
Area Optimization of Resilient Designs Guided by a Mixed
Integer Geometric Program

Hsin-Ho Huang1 Huimei Cheng1 Chris Chu2 Peter A. Beerel1
hsinhohu@usc.edu huimeich@usc.edu cnchu@iastate.edu pabeerel@usc.edu
1Ming Hsieh Dept. of Electrical Engineering

University of Southern California
Los Angeles, CA

2Department of Electrical and Computer Engineering
Iowa State University

Ames, IA

ABSTRACT
Timing resilient designs can remove variation margins by
adding error detecting logic (EDL) that detects timing er-
rors when execution completes within a resiliency window.
Speeding up near-critical-paths during logic synthesis can
reduce the amount of EDL needed but at the cost of in-
creasing logic area. This creates a logic optimization strat-
egy called resynthesis. This paper proposes a gate-sizing
based mixed integer geometric programming framework to
analytically model and optimize paths during resynthesis.
We evaluate our approach on a set of ISCAS89 benchmarks
and compare the overall area improvement after resynthesis
guided by our mathematical model versus a previously pub-
lished naive brute-force approach. Our experimental results
demonstrate that our approach achieves up to 11% larger
average area improvement.

1. INTRODUCTION
Traditional synchronous designs must incorporate timing

margin to ensure correct operation under worst-case delays
caused by process, voltage, and temperature (PVT) varia-
tions and cannot take advantage of average-case path activ-
ity [1]. This is particularly problematic in low-power low-
voltage designs, as performance uncertainty due to process,
voltage, and temperature variations grows from as much
as 50% at nominal supply to around 2,000% in the near-
threshold domain [5]. To address this problem, many design
techniques for resilient circuits have been proposed. For ex-
ample, canary FFs predict when the design is close to a
timing failure (see e.g., [10, 15]). Designs can then adjust
their supply voltage or clock frequency either statically or
dynamically to ensure correct operation at the edge of fail-
ure. Other resilient design techniques use extra logic to de-
tect and recover from timing violations [3, 4, 7, 8]. These
techniques use a variety of error-detecting latches and/or
flip-flops, initiate replay-and-recovery or slow-down/stall the
pipeline in the case of errors, and span both synchronous
and asynchronous design styles. All resilient designs exhibit

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05 - 09, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2897990

higher performance when there are no timing errors and
gracefully slow down in the presence of timing errors, thus
achieving higher average-case performance than traditional
worst-case designs. This additional performance can then be
traded off for lower power via further voltage scaling. Some
EDA techniques have been proposed to minimize the proba-
bility of timing errors: [9,11,14,17]. Liu et al. [11] proposed
to reshape the delay distribution of near-critical paths to re-
duce timing errors. Dynatune [14] optimizes throughput by
selectively choosing low Vth gates to speed up near-critical
paths. Ye et al. [17] and Kahng et al. [9] both use clock skew
scheduling to reduce timing errors.

Of particular importance to this paper is that the error
detecting logic (EDL) that is necessary to enable resilient
designs represents area and power overhead when compared
with traditional worst-case designs. Thus the error detect-
ing logic must represent a relatively small fraction of the
design to not overshadow the obtained average-case perfor-
mance benefits. Circuit and EDA techniques to minimize
the EDL overhead will thus be important for these tech-
niques to flourish. Previous work proposed minimizing the
EDL via re-timing [12], relocating sequential gates to re-
duce the amount of EDL without changing the combina-
tional logic. Others proposed resynthesis [8, 9], speeding
up near-critical-paths during logic synthesis with a tighter
max delay constraint to reduce the amount of EDL needed
at the cost of increasing logic area. The basic challenge in
resynthesis is that many paths share logic and it is not obvi-
ous which combination of paths should be sped up to achieve
the best gains. As part of the Blade [8] resilient flow, a naive
brute-force resynthesize method was explored. Near-critical
paths were sped up one end-point at a time to find a suitable
single candidate end-point to speed up during logic resynthe-
sis. Kahng et al. proposed sorting near-critical endpoints by
heuristic sensitivity functions and iteratively increasing the
set of endpoints to speed-up [9]. They then chose the synthe-
sized design with minimum cost considering the overhead of
the error-detecting logic. Both methods achieved significant
area and performance benefits and were demonstrated to be
computationally practical but they lack a formal model from
which we can explore any notion of optimality.

During resynthesis many types of optimizations may be
explored including gate sizing, logic restructuring, and re-
peater insertion. But we hypothesize that it is sufficient to
predict the impact of logic synthesis by considering gate siz-
ing alone. To evaluate this hypothesis, this paper proposes
a gate sizing based mixed integer geometric programming
(MIGP) framework which models both the normal combi-

http://dx.doi.org/10.1145/2897937.2897990

national/sequential logic area as well as the required EDL
area overhead. Moreover, it understands shared logic across
paths and thus can more accurately guide which particu-
lar near-critical-paths to resynthesize compared to the naive
brute force method. In our MIGP, we adopt an Elmore-
delay continuous sizing model to predict the logic synthe-
sis impact and introduce binary variables that determine if
the path must be terminated by an error detecting sequen-
tial gate (i.e., a latch or flip-flop) or not. However, integer
variables in mathematical optimization are computationally
expensive; therefore, we also propose a heuristic relaxation-
based algorithm to iteratively solve the MIGP.

The benefits of our approach were evaluated using the
ISCAS89 benchmark circuits. The results show that our
MIGP approach achieves up to 11% larger average area
improvement over the naive brute-force approach. More-
over, our relaxation-based iterative algorithm achieves close
to the optimal integer results at a fraction of the run-time
and memory usage and thereby allows completion of much
larger benchmarks than otherwise possible. Moreover, as a
side benefit of minimizing the error detecting logic, we also
reduce the error-rate by, in our experiments, an average of
6.8% over that achieved by the brute-force approach and
thus improve average-case performance.

The remainder of this paper is organized as follows. Sec-
tion II introduces the notation and terminology in our pro-
posed model. Section III formulates our gate sizing mixed
integer geometric program and describes our relaxation-based
iterative method for efficiently solving this program. Section
IV shows our experimental results and comparisons on IS-
CAS89 benchmark circuits. Section V concludes our work
and discusses potential future improvements.

2. PRELIMINARIES
This section explains the notation and terminology used

in our resynthesis approach. We are given a gate-level VLSI
circuits with combinational gates (C) and sequential gates
(S), with gate sizes (z). Each gate has a nominal area (A),
a list of input/output pins (I/O) and a list of fanout gate
and pin pairs (FO). Each input pin of a gate has a nominal
resistance (R), a nominal input capacitance (Cin), and a
fanin gate (FI). The delay Dik of the kth pin of gate i with
size zi is modeled using an Elmore delay model:

Dik = µ ∗ Rik

zi
∗

∑
jl∈FO(i)

Cinjl ∗ zj (1)

in which zi = 1 represents the nominal size of the gate and
µ is a constant scaling factor, typically set to 0.69.

Every gate i has an arrival time (Ti) at its output. For
simplicity, we assume an arrival time (Ti) of 0 for primary
inputs and that delay paths start at sequential gates. We
then calculate the arrival time of each combinational gate
as follows:

Ti ≥ max∀k∈I(i)(Dik + (TFI(ik))) (2)

As an example, Fig.1 shows an illustration of a simple circuit
and the arrival times of all of its gates. Here, every pin of a
gate has the same Cin, R and D.

The size of the speculative window (W) in resilient de-
signs bounds the maximum increase in performance they
can achieve when there is no timing error. If the path end-
point has an arrival time within the speculative window, it
must be terminated with an error detecting latch/flop. In

Figure 1: An example circuit with arrival times: Combina-
tional gates are in yellow and sequential gates are in red. T
represents the minimum arrival time of gate outputs.

Figure 1, assuming the synthesis clock cycle (P) is 8 and we
aim for a 30% resiliency window, the timing window W is
2.4 time units wide spanning the times 5.6 to 8. Then, the
sequential gates G9 and G10 must be error detecting because
the arrival times of their inputs (T6, T7) are greater than
5.6.

Our approach assumes the relative additional cost associ-
ated with each latch or flip-flop that must be error detecting
is X. In particular, the objective of our area minimization
problem is:

min (
∑

i∈C,S

(Ai ∗ zi) +X ∗
∑
j∈S

ej) (3)

For each gate i, the logic area is proportional to its size
zi. The first part of area model is the sum of the total
logic area of all gates assuming all sequential elements are
not error detecting. The second part of the area model is
the additional area associated with the error detecting logic
(EDL). The variable ej is a binary variable whose value is
determined by whether the end-point of path ending in the
jth sequential element must be error detecting or not.

In particular, the determination of whether the jth se-
quential element must be error-detecting or not is based on
the arrival time of its input. If the arrival time is prior
to the speculation window, the paths that end at this se-
quential element are not close to critical and the sequential
element need not be error-detecting, i.e., ej = 0. Other-
wise, the arrival time must be within the speculation win-
dow [(P −W), P] and the sequential element must be error-
detecting, i.e., ej = 1. More mathematically, for all j ∈ S,
we have

ej =

{
1, if Ti ≥ P −W, ∀i ∈ FI(j)

0, otherwise
(4)

We propose to solve this problem using geometric program-
ming with some modifications discussed in Section 3.

It is also important to emphasize that the specific struc-
ture of the error detecting latches/flops varies among re-
silient designs and consequently has different associated over-
heads. Bowman [1] analyzed three types in Fig. 2. a) The

Figure 2: Three kinds of resilient designs in [1]:(a) The sim-
plified Razor FF (b) Error detector and TDTB latch (c) TB
latch with error detector

simplified razor flip-flop: a conventional master-slave flip-
flop with an additional shadow latch and XOR that detects
the difference between the flop and latch [6]. b) A transition
detector and time borrowing (TDTB) latch: a conventional
time-borrowing latch, an XOR to detect errors, and a C-
element to hold the value of errors [13]. c) A time-borrowing
latch with a shadow master-slave flop and a XOR. Each of
these structures yields an error signal. The error signal of
multiple error detecting latches/flops within a pipeline stage
must be combined with some type of OR-gate to produce an
error signal for an entire pipeline stage. Moreover, some type
of synchronizer is often needed in the control path to address
metastability. For example, in the asynchronous resilient
scheme Blade proposed by Hand et al, Q-Flops were used to
sample the error signal in a metastability safe manner and
these also contributed to the EDL overhead [8]. Moreover,
techniques to make the TDTB more sensitive to glitches
come at an additional area cost [13]. This suggests there
may be a tradeoff between EDL overhead and robustness.
For these reasons, our experiments are conducted with a
range of different values of X representing low, medium, and
high values of the EDL area overhead. Namely, we choose
X to be 0.5, 1, and 2 times the area of a minimum-sized
sequential gate.

3. PROPOSED APPROACH
In this section, we solve the problem of minimizing logic

and EDL area subject to a performance constraint using
geometric programming. Geometric programming enables
large-scale non-linear mathematical problems to be solved
but required both the objective function and the inequality
constraints to be posynomials [2,16]. Section 3.1 shows how
we formulate the resynthesis problem described above as a
mixed integer geometric program. Section 3.2 then explains
how we efficiently solve the mixed integer geometric program
by relaxing the integer variables to be real and using an
iterative geometric program to find, what our experiments
indicate are, close to optimal integer solutions.

3.1 Mixed Integer Geometric Program
In Section 2 we described a mathematical model that uses

binary variables ej to determine if sequential element j need
be error-detecting governed by the equation:

Ti −W ∗ ej ≤ P −W, (5)

where i is the data input of the jth sequential element. That
is ej can be 0 only if the arrival time at i is prior to the
speculative window. Moreover, if ej is 1, the arrival time
i must still be before the cycle time P . Unfortunately, the
subtraction on the left hand side of the constraint makes the
constraint not posynomial [2].

To address this problem we perform a change of variables,

introducing a new variable ne as follows:

ej = 2− nej , 1 ≤ nej ≤ 2, ∀j ∈ S (6)

The delay constraint now becomes

Tj +W ∗ nei ≤ (P +W), (7)

which is posynomial.
Substituting nej into the EDL portion of the objective

function described in Equation 3 yields:

X ∗
∑
j∈S

(2− nej),

which is unfortunately also non-posynomial. We thus make
an approximation to the objective function, creating the
complete mixed integer geometric program as follows:

Minimize (
∑

i∈C,S

(Ai ∗ zi) +X ∗
∑
j∈S

(
2

nej
− 1))

Subject to:

Dik = µ ∗ Rik

zi
∗

∑
jl∈FO(i)

Cinjl ∗ zj , ∀k ∈ I(i) ∀i ∈ C, S (8)

{
Ti ≥ max∀k∈I(i){(Dik + TFI(ik))}, ∀i ∈ C
Ti = Di, ∀i ∈ S

(9)

Tj +W ∗ nei ≤ (P +W), ∀i ∈ S, j ∈ FI(i) (10)

Bounds: {
LBi ≤ zi ≤ UBi, ∀i ∈ C
zi = 1, ∀i ∈ S

(11)

1 ≤ nei ≤ 2, ∀i ∈ S, nei ∈ Z (12)

0 ≤ Ti ≤ P, ∀i ∈ C, S (13)

More specifically, the EDL part of the modified area cost
function for sequential element i is changed from the non-
posynomial form 2 − nei to the posynomial form (2/nei -
1). This keeps the cost function the same for all possible
(integer) values of nei. In particular, when ei is 1, nei will
be 1 and (2/nei - 1) will remain 1 as ei. When ei is 0, nei
will be 2 and (2/nei -1) will be 0 as ei.

Note that the constraints in Equations 8 - 9 implement
the same Elmore delay model and arrival time described in
Section 2. Moreover, Equations 11 - 12 show the bounds of
all variables that can be set to avoid unrealistic changes in
size. Lastly, Ti needs to be less or equal to P for all combi-
national elements i to maintain the desired clock period.

3.2 Geometric Program Iterative Algorithm
The integral constraint on nei generally adds significant

computational complexity to the mathematical program be-
cause they are handled using computationally expensive branch-
and-bound techniques [16]. To address this, we propose a
more efficient solution allowing these variables to be any real
value between 1 and 2 within an iterative outer loop. In par-
ticular, after each iteration we use a high threshold and low
threshold to force some nei variables to binary values for fu-
ture iterations. After setting some variables to be integral,
we squeeze the high and low thresholds closer together and
repeat. We keep running the geometric program iteratively

iteration = 0; L = 1; H = 2;
while(L < H){

if(Solution_found) {
if all (ne_j == 1 || ne_j == 2) break;
L = lth * iteration + 1;
H = 2 - hth * iteration;
foreach j in sequential gates {

if(ne_j <= L) ne_j = 1;
else if(ne_j >= H) ne_j = 2;

}
iteration ++;

} else
AllowHighCostNegativeSlack ();

}
%cross each other
L = lth * (iteration - 1) + 1;
H = 2 - hth * (iteration - 1);
Middle = (L + H) / 2;
foreach j in sequential gates{

if(ne_j <= Middle) ne_j = 1;
else ne_j = 2;

}

Figure 3: Relaxation-based iterative algorithm

Figure 4: Example of how thresholds vary across iterations

until the high threshold and low threshold cross or all ne
variables are set to integer values. The pseudo-code of this
relaxation-based algorithm is shown in Figure 3.

Figure 4 shows an example of how the high and low thresh-
olds are varied across iterations. If the high threshold step
(Hth) is 0.1 and low threshold step (Lth) is 0.2, then if
the value of the ne variables from the 1st run is greater
than 1.9 (less than 1.2), the ne variables will be fixed to
2 (1) for the next iteration. In the second iteration, we
force ne variables greater (less) than 1.8 (1.4) to be 2 (1).
However, forcing ne variables to be 2 might lead to an
infeasible solution. If this happens, we call the function
AllowHighCostNegativeSlack() to add a high cost nega-
tive slack variable to the formulation to determine which
ne’s cannot be set to 2 and reset them back to 1.

In this threshold setting example, there is a maximum
of 4 iterations in all runs at which time the high and low
threshold cross. When high and low threshold cross, we find
the mid-point by averaging high threshold and low threshold
of the previous iteration. Then, if variable ne is greater than
mid-point, ne is set to 2. Otherwise, it is set to 1.

The threshold steps play an important role on the quality
of the results. Iterations with small threshold steps might
have more similar critical paths as the optimal solution with
integer variable of ne. However, this comes at the cost of

Table 1: Circuit information after initial synthesis

Circuit Circuit Size Area # Error-
of C # of S Total of EDL rate

s1196 331 18 349 343 3 0.25%
s1238 415 18 433 504 6 2.38%
s1423 454 74 528 490 34 0%
s1488 318 6 324 248 6 4.35%
s5378 809 164 973 1028 47 0.79%
s9234 530 125 655 789 64 0.52%
s13207 1562 460 2022 2543 68 27.05%
s15850 1935 448 2383 2686 77 3.31%
s35932 5443 1728 7171 9582 390 14.98%
s38417 5752 1490 7242 8719 451 5.59%
s38584 6684 1248 7932 7974 201 69.78%

needing more iterations and thus higher runtimes. On the
other hand, larger threshold steps can finish faster but have
higher chance to force ne variables to non-optimal values.

3.3 Calculating Resistance and Capacitance
Note that in the geometric program, we use the same El-

more delay model as discussed in Section 2. For each gate in
the original synthesized netlist, we obtain its nominal area
(A) from the synthesis library. For each pin of each gate,
we obtain its nominal input capacitance from the synthe-
sis library and its nominal pin-to-pin delay from the ini-
tial synthesis timing report. We then use our Elmore delay
model with z = 1 to back-calculate the nominal resistance
(R) of each pin of each gate. Based on this pin-to-pin model,
the geometric program can calculate the delay with different
sizes. Eq. 9 is the same as we described in Section 2 for both
combinational and sequential gates.

4. EXPERIMENTAL RESULT
We implemented our algorithm using Perl and TCL scripts

that interface the Synopsys Design Compiler framework to
the YALMIP MIGP solver [16] for MATLAB and evaluated
it on ISCAS89 benchmark circuits using an FDSOI 28nm
cell library. Table 1 shows the size of chosen benchmark
circuits and how many EDLs are needed after normal logic
synthesis, prior to starting our resynthesis algorithm.

As mentioned earlier, our mixed integer geometric pro-
gram and iterative algorithm determine which near-critical
paths with EDLs should be sped up to minimize area. We
then add set max delay timing constraints on those paths
to constrain them to be indeed non-near-critical after re-
synthesis with Design Compiler. However, since the synthe-
sis tool does not understand EDL area overhead, it might
slow down existing non-near-critical paths to optimize logic
area and these paths might then require EDL and its associ-
ated overhead. Hence, we also force those non-critical paths
which static worse-case delay is less than P −W to remain
non-critical using additional set max delay constraints. We
set W = 0.3P , modeling a resiliency window that is 30% of
the original clock period. We calculate a gate’s upper and
lower sizing bounds by comparing the current size to the
minimum/maximum size of gates with the same functional-
ity. For example, let the area of gate i in the gate-level netlist
be Ai and assume all gates with same functionality have
a minimum area (min Ai) and maximum area (max Ai).

Table 2: Area improvement: (IA: Iterative algorithm,
MIGP: Mixed integer geometric program, BF: Brute-force)

Area Improvement %
Circuit High Overhead Medium Overhead Low Overhead

IA MIGP BF IA MIGP BF IA MIGP BF
s1196 11.43 11.43 8.05 9.15 8.44 6.07 8.16 8.16 5.03
s1238 14.27 14.27 1.27 12.65 12.65 -0.18 11.78 11.78 -0.96
s1423 23.03 25.11 16.8 10.89 10.62 8.96 2.91 3.56 4.67
s1488 0.39 2.1 4.58 -2.52 -4.65 3.51 -4.17 -4.17 2.9
s5378 25.13 25.13 7.95 13.56 13.56 4.58 6.32 6.32 2.47
s9234 25.08 30.65 13.79 11.23 TO 8.36 4.82 TO 4.52
s13207 15.98 17.35 9.67 9.56 9.56 3.32 5.35 5.27 1.8
s15850 17.14 17.14 3.65 8.88 TO 2.03 4.09 TO 1.08
s35932 24.39 24.39 6.73 13.81 13.81 3.97 7.32 TO 2.28
s38417 18.29 TO 3.34 9.22 TO 2.2 3.99 TO 1.49
s35854 16.27 TO -4.49 8.76 TO -2.4 4.35 TO -1.2

Table 3: Run-time Comparison

Run-time
Circuit IA MIGP BF

CLK CPU CLK CPU CLK CPU
s1196 1.3m 11.6m 1m 11.5m 1m 2.5m
s1238 2.1m 19m 4m 55m 1.25m 5m
s1423 1.7m 14m 19m 4hr 3.5m 28m
s1488 1.7m 14m 1.5m 18m 1.5m 5m
s5378 7m 1.3hr 1hr 13hr 5m 39m
s9234 2.2m 17.3m TO TO 6m 53m
s13207 11.5m 1.77hr 2.8hr 32.5hr 7m 56m
s15850 18.5m 2.78hr TO TO 8m 64m
s35932 2.7hr 22.19hr TO TO 45m 5hr
s38417 4.8hr 32hr TO TO 1hr 6hr
s35854 12.3hr 57.7hr TO TO 32m 2.7hr

Then, LBi and UBi will be calculated in Eq.14.

LBi =
min Ai

Ai
; UBi =

max Ai

Ai
; (14)

Moreover, for the iterative algorithm, we set Hth = 0.05
and Lth = 0.2 because it achieves reasonable runtime and
similar results to the optimal integer program.

In Table 2, we show the achieved area improvements from
our iterative algorithm and mixed integer geometric pro-
gram as well as the previously-proposed naive brute force
method [8].1 The logic synthesis tool reports logic area and
how many paths are near-critical and thus need to be ter-
minated with EDLs. We then calculate the resulting area
by summing up logic and EDL area and report the area im-
provement by comparing calculated areas before and after
resynthesis. For the naive brute-force approach, we speed up
near-critical paths one at a time and we only show the best
area improvement among all of them, as described in [8].

Except for circuit s1488, our algorithm achieves lower area
than the brute-force approach with all different EDL over-
heads. Careful analysis of the s1488 re-synthesized circuits
indicate that the synthesis tool in this case unexpectedly
reduced area using non-gate-sizing techniques including re-

1It would also be interesting to compare our approach to
that of [9], but unfortunately their tool is not publicly avail-
able.

structuring which is not modeled in our approach.
On average, our iterative algorithm achieves 10.8% larger

area improvement than brute-force with high EDL area over-
head, 5.9% larger improvement with medium EDL area over-
head, and 2.75% larger improvement with low EDL area
overhead. Moreover, the area improvement of the iterative
algorithm is similar to that of the mixed integer geomet-
ric program. but faster by an average of 5 times. In some
circuits, the area improvement of the iterative program is
better than the optimal integer program. This may be be-
cause of differences in logic synthesis optimizations other
than gate sizing, such as restructuring and repeater inser-
tion. For several of the largest circuits the MIGP timed out
(TO) after 24 hours of wall clock time. This suggests our it-
erative algorithm is an effective approach to solve the MIGP.
Note that both the geometric programming and brute-force
approaches use multi-threaded computation so Table 3 re-
ports both worst clock and CPU run-time among the three
overheads. Although our iterative algorithm is slower than
brute-force, the run-times are still reasonable.

To further analyze the impact of different threshold set-
tings, we ran three different threshold settings for the high
EDL overhead case: A (Hth = 0.1, Lth = 0.2), B (Hth =
0.05, Lth = 0.2), and C (Hth = 0.01, Lth = 0.1) and got
average area improvements of (16.32%, 17.31%, 17.12%). As
mentioned above, the threshold setting B was chosen in Ta-
ble 2 because it has reasonable run-times and yields results
similar to the optimal integer program.

Speeding-up near critical paths may not only improve area
but also improve performance by reducing the error-rate.
Although our geometric program only targets minimizing
area, we still see an average error-rate improvement of 5.2%
over original synthesis and 6.8% over the brute-force ap-
proach in Table 4. Even though we reduce the error-rate
to 0 in some circuits, for other circuits, such as s38584, the
new error-rate remains high. This is interesting as it mo-
tivates future work exploring adding a notion of error-rate
into the cost function to simultaneously target area and per-
formance. In fact, more generally, it would be interesting to
minimize power consumption for a given performance con-
sidering voltage scaling.

5. CONCLUSION AND FUTURE WORK
The advent of resilient designs offers a path to achieve

average-case silicon. Numerous resilient circuit templates
and styles have been advocated and explored but few CAD
works address this open field. In fact, to the best of our
knowledge, this paper is the first to propose a mathemati-
cally formal model to optimize the hardware of resilient de-
signs. The initial goal of this research is to optimally trade-
off the area of resilient designs for a worst-case performance
target at a fixed voltage supply, but future work should con-
sider modeling power for a given average-case performance
considering voltage scaling.

The approach studied is to use analysis of the netlist ob-
tained from standard logic synthesis to guide the resynthesis
of the design using additional timing constraints to hope-
fully reduce the final area of the design (including the area
associated with the error-detecting logic overhead). In par-
ticular, during resynthesis many types of optimizations may
be explored including gate sizing, logic restructuring, and re-
peater insertion. But we hypothesize that it is sufficient to
predict the impact of resynthesis by considering gate sizing

Table 4: Error-rate (%)

Old Error-rate
Circuit Error- Overhead IA MIGP BF

rate ∆ New ∆ New ∆ New
s1196 0.25 H/M/L -0.25 0 -0.25 0 -0.08 0.17
s1238 2.38 H/M/L -0.08 2.3 -0.08 2.3 -0.41 2.79
s1423 0 H/M/L 0 0 0 0 0 0

s1488 4.35
H 2.98 7.33 -4.35 0 0.56 4.91
M 2.98 7.33 -2.56 1.79 0.56 4.91
L 2.98 7.33 2.98 7.33 0.56 4.91

s5378 0.79 H/M/L -0.79 0 -0.79 0 -0.29 0.59
s9234 0.52 H/M/L -0.52 0 -0.52 0 -0.37 0.15

s13207 27.05
H -27.05 0 -27.05 0 -26.09 0.96
M -27.02 0.03 -27.05 0 -26.09 0.96
L -27.02 0.03 -27.02 0.03 -11.88 15.17

s15850 3.31
H -1.03 2.28 -1.15 2.16 0.4 3.71

M/L -1.67 1.64 TO TO 0.4 3.71
s35932 14.98 H/M/L -14.98 0 -14.98 0 0 14.98

s38417 5.59
H -3.89 1.7 TO TO 26.08 31.67
M -3.64 1.95 TO TO 45.69 51.28
L -3.81 1.78 TO TO 45.69 51.28

s35854 69.78
H -10.88 58.9 TO TO 1.11 70.89
M -14.67 55.11 TO TO 1.11 70.89
L -7.63 62.15 TO TO 1.11 70.89

alone. To test this hypothesis, this paper presents a gate-
sizing based mixed integer geometric programming frame-
work and a relaxed iterative algorithm to guide resynthe-
sis. Our experimental results show that our iterative algo-
rithm significantly improves the area compared to a previ-
ously published brute-force resynthesis approach while for
most examples simultaneously reducing error-rates. More-
over, the iterative algorithm dramatically reduces the com-
putational complexity associated with the mixed integer ge-
ometric program and still achieves close to optimal (integer)
results. These results suggest that a gate-sizing based model
can indeed be used to effectively guide resynthesis.

We tested our approach after traditional logic synthesis
but applying it after place-and-route is also possible and
would enable us to more accurately model interconnect. Fi-
nally, we believe this framework is particularly interesting
because the mathematical objective function can be enhanced
to capture not only area but also overall error-rate/performance
and ultimately power. This is part of our future work.

Acknowledgements
This work is supported in part by NSF award CCF-1219100.

6. REFERENCES
[1] K. Bowman, J. Tschanz, N. S. Kim, J. Lee,

C. Wilkerson, S. Lu, T. Karnik, and V. De.
Energy-efficient and metastability-immune resilient
circuits for dynamic variation tolerance. IEEE JSCC,
44(1):49–63, Jan 2009.

[2] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi.
A tutorial on geometric programming. Optimization
and engineering, 8(1):67–127, 2007.

[3] M. Choudhury, V. Chandra, K. Mohanram, and
R. Aitken. Timber: Time borrowing and error relaying

for online timing error resilience. In DATE, pages
1554–1559, March 2010.

[4] S. Das, C. Tokunaga, S. Pant, W.-H. Ma,
S. Kalaiselvan, K. Lai, D. Bull, and D. Blaauw. Razor
II: In situ error detection and correction for PVT and
SER tolerance. IEEE JSCC, 44(1):32–48, Jan 2009.

[5] R. Dreslinski, M. Wieckowski, D. Blaauw,
D. Sylvester, and T. Mudge. Near-threshold
computing: Reclaiming moore’s law through energy
efficient integrated circuits. Proceedings of the IEEE,
98(2):253–266, Feb 2010.

[6] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao,
T. Pham, C. Ziesler, D. Blaauw, T. Austin,
K. Flautner, and T. Mudge. Razor: a low-power
pipeline based on circuit-level timing speculation. In
MICRO-36, pages 7–18, Dec 2003.

[7] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris,
D. Blaauw, and D. Sylvester. Bubble razor:
Eliminating timing margins in an ARM cortex-M3
processor in 45 nm CMOS using architecturally
independent error detection and correction. IEEE
JSCC, 48(1):66–81, Jan 2013.

[8] D. Hand, M. Trevisan Moreira, H.-H. Huang,
D. Chen, F. Butzke, Z. Li, M. Gibiluka, M. Breuer,
N. Vilar Calazans, and P. Beerel. Blade – a timing
violation resilient asynchronous template. In ASYNC,
pages 21–28, May 2015.

[9] A. B. Kahng, S. Kang, J. Li, and J. Pineda De Gyvez.
An improved methodology for resilient design
implementation. TODAES, 20(4):66, 2015.

[10] Y. Kunitake, T. Sato, H. Yasuura, and T. Hayashida.
Possibilities to miss predicting timing errors in canary
flip-flops. In MWSCAS, pages 1–4, Aug 2011.

[11] Y. Liu, R. Ye, F. Yuan, R. Kumar, and Q. Xu. On
logic synthesis for timing speculation. In ICCAD,
pages 591–596. IEEE, 2012.

[12] Y. Liu, F. Yuan, and Q. Xu. Re-synthesis for
cost-efficient circuit-level timing speculation. In DAC,
pages 158–163. ACM, 2011.

[13] M. T. Moreira, D. Hand, N. L. V. Calazans, and P. A.
Beerel. TDTB error detecting latches: Timing
violation sensitivity analysis and optimization. In
ISQED, 2015.

[14] M. Nakai, S. Akui, K. Seno, T. Meguro, T. Seki,
T. Kondo, A. Hashiguchi, H. Kawahara, K. Kumano,
and M. Shimura. Dynamic voltage and frequency
management for a low-power embedded
microprocessor. IEEE JSCC, 40(1):28–35, 2005.

[15] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli,
T. Karnik, and V. De. Tunable replica circuits and
adaptive voltage-frequency techniques for dynamic
voltage, temperature, and aging variation tolerance. In
VLSI Circuits, pages 112–113, June 2009.

[16] YALMIP: modelling language for advanced modeling
and solution of convex and nonconvex optimization
problems. http://users.isy.liu.se/johanl/yalmip/.

[17] R. Ye, F. Yuan, H. Zhou, and Q. Xu. Clock skew
scheduling for timing speculation. In DATE, pages
929–934. IEEE, 2012.

