
Flexible Packed Stencil Design with Multiple Shaping Apertures
for E-Beam Lithography∗

Chris Chu Wai-Kei Mak
Department of Electrical and Computer Engineering Department of Computer Science

Iowa State University National Tsing Hua University
Ames, Iowa 50011 Hsinchu, Taiwan 300 R.O.C.

e-mail: cnchu@iastate.edu e-mail: wkmak@cs.nthu.edu.tw

Abstract— Electron-beam direct write (EBDW) lithography is
a promising solution for chip production in the sub-22nm regime.
To improve the throughput of EBDW lithography, character pro-
jection method is commonly employed and a critical problem is to
pack as many characters as possible onto the stencil. In this pa-
per, we consider two enhancements in packed stencil design over
previous works. First, the use of multiple shaping apertures with
different sizes is explored. Second, the fact that the pattern of a
character can be located anywhere within its enclosing projection
region is exploited to facilitate flexible blank space sharing. For
this packed stencil design problem with multiple shaping aper-
tures and flexible blank space sharing, a dynamic programming
based algorithm is proposed. Experimental results show that the
proposed enhancement and the associated algorithm can signifi-
cantly reduce the total shot count and hence improve the through-
put of EBDW lithography.

I. INTRODUCTION

With the continued delay of the introduction of extreme
ultraviolet (EUV) lithography, the semiconductor industry is
exploring other alternatives for manufacturing chips at ever
smaller process nodes. E-beam direct write (EBDW)is a
promising solution [1–3] and is being pursued by companies
like TSMC. With the expected move to the next generation sil-
icon wafers increasing the wafer size from 300 to 450mm, it
will make massively parallel EBDW even more appealing [3].

E-beam direct write technology commonly employs the
character projection method in which complex patterns, called
characters, are printed onto a wafer [4]. An e-beam writing
system has a stencil which can hold a set of characters. Pat-
terns in a circuit that correspond to a character in the stencil
can be projected in one shot. However, other patterns that do
not match any character need to be fractured into constituent
rectangles. Then each constituent rectangle requires its own
shot and has to be printed in the variable shaped beam (VSB)
mode [5].

Traditionally, a standard stencil adopts a grid-based layout
with pre-designated spots for characters [6, 7]. Each character
pattern can be of any size or shape up to the maximum allowed
size, which is dictated by the shaping aperture. Since there is a
fixed number of N pre-designated character spots on the grid,

∗This work was supported in part by the National Science Council, under
Grant NSC 102-2220-E-007-013.

Fig. 1. (a) Four adjacent characters placed without overlapping their blank
spaces. (b) The same characters are placed with their blank spaces
overlapping to reduce the overall area as considered in [9, 10]. (c) Flexible
blank space sharing by relocating the character patterns within their
projection regions to further reduce the overall area as considered in this
paper.

one just needs to pick the N most beneficial characters and put
them into these spots. While this arrangement is simple, it is
too restrictive. It was pointed out in [7, 8] that by carefully ar-
ranging and packing the different sized characters on a stencil,
the final number of characters that can be put on a stencil can
be greatly increased. It is because two adjacent characters can
be placed with their blank spaces overlapping as illustrated in
Fig. 1(b). This will allow more patterns on the wafer to be shot
as characters leading to reduced write time and cost. Packed
stencil design was studied in [9] and [10].

For the optimal use of the stencil, we consider two enhance-
ments in packed stencil design over previous works [9, 10].
Firstly, we note that previous works are limited to the case that
there is only a single shaping aperture, but the use of multi-
ple shaping apertures with different sizes is possible [4, 11] as
shown in Fig. 2. Since the enclosing projection region size
of a character is determined by the shaping aperture size, us-
ing a smaller shaping aperture for smaller character patterns is
helpful for packing more characters into the stencil. Secondly,
the existing packing algorithms did not exploit the fact that the
pattern of a character can be located anywhere within its en-
closing projection region (as long as it is not too close to the
region boundary) to maximize blank space sharing of adjacent
characters. For example, consider the characters in Fig. 1(a),
we can reduce the total area occupied by the three characters
even further compared to Fig. 1(b) through flexible blank space

Fig. 2. A e-beam writing system with three shaping apertures.

sharing as illustrated in Fig. 1(c). Flexible blank space shar-
ing can maximize total blank space sharing by relocating the
character patterns within their projection regions.

In this paper, we investigate the packed stencil design prob-
lem with multiple shaping apertures and flexible blank space
sharing. To the best of our knowledge, it has not been ad-
dressed by any existing work in the literature. We present the
first algorithm targeting this problem and show that it can ef-
fectively increase the number of packed characters on a stencil
and significantly reduce the total shot count.

The rest of the paper is organized as follows. In Section II,
we introduce some preliminary information and the problem
formulation. In Section III.C, we present a dynamic program-
ming based approach for character selection and aperture size
(or equivalently, projection region size) determination under
flexible blank space sharing. Then we show how to actually
pack the characters into the stencil while optimizing blank
space sharing in Section III.D. Finally, we show some experi-
mental comparisons with [9] and [10] in Section IV.

II. PROBLEM FORMULATION

Refer to the general e-beam machine in Fig. 2, it has multi-
ple differently sized shaping apertures. The aperture selecting
deflector can control the direction of the e-beam to shoot it
through one of the shaping apertures. Subsequently, the char-
acter selecting deflector can direct the e-beam to shoot through
any desired character on the stencil. Note that the dimensions
of the projection region on the stencil when an e-beam is shot
through a particular shaping aperture are dependent on the di-
mensions of the corresponding shaping aperture.

Due to scattering of electrons, features that are too close to
the boundary of projection region may not be printed accu-
rately. Hence, we define an effective printing region as the
part of projection region that is at least a safety margin S away
from the boundary as shown in Fig. 3. In order to print charac-
ters on the wafer with no loss of accuracy, the pattern of each
character must lie within the effective printing region. In ad-
dition, the pattern of any character A cannot overlap with the
e-beam projection region of another character B. Otherwise,
part of character A would be printed erroneously when print-
ing character B. However, the blank space of two neighboring

Fig. 3. The projection region and effective printing region for a character.

Fig. 4. Row-based stencil design.

characters may overlap and is desirable to overlap in order to
reduce the total area occupied by the characters.

We assume that standard cells are implemented by the char-
acters. To minimize wastage of stencil area, the heights of
different character projection regions should all be set to 2S
plus the standard cell image height. In addition, characters on
the stencil should be arranged in a row-based manner and each
character pattern is always placed within its projection region
such that the top blank space and the bottom blank space are
equal to S. In this way, the bottom blank space of a row of
characters can completely overlap with the top blank space of
the row of characters below as in Fig. 4 and we can pack the
maximum possible number of rows of characters into the sten-
cil. Finally, we assume that the blank space of a character can
lie outside of the available character area of the stencil [8] as
in Fig. 4.

Next, we introduce the notations used in the rest of the paper.
• K denotes the number of choices for character projection

region widths which is equal to the number of available
shaping apertures.

• S denotes the safety margin from the effective printing
region to the projection region boundary for an e-beam
shot.

• W denotes the width of the available character area of the
stencil.

• R denotes the number of character rows that can fit in the
stencil.

• n denotes the number of different characters extracted
from a design.

• wc denotes the width of the pattern of character c. For
simplicity, we will refer to the width of the pattern of a
character as the character width in the rest of the paper.

• rc denotes the number of occurrence of character c in a
die.

• nV SBc
denotes the number of e-beam shots required to

print character c by the VSB method.

The problem of flexible packed stencil design with multiple
shaping apertures is formally stated below.

Def 1. Suppose the values of K, S, W , and R for an e-beam
machine with multiple shaping apertures are given. A set of
n characters extracted from a design and the values of wc, rc,
and nV SBc

for each character c are also given. (i) Determine
K different character projection region widths, (ii) select the
characters to be put on the stencil, and (iii) pack the characters
on the stencil in a row-based manner with flexible blank space
sharing to minimize the total shot count for the design under
the following constraints.
(C1) The pattern of each character must lie within the effective
printing region of the character.
(C2) The pattern of each character cannot lie within the pro-
jection region of any other character.
(C3) The patterns of all characters must lie within the avail-
able character area of the stencil.

Lemma 1. The flexible packed stencil design problem is NP-
complete.

It can be shown that the 0-1 knapsack problem, which is a
well-known NP-complete problem [12], can be reduced to the
subproblem of selecting and packing of n characters on a sten-
cil in which n character projection region widths are allowed.
So the flexible packed stencil design problem is NP-complete.

III. ALGORITHM

III.A. Algorithm Outline

As the problem is very complicated, we break it down into
three steps. First, we propose a dynamic programming algo-
rithm to determine K projection region widths and to select a
set of most beneficial characters that roughly can be packed on
the stencil. Then we distribute the selected characters to dif-
ferent rows and construct tight linear packing for each row. At
last, we greedily refine the solution by checking if any of the
unselected characters can be added to the end of the tight linear
packing of some row. The outline of the algorithm is given in
Algorithm 1.

Algorithm 1 Flexible Packed Stencil Design
1: Determine K projection region widths and select a set of

characters to be put on the stencil by dynamic program-
ming.

2: Assign the characters selected in Step 1 to rows on the
stencil and construct tight linear packing for each row.

3: Greedily pack some of the unselected characters at the end
of each row, if possible.

Our algorithm is based on the key concepts of tight linear
packing and effective character width. So, we will first intro-
duce them in Section III.B. Then, we will describe the details
of Step 1 of Algorithm 1 in Section III.C and the details of
Steps 2 and 3 in Section III.D.

III.B. Tight Linear Packing and Effective Character Width

We introduce some definitions related to our problem.

Def 2. A linear packing of a group of characters is a packing
of all the given characters in a row with flexible blank space
sharing satisfying constraints (C1) and (C2).

Fig. 5. A tight linear packing. Characters with even indexes are shifted down
a bit to show the projection regions of all characters more clearly.

Def 3. The width of a linear packing is the total span of the
packing excluding the left blank space of the first character
and the right blank space of the last character. (See Fig. 5.)

In the following discussion, we assume that the characters
in a linear packing are indexed from left to right by 1, 2, 3,
And the width of the projection region for character i is de-
noted by Ei.

Def 4. A tight linear packing is a linear packing such that for
any two neighboring characters i and i + 1, the right blank
space of character i and the left blank space of character i+1
are exactly equal and completely overlap.

For example, Fig. 5 shows a tight linear packing of six char-
acters.

Def 5. The effective width of a character c is defined as (wc +
Ec)/2.

Below we show that the width of any tight linear packing is
approximately equal to the total effective width of its charac-
ters.

Lemma 2. For a linear packing P of k characters, let W (P)
denote the width of P , wi(P) denote the width of the i-th char-
acter (i = 1, 2, . . . , k), s0(P) denote the width of the left blank
space of the first character, and sk(P) denote width of the right
blank space of the last character in P .
For a tight linear packing Pt,

W (Pt) =
k∑

i=1

(wi(Pt) + Ei)/2− s0(Pt)/2− sk(Pt)/2

For an arbitrary linear packing Pa,

W (Pa) ≥
k∑

i=1

(wi(Pa) + Ei)/2− s0(Pa)/2− sk(Pa)/2

Proof. For a tight linear packing Pt, the right blank space of
the i-th character and the left blank space of the (i + 1)-th
character are exactly equal and completely overlap for i =
1, 2, . . . , k − 1. So, its width can be expressed as W (Pt) =∑k

i=1 wi(Pt) +
∑k−1

i=1 si(Pt) where si(Pt) denote the width
of the right blank space of the i-th character in Pt.

For each character i in Pt, we have si−1(Pt) + wi(Pt) +
si(Pt) = Ei since its left and right blank spaces are equal to
si−1(Pt) and si(Pt), respectively. Hence,

∑k
i=1(si−1(Pt) +

wi(Pt) + si(Pt)) =
∑k

i=1Ei. It implies that 2 ×∑k−1
i=1 si(Pt) =

∑k
i=1Ei −

∑k
i=1 wi(Pt)− s0(Pt)− sk(Pt).

So, the width of a tight linear packing Pt can be re-written as

W (Pt) =
k∑

i=1

wi(Pt)/2 + (
k∑

i=1

Ei − s0(Pt)− sk(Pt))/2

=
k∑

i=1

(wi(Pt) + Ei)/2− s0(Pt)/2− sk(Pt)/2.

For an arbitrary linear packing Pa, we let gi(Pa) be the
width of the gap between the i-th and (i + 1)-th character
patterns in Pa for i = 1, 2, . . . , k − 1, and let g0(Pa) be
s0(Pa) and gk(Pa) be sk(Pa). Then Pa’s width can be ex-
pressed as W (Pa) =

∑k
i=1 wi(Pa)+

∑k−1
i=1 gi(Pa). Note that

gi−1(Pa) + wi(Pa) + gi(Pa) ≥ Ei for each character i. It
implies that 2×

∑k−1
i=1 gi(Pa) ≥

∑k
i=1Ei −

∑k
i=1 wi(Pa)−

s0(Pa)− sk(Pa). So,

W (Pa) ≥
k∑

i=1

(wi(Pa) + Ei)/2− s0(Pa)/2− sk(Pa)/2.

By applying Lemma 2, we can derive an upper bound of the
difference between the width of a tight linear packing and the
width of the minimum width linear packing and get Lemma 3.

Lemma 3. Given a group of k characters, the width of any
tight linear packing is less than (E1 +Ek)/2− 2S away from
the minimum width linear packing.

It is apparent that if we can construct a tight linear packing,
it will be a near optimal linear packing. As we will show in
Section III.D, there is an efficient way to compute tight linear
packing.

III.C. Projection Region Width and Character Selection by DP

In Step 1 of Algorithm 1, in order to determine the projec-
tion region widths and characters to be put into the stencil, we
merge all rows of the stencil into a single row and use dynamic
programming to maximize the overall shot saving subject to a
total effective character width constraint.

Assume the characters are sorted in increasing order of
width. We define S[e, i, k, w] as the maximum shot saving
using at most k different projection region widths for print-
ing a subset of the first i characters such that the largest
projection region width is e and the total effective width of
the subset is at most w. The ranges of the parameters are
w1 + 2S ≤ e ≤ wn + 2S, 0 ≤ i ≤ n, 1 ≤ k ≤ K, and
0 ≤ w ≤ RW .
S[e, i, k, w] can be expressed recursively as follow:

S[e, 0, k, w] = 0 for all e, k, w
S[e, i, k, 0] = 0 for all e, i, k
S[e, i, k, w]

= max

S[e, i− 1, k, w]ri(nV SBi
− 1) + S[e, i− 1, k, w − wi+e

2]
if (wi + 2S ≤ e and wi+e

2 ≤ w)
0 otherwise{
S[wi + 2S, i, k − 1, w] if k > 1
0 otherwise

for all e, i 6= 0, k, w 6= 0

In the recursive expression above, S[e, i, k, w] is the maxi-
mum over three cases. In the first case, character i is skipped.
In the second case, character i is selected. It results in a shot
saving of ri(nV SBi

− 1) and a reduction of remaining effec-
tive width by wi+e

2 . In the third case, another projection region
width of wi + 2S is used.

Then the maximum shot saving is given by
maxi {S[wi + 2S, i,K,RW]}. It is clear that the above
recursion to compute the values of S[e, i, k, w] for all e, i, k, w
can be implemented as a dynamic program. However, as we
will see in Section 4, the memory requirement for typical
problem instances can be up to tens of gigabytes. In other
words, this dynamic programming formulation is not practical.

In order to reduce the memory requirement, we take advan-
tage of the fact that many characters have the same width. In-
stead of considering each character separately, we group char-
acters of the same width together. Let Gj be the group of char-
acters of width wj . Assume that the characters within each
group are sorted in decreasing order of shot saving.

We define S′[e, j, k, w] as the maximum shot saving using
at most k different projection region widths for printing some
subset of characters in each of the first j groups such that the
largest projection region width is e and the total effective width
of the subset is at most w.
S′[e, j, k, w] can be expressed recursively as follow:

S′[e, 0, k, w] = 0 for all e, k, w
S′[e, j, k, 0] = 0 for all e, j, k
S′[e, j, k, w]

= max

S′[e, j − 1, k, w]
maxi∈{1,2,...,|Gj |}R(e, j, k, w, i){
S′[wj + 2S, j, k − 1, w] if k > 1
0 otherwise

for all e, j 6= 0, k, w 6= 0

where R(e, j, k, w, i) is the shot saving if the first i characters
in Gj (i.e., the i highest shot saving characters in Gj) are in-
cluded in the stencil. Let Gj [i] be the set of first i characters in
Gj . ThenR(e, j, k, w, i) is given by the following expression:

R(e, j, k, w, i)

=

∑

c∈Gj [i]

rc(nV SBc
− 1) + S′[e, j − 1, k, w − i× wj + e

2
]

if wj + 2S ≤ e and i× wj+e
2 ≤ w

0 otherwise

The three cases for S′[e, j, k, w] are similar to those for
S[e, i, k, w] except that a set of i characters in Gj is selected
instead of a single character in the second case. As the num-
ber of groups are typically at least tens of times less than the
number of characters, the memory requirement to compute
S′[e, j, k, w] would be reduced to less than 1 gigabyte in prac-
tice as shown in Section 4. Note that this group-based dynamic
program and the character-based dynamic program above gen-
erate identical solutions and have the same runtime complex-
ity. The only difference is that the group-based approach uses
much less memory.

III.D. Tight Packing Construction

Let E be the set of K projection region widths selected in
Step 1 of Algorithm 1. The selected characters are tightly
packed into the stencils in Step 2 of Algorithm 1 by Procedure
1 below:

Procedure 1 Character Packing
1: For each character i, set Ei to be the smallest value in E

such that Ei ≥ wi + 2S.
2: Sort the selected characters in increasing order of Ei−wi.
3: for each character i in sorted order do
4: Starting from the next row after the last packed charac-

ter, find a row which i can be tightly packed at the end
of it. Ignore character i if it cannot be packed to any
row.

5: end for

In general, the projection region width Ei for each character
i can be set to any value as long as it is at least wi + 2S. How-
ever, Ei should be as small as possible to facilitate the packing
of more characters into a row. Hence, Ei is set as in Step 1
above. According to Lemma 4 below, tight packings can be
constructed by arranging the characters in increasing order of
Ei − wi. Hence, we can simply sort the characters in Step 2,
then distribute the characters and tightly pack them to the rows
in Steps 3-5.

Lemma 4. Given a group of k characters, a tight linear pack-
ing can be constructed if the characters are ordered such that
Ei − wi ≤ Ei+1 − wi+1 for i = 1, . . . , k − 1.

Proof. We can prove the lemma by induction on k.
1. The base case that k = 1 is trivially true.
2. We show that if the statement is true for k = k′ − 1, then
it is also true for k = k′. Suppose the statement is true for
k = k′ − 1 and we have a group of k′ characters. We can
construct a tight linear packing for the k′ characters as follows.
First, we sort the k′ characters such thatEi−wi ≤ Ei+1−wi+1

for i = 1, . . . , k′−1. By the assumption, a tight linear packing
P1..k′−1 can be formed for the first k′ − 1 characters in the
sorted order. We can append the k′-th character to the right
end of P1..k′−1 in such a way that the left blank space of the
k′-th character completely overlap with the right blank space
of the (k′ − 1)-th character as shown in Fig. 6. It follows that
the left blank space of the k′-th character must be no smaller
than the safety margin S since the right blank space of the k′−1
character is at least S. But it remains to show that the resultant
right blank space of the k′-th character is also at least S for the
constructed packing to be a feasible tight linear packing. Let δ
denote the left blank space of the k′-th character (equivalently,
the right blank space of the (k′−1)-th character). The resultant
right blank space of the k′-th character is equal toEk′−wk′−δ.
Since Ek′ − wk′ ≥ Ek′−1 − wk′−1, so Ek′ − wk′ − δ ≥
Ek′−1 − wk′−1 − δ ≥ S. Hence, the constructed packing is a
tight linear packing.

After trying to pack all selected characters into the stencil,
we further improve the shot saving in Step 3 of Algorithm 1 by
trying to pack all unselected characters using the same packing
procedure in Procedure 1.

Fig. 6. Tight linear packing construction.

IV. EXPERIMENTAL RESULTS AND CONCLUSIONS

We implemented our approach in C and obtained the exe-
cutable codes of [9] and [10] for comparison. All experiments
were done on a Linux server powered by a 2.67 GHz Intel pro-
cessor with 47 GB of memory.

In the first experiment, benchmarks 1D-1 to 1D-4 from
[10] were used. The available character area of the stencil is
1000µm× 1000µm, and the number of character candidate in
each benchmark is 1000. We set S to the minimum left/right
blank space of the original characters in each benchmark. Re-
call that [9] and [10] assume that there is only a single shap-
ing aperture and hence a single projection region width (i.e.,
K = 1). For our approach, we tried K = 1 and K = 2.
Table I reports the comparison on total shot count, number of
characters put on the stencil, and runtime. It also reports the
shot count when using VSB only for reference.

Refer to columns 2, 3, 6, and 9 of Table I, it can be seen
that even for K = 1 (i.e., all characters must use the same pro-
jection region width), our approach can reduce the shot count
by 27.472×, 3.09× and 1.65× over VSB only, [9] and [10],
respectively. The significant improvement over [9] and [10] is
partially because they perform only simple blank space shar-
ing while our approach performs flexible blank space sharing.
Besides, their algorithms do not attempt to find the optimal
projection region width while ours does.

Next, if we use two different sized shaping apertures (i.e.,
K = 2), a huge shot count reduction over using single shaping
aperture can be obtained and we already can put all character
candidates into the stencil for benchmarks 1D-1 and 1D-2. Our
approach with K = 2 results in as much as 8.97× and 4.28×
shot count reduction compared to [9] and [10], respectively.

For more testing, we generated some harder benchmarks
(1D-1h to 1D-4h). We generated 200 extra character candi-
dates into each of the original benchmarks while keeping the
same stencil size, so it became impossible to put all characters
on a stencil. Table II reports the results of our algorithm with
K = 1, K = 2, and K = 3. It also reports the shot count
when using VSB only for reference. As expected, the shot
count reduction and the number of characters that can be put
on the stencil increase with the value of K. And the greatest
reduction occurs when K switches from 1 to 2.

We show in Table III the memory requirement of our pro-
gram. The proposed character grouping technique in Sec-
tion III.C can reduce the memory requirement of the dynamic
program by roughly 40×. The resultant memory requirement
after adopting the technique is less than 1 GB in each case.

Finally, we note that our algorithm also works for multi-
beam direct write system [1], where multiple beam columns

TABLE I
COMPARISON WITH [9] AND [10].

VSB only [9] [10] Ours (K = 1) Ours (K = 2)

#shots #shots #ch CPU(s) #shots #ch CPU(s) #shots #ch CPU(s) #shots #ch CPU(s)

1D-1 770543 50809 926 12.13 29536 934 1.91 12972 980 6.90 10418 1000 22.21

1D-2 770543 93465 854 10.24 44544 863 1.74 28594 895 6.41 10418 1000 20.73

1D-3 770543 152376 749 7.85 78704 758 2.35 55761 797 6.59 30785 902 21.13

1D-4 770543 193494 687 6.52 107460 699 2.96 79275 734 7.47 44468 837 29.07

Normalized 27.472 3.090 0.944 1.355 1.650 0.955 0.325 1.000 1.000 1.000 0.570 1.102 3.388

TABLE II
RESULTS ON HARDER BENCHMARKS BY OUR ALGORITHMS FOR DIFFERENT VALUES OF K .

VSB only Ours (K = 1) Ours (K = 2) Ours (K = 3)

#shots #shots #ch CPU(s) #shots #ch CPU(s) #shots #ch CPU(s)

1D-1h 922770 58648 980 8.82 26467 1114 27.22 17534 1163 43.33

1D-2h 922770 86176 905 8.43 48891 1018 25.58 39630 1068 40.67

1D-3h 922770 135332 800 8.63 93109 916 25.69 75709 948 40.89

1D-4h 922770 169105 739 9.76 116219 855 27.02 98204 886 42.91

Normalized 9.680 1.000 1.000 1.000 0.598 1.141 2.966 0.475 1.188 4.718

TABLE III
MEMORY USAGE (GB) WITH AND WITHOUT USING THE MEMORY SAVING

TECHNIQUE.

With memory saving Without memory saving

K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

1D-1 0.136 0.271 0.407 5.236 10.436 15.670

1D-2 0.131 0.262 0.392 5.044 10.087 15.092

1D-3 0.141 0.282 0.422 5.041 10.082 15.087

1D-4 0.156 0.311 0.467 5.205 10.377 15.582

1D-1h 0.136 0.271 0.407 6.282 12.564 18.800

1D-2h 0.131 0.262 0.392 6.051 12.102 18.154

1D-3h 0.141 0.282 0.422 6.048 12.096 18.144

1D-4h 0.156 0.311 0.467 6.245 12.490 18.696

furnished with their own stencils write different regions of a
wafer in parallel. As identical dies are typically manufactured
on a wafer, the stencil design for all beam columns in a multi-
beam system should be the same and is not different from a
single beam system.

REFERENCES

[1] T. Maruyama, Y. Machida, and S. Sugatani. CP based EBDW
throughput enhancement for 22nm high volume manufacturing.
In Proceedings of SPIE 7637, February 2010. 7637-1S.

[2] T. Maruyama et al. CP element based design for 14nm node
EBDW high volume manufacturing. In Proceedings of SPIE
8323, April 2012. 8323-14.

[3] B. J. Lin. Future of multiple-E-beam direct-write systems. In
Proceedings of SPIE 8323, March 2012.

[4] R. Inanami et al. Maskless lithography: Estimation of the
number of shots for each layer in a logic device with charac-
ter projection-type low-energy electron-beam direct writing sys-
tem. In Proceedings of SPIE 5037, pages 1043–1050, 2003.

[5] H. Pfeiffer. Variable spot shaping for electron-beam lithography.
Journal of Vaccum Sci. and Tech., 15(3):887–890, May 1978.

[6] M. Sugihara et al. A character size optimization technique for
throughput enhancement of character projection lithography. In
Proc. of ISCAS, pages 2561–2564, 2006.

[7] A. Fujimura. Design for E-beam: Design insights for direct-
write maskless lithography. In Proceedings of SPIE 7823, pages
137–140, Sep. 2010.

[8] K. Yoshida et al. Stencil design and method for improving char-
acter density for cell projection charged particle beam lithogra-
phy. US Patent Application No. 2009/0325085 A1, December
2009.

[9] K. Yuan, B. Yu, and D. Z. Pan. E-beam lithography stencil plan-
ning and optimization with overlapped characters. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems,
31(2):167–179, Feb 2012.

[10] B. Yu, K. Yuan, J.-R. Gao, and D.Z. Pan. E-BLOW: e-beam
lithography overlapping aware stencil planning for MCC sys-
tem. In Proc. of DAC, 2013.

[11] R. Inanami. Electron beam exposure apparatus, electron beam
exposure method and method of manufacturing semiconductor
device. US Patent No. 7449700, November 2008.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, NY, 1979.

