
Signal Processing.
Sun, D. L., and Fevotte, C. 2014. Alternating direction
method of multipliers for non-negative matrix factorization
with the beta-divergence. In Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Conference
on, 6201–6205. IEEE.
Tan, W.; Cao, L.; and Fong, L. 2016. Faster and cheaper:
Parallelizing large-scale matrix factorization on gpus. In
Proceedings of the 25th ACM International Symposium
on High-Performance Parallel and Distributed Computing,
219–230. ACM.
Vavasis, S. A. 2009. On the complexity of nonnegative
matrix factorization. SIAM Journal on Optimization 1364–
1377.
Xu, W., and Gong, Y. 2004. Document clustering by con-
cept factorization. In Proceedings of the 27th annual inter-
national ACM SIGIR conference on Research and develop-
ment in information retrieval, 202–209. ACM.
Yin, J.; Gao, L.; and Zhang, Z. M. 2014. Scalable nonneg-
ative matrix factorization with block-wise updates. In Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases, 337–352. Springer.
Zdunek, R., and Fonal, K. 2017. Distributed nonnegative
matrix factorization with hals algorithm on mapreduce. In
International Conference on Algorithms and Architectures
for Parallel Processing, 211–222. Springer.
Zhang, Y. 2010. An alternating direction algorithm for non-
negative matrix factorization. preprint.

