
Simultaneous Slack Matching, Gate Sizing and
Repeater Insertion for Asynchronous Circuits

Gang Wu and Chris Chu
Department of Electrical and Computer Engineering, Iowa State University, IA

Email: {gangwu, cnchu}@iastate.edu

Abstract—Slack matching, gate sizing and repeater insertion
are well known techniques applied to asynchronous circuits to
improve their power and performance. Existing asynchronous
optimization flows typically perform these optimizations sequen-
tially, which may result in sub-optimal solutions as all these
techniques are interdependent and affect one another. In this
paper, we present a unified leakage power optimization frame-
work by performing simultaneous slack matching, gate sizing and
repeater insertion. In particular, we apply Lagrangian relaxation
to integrate all these techniques into a single optimization step.
A methodology to handle slack matching under the Lagrangian
relaxation framework is proposed. Also, an effective look-up table
based repeater insertion technique is developed to speed up the
algorithm. Our approach is evaluated using a set of asynchronous
designs and compared with both a sequential approach and a
commercial asynchronous optimization flow. The experimental
results have achieved significant savings in leakage power and
demonstrated the effectiveness of our approach.

I. INTRODUCTION

Asynchronous designs have been demonstrated to be able to
achieve both higher performance and lower power compared
with their synchronous counterparts [1] [2] [3]. However, due
to the lack of proper EDA tool support, the design cycle for
asynchronous circuits is much longer compared with the one
for synchronous circuits. Thus, even with many advantages,
asynchronous circuits are still not the mainstream in the
industry, and it is very important to develop EDA tools for
asynchronous circuits design.

Stalls are major obstacles limiting the performance of
pipelined asynchronous circuits [4]. Due to the slack elasticity
for most asynchronous designs, adding pipeline buffers to the
design will not change its input/output functionality, but can
help remedy the stalls [5]. Thus, slack matching, which inserts
minimum number of pipeline buffers to guarantee the most
critical cycle meets the desired cycle time, is widely used
for asynchronous circuits [6]. Most previous works related
to slack matching formulate the problem as a mixed integer
linear program (MILP) [5] [7] [8], which is NP-Complete
and the integral constraints need to be relaxed in order to
solve the problem efficiently. In [9], a heuristic algorithm is
proposed to solve the problem by leveraging the asynchronous
communication protocol.

Other than slack matching, gate sizing and repeater insertion
are also very effective techniques to reduce the delay and
power consumption for asynchronous circuits. Gate sizing and
repeater insertion for synchronous circuits has been studied for
decades and there are many works tackling these problems

This work is supported in part by NSF award CCF-1219100.

[10] [11] [12]. However, those works cannot be directly ap-
plied to asynchronous circuits, due to the intrinsic differences
between asynchronous and synchronous circuits in terms of
performance analysis and optimization. In [13], a gate sizing
and Vth assignment approach for asynchronous circuits has
been proposed. It achieved significant improvements compared
with previous asynchronous gate sizing approaches. To the best
of our knowledge, there is no work on repeater insertion for
asynchronous circuits.

Most automated asynchronous design flows apply slack
matching, gate sizing and repeater insertion separately either
in a sequential manner [14] [15] or in an iterative manner [16].
In Proteus [16], a MILP based slack matching optimization is
performed first, followed by gate sizing and repeater insertion
which are done by leveraging synchronous EDA tools. Since
all these three optimization techniques are closely related
to each other, doing them separately may not explore the
solution space sufficiently thus yields sub-optimal results.
During our experiments, in term of the number of gates, the
circuits optimized by Proteus contain 27.1% pipeline buffers
on average. This huge amount of pipeline buffers inserted
at the slack matching step create a serious area and power
overhead, which can be even more critical for asynchronous
circuits, since asynchronous designs intrinsically have higher
gate count than its corresponding synchronous design. Another
disadvantage is that earlier steps of the separated optimization
approach have to perform optimizations based on inaccurate
delay values. In Proteus, the slack matching is performed
based on a rough unit delay model, which simply counts
the number of gates along the timing path. Considering the
dominating interconnect delays in advanced technologies and
the gate sizing and repeater insertion operations performed in
later steps, this unit delay model can be very inaccurate and
even misleading to the optimization algorithms.

In this paper, we address the problem of minimizing the
total leakage power consumption while guaranteeing a target
cycle time for unconditional asynchronous pipelined circuits.
Three different optimization techniques: slack matching, gate
sizing and repeater insertion are effectively joined together
under the Lagrangian relaxation (LR) framework. As far as
we know, this is the first work that formulates and solves this
simultaneous optimization problem combining all these three
techniques together.

Our approach is distinctive from previous ones by offering
the following benefits:
• Much fewer pipeline buffers can be used for the slack

matching purpose, since some stalls can simply be fixed



by either gate sizing or repeater insertion which have
much less area overhead and consume less power.

• Our approach can prevent excessive sizing when a gate
is driving a large load, as we consider repeater insertion
together with the gate sizing.

• When design contains extremely long wire delays, i.e.,
cross chip interconnections, our approach can explore the
solution of adding pipeline buffers to break the channel
into multiple pipeline stages, which is more beneficial
than just doing gate sizing or repeater insertion.

• More accurate delay estimation at each optimization step
can be achieved by calculating the delay using the non-
linear delay model (NLDM).

The main contributions of this paper are as follows:
• A unified LR framework incorporating gate sizing, re-

peater insertion and pipeline buffer insertion together.
• Methodology for handling pipeline buffer insertion under

the LR framework, especially how to update the corre-
sponding Lagrangian multipliers.

• A fast look-up table based repeater insertion approach.
• Results which show significant improvements compared

with both the sequential approach and a commercial
asynchronous optimization flow.

The rest of this paper is organized as follows. In Section
II, a motivating example is presented. Section III shows an
overview of the framework. Section IV introduces the back-
grounds of LR. Section V presents our optimization algorithm.
Finally, the experiments are presented in Section VI.

II. A MOTIVATING EXAMPLE

In this paper, we use the Full Buffer Channel Net (FBCN)
[5] to model our asynchronous circuits. A FBCN is a specific
form of Petri net [17]. The idea is to model each leaf cell as
a transition. Channels between cell ports are modeled with a
pair of places which are annotated with delay information. The
handshaking signals are modeled as tokens. A simple asyn-
chronous three-stage pipeline and its corresponding FBCN
model is shown in Fig. 1 (a) and (b).

(a) (b)

Fig. 1: (a) Three-stage pipeline. (b) FBCN model.

Here, transition tbuf1, tbuf2 and tbuf3 represent the buffer
cells. Circles are places which represent the channels between
neighboring buffer cells. In particular, places containing tokens
are represented by circles marked with a black dot. In Fig. 1,
the propagation delay is 2 + 2 + 2 = 6, which is the time for
tokens propagate from tbuf1 to tbuf3 and back to tbuf1. The
local cycle time is 2 + 6 = 8, which is the shortest time for a
buffer to complete a handshake with its neighbors. Since the

propagation delay is less than local cycle time, stall happens.
The performance of this design is bounded by the highlighted
most critical cycle. The corresponding cycle time is (6 + 6 +
6)/2 = 9, which is calculated by the cycle delay divided by
the total number of tokens along this cycle.

The stall can be resolved by slack matching, which adds an
extra pipeline stage in the design as shown in Fig. 2 (a). The
slack matched design operates at desired local cycle time. The
most critical cycle is highlighted, which is same as the local
handshaking cycle.

Another way to resolve the stall is to improve the acknowl-
edgment (ack) time, as shown in Fig. 2 (b). This can be
done by simply sizing up BUF3 or inserting repeaters at its
output ack pin. Sizing gates or inserting repeaters are much
more economical than inserting pipeline buffers, since pipeline
buffers, which contain extra handshaking circuits, are much
bigger. For the cell library we have, the smallest size pipeline
buffer is 4.8X bigger than the smallest size repeater.

(a) (b)

Fig. 2: (a) Stall fixed by inserting pipeline buffers. (b) Stall
fixed by gate sizing or repeater insertion.

Considering typical asynchronous flows which perform the
optimization sequentially, if a slack matching solution as
shown in Fig. 2 (a) is applied first, it is very difficult for the
flow to go back to the better solution as shown in in Fig. 2
(b). Therefore, we develop the unified optimization approach
which is able to achieve much better results.

III. OPTIMIZATION FRAMEWORK OVERVIEW

Fig. 3: High-level View of Our Framework.

A high-level view of our optimization framework is shown
in Fig. 3. The fundamental idea is to size the gates or insert
proper repeaters / pipeline buffers to minimize the leakage
power while satisfying the timing constraints. However, if we
simply enumerate all the gate size, repeater or pipeline buffer
choices, the runtime will not be affordable due to the enormous
number of possible combinations. Thus, before solving the
problem, the first thing we need to consider is how to limit the



solution space and speed up the evaluation process, while still
keeping a good solution quality. We do this by constructing
candidate pipeline buffer locations and performing table look-
up for repeater insertion.

The generated candidate buffer locations and look-up tables
are then fed into our Lagrangian dual problem (LDP) solver,
where the gate sizing, buffer insertion and repeater insertion
problems are joined by Lagrangian multipliers, acting as
“weights” associated with each timing arc. The weights help us
to find a proper sizing and buffer / repeater insertion solution
for the circuit, and the LR framework provide us a systemic
way to adjust the weights at each iteration.

IV. LAGRANGIAN RELAXATION FRAMEWORK

LR is a very useful mathematical approach which trans-
forms the constrained primal problem (PP) into an uncon-
strained and easier LR subproblem (LRS). Inspired by [10],
the special circuit structure allows us to further transform
LRS into an equivalent but even simpler problem LRS∗. For
a given set of non-negative LR multipliers λ, solving LRS∗
provides us a lower bound of PP . Then, the LR dual problem
(LDP) which provides us a solution to PP can be solved by
iteratively solving a sequence of LRS∗.

For an asynchronous circuit modeled with FBCN, our
primal problem which minimizes total leakage power subject
to performance constraints can be formulated similar to [13]
as shown below:

PP : minimize leakage(g, b, r)
Subject to ai +Dij −mijτ ≤ aj ∀ p(i, j) ∈ P

where g is the set of select gates, b is the buffer solution and
r is the repeater solution. τ is the given target cycle time. Let
T be the set of transitions and P be the set of places in the
FBCN model. ai and aj denote the arrival times associated
with transitions ti and tj . p(i, j) denotes the place between ti
and tj . Dij is the delay associated with p(i, j). mij = 1 if
p(i, j) contains a token and 0 otherwise.

By relaxing all constraints into the objective function, we
can obtain the LRS as:

LRS : minimize leakage(g, b, r)

+
∑
∀(i,j)

λij(ai +Dij −mijτ − aj)

Similar to [10], LRS can be further simplified into LRS∗
by applying KKT optimality conditions:

KKT :
∑
∀(k,j)

λkj =
∑
∀(i,k)

λik ∀ k ∈ T

LRS∗ : minimize leakage(g, b, r)

−
∑
∀(i,j)

λijmijτ +
∑
∀(i,j)

λijDij

Finally, we obtain LDP by maximizing LRS∗:

LDP : maximize LRS∗

Subject to λ ≥ 0, λ ∈ KKT

V. SIMULTANEOUS GATE SIZING, REPEATER INSERTION
AND PIPELINE BUFFER INSERTION

A. Constructing Candidate Pipeline Buffer Location

Fig. 4 shows a three-stage asynchronous pipeline imple-
mented using the PCHB template [18]. Stage 1 and stage
3 are computation stages. In particular, domino logic cells
(LOGIC) are used for computation and control circuit (CTRL),
C-elements (C) are used to perform handshaking. The dual
rail channel contains two data wires (A[0].0, A[0].1), and one
wire (Le) for the ack signal. Thus, we can easily identify all
the channels in the circuit and pre-insert a candidate pipeline
buffer inside each channel, similar to stage 2 in Fig. 4.

Fig. 4: A three-stage PCHB pipeline.

Different from regular pipeline buffers, we assign the pre-
inserted pipeline buffer with two modes: transparent and
opaque, as shown in Fig. 5 (a) and (b) respectively. The trans-
parent mode is used to model the situation in which no buffer
is inserted and the opaque mode is used to model the opposite
situation. In transparent mode, the pipeline buffer has three
timing arcs denoted as t1 to t3, acting as wires connecting
the corresponding ack or data pins. It contributes zero leakage
power to the circuit. Also, during static timing analysis, the
slew values seen at its input pins will be propagated to the
corresponding output pins for all its fanout cells. Similarly,
the load capacitance seen at its output pins will be forwarded
to the input pins for the fanin cells. In opaque mode, the pre-
inserted buffer acts as a normal pipeline buffer and there are
9 timing arcs denoted as t1 to t9 from each input pin to each
output pin. Then, instead of actually modifying the netlist, the
algorithm can simply switch the buffer between transparent
and opaque mode to achieve the same effects as removing /
inserting the buffer.

(a) (b)

Fig. 5: Pre-inserted pipeline buffer: (a) Transparent mode (b)
Opaque mode



As described in Sec. IV, the set of Lagrangian multiplier λ
needs to satisfy KKT conditions during the update process.
Let λt1 denote the λ associated with timing arc t1 and simi-
larly for all other λs. Let us consider the λ sum at pin L.e and
R.e. Since these two pins are connected by a single timing arc
in transparent mode, the λ sum at pin L.e and the λ sum at pin
R.e should be equal, and they should keep to be equal when
the buffer transforms between transparent mode and opaque
mode. This requires us to have: λt1+λt2+λt3 = λt1+λt4+λt7
for the λs in opaque mode. However, the λ update in opaque
mode might not follow the above rule, which can make the λs
violating the KKT conditions when the buffer is transformed
back to transparent mode. Similarly, for other pins, the same
issue will also happen.

A simple solution is to only update λt1, λt5 and λt9 while
keeping all other λs to be 0 in opaque mode. However, this
might put too much restrictions on λ values and make them
unable to accurately reflect the criticality of each timing arc.
Thus, we propose a better solution where we enforce the
following equality constraints during λ update:

(λt2 = λt7) ∧ (λt3 = λt4) ∧ (λt6 = λt8)

These constraints guarantee the updated λs always satisfy
the KKT conditions in both modes, while it avoids putting
too much restrictions on the original λ values.

B. Constructing Look-up Tables for Fast Repeater Insertion

If we do not consider any blockages, repeaters can be
inserted at any location of the wires. In order to limit the
solution space and simplify our algorithm, here we only
consider inserting repeaters at the input / output pins of each
gate. However, even under such an assumption, the possible
choices for repeater insertion are still too many even for one
gate, because we can have different size or number of repeaters
at each pin. Therefore, we propose a look-up table technique to
speed up our evaluation process. In particular, we construct a
2D look-up table for each pin of each gate in our standard cell
library. The X-axis of the look-up table is the load capacitance
driven by the repeaters. The Y-axis is the sum of the values
of λs at this pin, as shown in Fig. 6.

Fig. 6: Look-up table at each pin.

Given the load and λ value of each look-up table entry, we
evaluate all the possible repeater insertion choices at this pin
based on a typical input slew. The best choice, i.e., the one
providing the smallest cost, will be stored in the table. The

cost is evaluated based on the following cost function:

Cost(gi) = leakage(gi) +
∑

(u,v)∈Arci

λuvDuv (1)

Here, Arci is defined to be the set of timing arcs of repeater
gi and all the fanin and fanout gates of gi.

It might happen that the actual λ and load value calculated
by the LDP solver does not match any of the index values in
the look-up table. In this situation, we simply evaluate all four
choices surrounding this point and pick the best one.

C. Solving LDP
We apply a direction finding approach inspired by [19] to

solve LDP , as shown in Fig. 7.

Fig. 7: Lagrangian dual problem solver.

In step 1, we find an initial set of non-negative λs satisfying
the KKT conditions.

In step 2, an improving feasible direction ∆λ can be found
by solving the following linear program, which maximize the
first order approximation of LRS∗:

DF : maximize
∑
∀(i,j)

∆λijDij −
∑
∀(i,j)

∆λijmijτ

Subject to λ ≥ 0, λ ∈ KKT
max(−u,−λij) ≤ ∆λij ≤ u

here u is used to bound the objective function and avoid it
goes to infinity, similar to [19].

In step 3, we find a proper step size α by optimizing along
the feasible direction ∆λ using line search techniques. In
particular, we solve the LRS∗ for a given set of λ at each po-
tential step. The step size which achieves q(λ+α∆λ) > q(λ)
will be selected as α. Here, q(λ) denotes the optimal objective
value of LRS∗.

We keep iterating between steps 2 and 3 until q(λ) does
not improve or the number of iterations (n) exceeds the limit.

D. Solving LRS∗

Since asynchronous circuits contain loops, it does not has
a topological order which is commonly used in synchronous
optimization algorithms. Thus, here we use a sequential update
technique as shown in Algorithm 1. The idea is to traverse
all the gates in a sequential order and locally pick a best
solution which minimize LRS∗. If the newly picked solution



is different from the old one, we will reevaluate all its fanout
gates. Please note that in Algorithm 1, the gate refers to all
the gates in the original circuit and the pre-inserted candidate
pipeline buffers, but it does not represent the repeaters inserted
by our algorithm. For a regular gate, a solution at a gate means
a proper size and repeater insertion choices of this gate. For
a candidate pipeline buffer, the solution also denotes whether
the buffer is in opaque or transparent mode.

Algorithm 1 Solve LRS∗

Ensure: a proper solution for each gate which minimize LRS∗

1: Assign all the gates with an initial solution;
2: Insert all the gates into a set G;
3: while G 6= ∅ do
4: Pick one gate gi from G. Let its current solution be sji ;
5: Select a better solution ski for gate gi; /* Algorithm 2 */
6: if sji 6= ski then
7: Assign gi with this new solution ski ;
8: if gi is visited less than or equal to n times then
9: Insert all gates /∈ G and directly driven by gi into G;

10: end if
11: end if
12: Remove gi from set G;
13: end while

Algorithm 2 shows our local evaluation algorithm which
find the best local solution at each gate based on the following
cost function:

Cost(gi) = leakage(gi)−
∑

(u,v)∈Arci

λijmijτ (2)

+
∑

(u,v)∈Arci

λuvDuv

Similar to equation (1), Arci is the set of timing arcs of gate
gi and all the timing arcs of gi’s fanin and fanout gates.

Algorithm 2 Local Evaluation
Ensure: Best solution for gi which locally minimize LRS∗

1: if gi is a regular gate then
2: Select a proper sizing, repeater insertion option for gi;
3: else /* gi is a candidate pipeline buffer */
4: if gi is in opaque mode then
5: Change gi to transparent mode;
6: Local timing update;
7: If the cost is not reduced, recover to opaque mode;
8: else /* gi is in transparent mode */
9: Change gi to opaque mode;

10: Update λ for all the timing arcs of gi;
11: Select best sizing and repeater insertion solution for gi;
12: If the cost is not reduced, recover to transparent mode;
13: end if
14: end if
15: return bestSolution;

In step 2 of Algorithm 2, the method we used to pick proper
size and repeaters of this gate is simply evaluating all its
possible sizing and repeater insertion options. In particular,
we first select a certain size for this gate, then the repeater
insertion options at each of its pin can be found using the
look-up tables. The cost of each sizing and repeater insertion
combination will be calculated based on equation (1).

VI. EXPERIMENTS

The proposed optimization approach is implemented in C++
and runs on a Linux PC with 8 GB of memory and 2.4 GHz
Intel Core i7 CPU.

Our unified optimization approach is tested using two sets
of asynchronous benchmarks. First is a set of asynchronous
benchmarks transformed from ISCAS89 benchmarks. Second
is a set of specific asynchronous designs. In particular, we use
different bit width on the datapath of ALU and Accumulator
designs to generate the set of benchmarks with different num-
ber of gates. All the designs are transformed or synthesized
using the Proteus front-end flow [16].

Accurate non-linear delay model are used to calculate delay
and slew value based on the look-up tables from Proteus
standard cell library. Cell interconnections are modeled as
lumped capacitance, which is obtained by extraction after
placement and routing. Since the original cell library does not
contain leakage power, we assign a leakage power for each
cell which is proportional to its area. The cycle time achieved
by Proteus is used as a timing constraint for our unified flow
and the sequential approach described below.

For comparison purpose, we implemented a sequential
approach similar to our unified optimization flow, but it
only performs one type of optimization at each iteration. In
particular, the sequential approach starts with 10 iterations of
pipeline buffer insertion, followed by 10 iterations of repeater
insertion and 30 iterations of gate sizing. We use this order
because gate sizing is the more fine-grained optimization and
it is better to be applied at last.

Comparison results on the transformed ISCAS89 bench-
marks are shown in Table I. “# of gates” column shows the to-
tal number of gates. “Cand.” column shows the number of pre-
inserted candidate pipeline buffers. “Target” column shows the
target cycletime obtained from Proteus flow. The “Proteus”,
“Seq.” and “Ours” columns show the results of the Proteus, the
sequential approach and our approach respectively. Leakage
power, the number of inserted buffers and the number of
inserted repeaters are compared among different flows. All re-
sults satisfy the target cycletime constraints. The results show
our approach is much better in power consumption and insert
fewer buffers and repeaters. Comparing the leakage power, on
average, our approach is 56.5% better than the Proteus flow
and 14.1% better than the sequential flow. Table II shows the
comparison results on the specific asynchronous benchmarks.
Similar improvements are achieved. For the leakage power,
our approach is 27.1% better than the Proteus flow and 11.1%
better than the sequential flow.

The significant improvements in both sets of benchmarks
suggest that all these techniques are very closely related
to each other and the proposed joint optimization approach
can provide significant benefits compared with the non-
simultaneous ones. Proteus does not have a separate circuit
optimization step and so we are not able to measure its
runtime. The average runtime of our algorithm is around 6.5
minutes, which indicates our flow runs fast enough and will



Table I. Comparison on transformed ISCAS89 benchmarks

Design # of Cand. Cycle Time (ns) Leakage (µW) Buffers Repeaters
gates Target Seq. Ours Proteus Seq. Ours Proteus Seq. Ours Proteus Seq. Ours

as27 47 13 0.40 0.39 0.39 601.34 488.056 395.16 7 6 3 6 3 1
as298 223 98 0.52 0.45 0.49 3528.58 2940.16 2351.60 63 36 7 14 42 13
as386 268 115 0.73 0.68 0.63 4227.10 2953.01 2834.33 70 21 21 22 59 21
as349 324 115 0.73 0.65 0.73 4972.49 3676.08 2718.56 85 43 3 30 49 14
as382 268 119 0.62 0.61 0.58 4437.92 3705.66 2757.96 69 40 0 15 51 14
as400 281 126 0.59 0.57 0.58 4774.81 3176.96 3175.65 83 18 19 14 62 20
as420 324 122 0.44 0.39 0.43 5217.87 4456.1 3394.69 88 25 12 20 45 20
as444 270 119 0.56 0.51 0.54 4571.60 3252.37 2845.32 73 19 5 14 52 13
as510 572 294 0.92 0.91 0.92 8935.97 8862.22 6486.70 118 111 29 53 144 44
as526 323 147 0.60 0.60 0.53 5448.18 4659.59 3846.67 98 61 25 16 65 25
as641 723 190 0.79 0.78 0.78 9860.11 6157.28 4799.62 213 59 2 87 103 30
as713 666 175 0.70 0.64 0.69 9031.29 5896.07 4677.90 177 29 8 82 97 32
as832 803 361 0.99 0.99 0.97 12194.40 9511.26 8190.31 190 80 38 97 171 55
as838 747 300 0.58 0.54 0.58 12049.80 8014.05 7371.23 226 34 31 40 168 53
as953 1015 469 1.01 0.98 0.99 16281.70 12698 12528.00 271 107 140 84 239 94
as1488 1430 772 1.14 1.03 0.98 24655.10 20808.1 19559.20 410 275 196 116 135 134
as5378 2742 1242 0.71 0.67 0.71 46083.00 31520.9 27859.40 870 233 67 187 591 204
as9234 2236 1021 1.05 1.01 1.05 36528.00 24193.2 22925.20 686 83 58 130 152 155

as13207 6088 2583 1.02 0.93 0.99 96456.20 68898.5 59234.00 1945 567 154 451 353 336
Normalized 1.565 1.141 1.000 7.020 2.258 1.000 1.156 2.020 1.000

Table II. Comparison on asynchronous benchmarks

Design # of Cand. Cycle Time (ns) Leakage (µW) Buffers Repeaters
gates Target Seq. Ours Proteus Seq. Ours Proteus Seq. Ours Proteus Seq. Ours

ALU8 957 364 0.46 0.46 0.41 17107.00 15006.80 18086.70 146 120 92 41 219 73
ALU16 2511 1002 0.66 0.48 0.56 41069.20 40319.60 37103.50 594 382 256 69 622 188
ACC16 609 215 0.62 0.60 0.59 8974.96 7585.64 6386.76 100 72 18 69 105 31
ACC32 1323 469 0.88 0.83 0.80 20363.20 16475.50 15534.40 268 175 192 136 218 97
ACC64 3619 1188 0.71 0.71 0.69 57698.60 44570.90 33062.80 1291 294 111 264 587 200

FU 5805 2107 1.42 1.21 1.32 75910.00 67900.00 63584.70 1692 590 609 501 1047 385
GCD 475 223 1.58 1.20 1.30 6988.86 7544.86 5710.49 89 73 7 30 106 35

Normalized 1.271 1.111 1.000 3.253 1.328 1.000 1.100 2.878 1.000

not be a runtime bottleneck of the design process.

VII. CONCLUSIONS

In this paper, we have proposed a simultaneous slack
matching, gate sizing and repeater insertion approach for
asynchronous circuits. We apply Lagrangian relaxation to inte-
grate all these techniques into a single optimization step. The
relaxed problem is further simplified using KKT conditions.
Effective techniques to handle pipeline buffer insertion and
repeater insertion under the Lagrangian relaxation framework
are proposed. A local evaluation algorithm is also developed to
solve the relaxed problem efficiently. The experimental results
show significant improvements on power consumption and
demonstrate the benefits of performing these optimizations
simultaneously rather than sequentially.

REFERENCES

[1] A. J. Martin, S. M. Burns, T.-K. Lee, D. Borkovic, and P. J. Hazewindus,
“The First Aysnchronous Microprocessor: The Test Results,” SIGARCH,
pp. 95–98, 1989.

[2] A. J. Martin, A. Lines, R. Manohar, M. Nystroem, P. Penzes, R. South-
worth, and U. Cummings, “The Design of an Asynchronous MIPS
R3000 Microprocessor,” in Advanced Research in VLSI, 1997.

[3] M. Davies, A. Lines, J. Dama, A. Gravel, R. Southworth, G. Dimou, and
P. Beerel, “A 72-Port 10G Ethernet Switch/Router Using Quasi-Delay-
Insensitive Asynchronous Design,” in ASYNC, pp. 103–104, 2014.

[4] J. Spars and S. Furber, Principles of Asynchronous Circuit Design.
Springer, 2002.

[5] P. A. Beerel, A. Lines, M. Davies, and N.-H. Kim, “Slack Matching
Asynchronous Designs,” in ASYNC, pp. 11–pp, 2006.

[6] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A Designer’s Guide to
Asynchronous VLSI. Cambridge University Press, 2010.

[7] P. Prakash and A. J. Martin, “Slack Matching Quasi Delay-insensitive
Circuits,” in ASYNC, pp. 10–pp, 2006.

[8] M. Najibi, P. Beerel, et al., “Integrated fanout optimization and slack
matching of asynchronous circuits,” in ASYNC, pp. 69–76, 2014.

[9] G. Venkataramani and S. C. Goldstein, “Leveraging Protocol Knowledge
in Slack Matching,” in ICCAD, pp. 724–729, 2006.

[10] C.-P. Chen, C. Chu, and D. F. Wong, “Fast and Exact Simultaneous Gate
and Wire Sizing by Lagrangian Relaxation,” in ICCAD, 1998.

[11] J. Fishburn, “TILOS: A Posynomial Programming Approach to Tran-
sistor Sizing,” in ICCAD, pp. 326–328, 1985.

[12] L. P. Van Ginneken, “Buffer Placement in Distributed RC-tree Networks
for Minimal Elmore Delay,” in Circuits and Systems, 1990., IEEE
International Symposium on, pp. 865–868, IEEE, 1990.

[13] G. Wu, A. Sharma, and C. Chu, “Gate Sizing and Vth Assignment for
Asynchronous Circuits Using Lagrangian Relaxation,” in ASYNC, 2015.

[14] A. Yakovlev, P. Vivet, and M. Renaudin, “Advances in Asynchronous
Logic: From Principles to GALS & NoC, Recent Industry Applications,
and Commercial CAD Tools,” in DATE, pp. 1715–1724, 2013.

[15] Y. Thonnart, E. Beigne, and P. Vivet, “A Pseudo-synchronous Imple-
mentation Flow for WCHB QDI Asynchronous Circuits,” in ASYNC,
pp. 73–80, 2012.

[16] P. A. Beerel, G. Dimou, and A. Lines, “Proteus: An ASIC Flow for GHz
Asynchronous Designs,” Design Test of Computers, pp. 36–51, 2011.

[17] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, 1981.

[18] A. M. Lines, Pipelined Asynchronous Circuits. Master’s thesis, Califor-
nia Institute of Technology, 1998.

[19] J. Wang, D. Das, and H. Zhou, “Gate Sizing by Lagrangian Relaxation
Revisited,” TCAD, vol. 28, pp. 1071–1084, 2009.


