
Optimal Slack-Driven Block Shaping Algorithm in
Fixed-Outline Floorplanning ∗

Jackey Z. Yan
Placement Technology Group

Cadence Design Systems
San Jose, CA 95134 USA
zyan@cadence.com

Chris Chu
Department of ECE

Iowa State University
Ames, IA 50010 USA

cnchu@iastate.edu

ABSTRACT
This paper presents an efficient, scalable and optimal slack-driven
shaping algorithm for soft blocks in non-slicing floorplan. The pro-
posed algorithm is called SDS. Different from all previous approaches,
SDS is specifically formulated for fixed-outline floorplanning. Given
a fixed upper bound on the layout width, SDS minimizes the lay-
out height by only shaping the soft blocks in the design. Iteratively,
SDS shapes some soft blocks to minimize the layout height, with the
guarantee that the layout width would not exceed the given upper
bound. Rather than using some simple heuristic as in previous work,
the amount of change on each block is determined by systematically
distributing the global total amount of available slack to individual
block. During the whole shaping process, the layout height is mono-
tonically reducing, and eventually converges to an optimal solution.
We also propose two optimality conditions to check the optimality
of a shaping solution. To validate the efficiency and effectiveness of
SDS, comprehensive experiments are conducted on MCNC and HB
benchmarks. Compared with previous work, SDS is able to achieve
the best experimental result with significantly faster runtime.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuits, Design Aids]: Layout

General Terms
Algorithms, Design, Performance

Keywords
Block Shaping, Fixed-Outline Floorplan, Physical Design

1. INTRODUCTION
Floorplanning is a very crucial step in modern VLSI designs. A

good floorplan solution has a positive impact on the placement, rout-
ing and even manufacturing. In floorplanning step, a design contains
two types of blocks, hard and soft. A hard block is a circuit block

∗This work was partially supported by IBM Faculty Award and NSF under
grant CCF-0540998.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’12, March 25–28, 2012, Napa, California, USA.
Copyright 2012 ACM 978-1-4503-1167-0/12/03 ...$10.00.

with both area and aspect ratio 1 fixed, while a soft one has fixed area,
yet flexible aspect ratio. Shaping such soft blocks plays an important
role in determining the top-level spatial structure of a chip, because
the shapes of blocks directly affect the packing quality and the area
of a floorplan. However, due to the ever-increasing complexity of
ICs, the problem of shaping soft blocks is not trivial.

1.1 Previous Work
In slicing floorplan, researchers proposed various soft-block shap-

ing algorithms. Stockmeyer [1] proposed the shape curve represen-
tation used to capture different shapes of a subfloorplan. Based on
the shape curve, it is straightforward to choose the floorplan solu-
tion with the minimum cost, e.g., minimum floorplan area. In [2],
Zimmermann extended the shape curve representation by consider-
ing both slicing line directions when combining two blocks. Yan
et al. [3] generalized the notion of slicing tree [4] and extended the
shape curve operations. Consequently, one shape curve captures sig-
nificantly more shaping and floorplan solutions.

Different from slicing floorplan, the problem of shaping soft blocks
to optimize the floorplan area in non-slicing floorplan is much more
complicated. Both Pan et al. [5] and Wang et al. [6] tried to extend
the slicing tree and shape curve representations to handle non-slicing
floorplan. But their extensions are limited to some specific non-
slicing structures. Instead of using the shape curve, Kang et al. [7]
adopted the bounded sliceline grid structure [8] and proposed a greedy
heuristic algorithm to select different shapes for each soft block, so
that total floorplan area was minimized. Moh et al. [9] formulated
the shaping problem as a geometric programming and searched for
the optimal floorplan area using standard convex optimization. Fol-
lowing the same framework as in [9], Murata et al. [10] improved
the algorithm efficiency via reducing the number of variables and
functions. But the algorithm still took a long time to find a good so-
lution. In [11], Young et al. showed that the shaping problem for
minimum floorplan area can be solved optimally by Lagrangian re-
laxation technique. Lin et al. [12] changed the problem objective to
minimizing the half perimeter of a floorplan, and solved it optimally
by the min-cost flow and trust region method.

All of the above shaping algorithms for non-slicing floorplan were
targeting at classical floorplanning, i.e., minimizing the floorplan area.
But, in the nanometer scale era classical floorplanning cannot satisfy
the requirements of hierarchical design. In contrast, fixed-outline
floorplanning [13] enabling the hierarchical framework is preferred
by modern ASIC designs. In [14], Adya et al. introduced the no-
tion of slack in floorplanning, and proposed a slack-based algorithm
to shape the soft blocks. Such shaping algorithm was applied inside
an annealing-based fixed-outline floorplanner. There are two prob-
lems with this shaping algorithm: 1) It is a simple greedy heuristic,
in which each time every soft block is shaped to use up all its slack

1The aspect ratio is defined as the ratio of the block height to the block width.

in one direction. Thus, the resulting solution has no optimality guar-
antee; 2) It is not formulated for fixed-outline floorplanning. The
fixed-outline constraint is simply considered as a penalty term in the
cost function of annealing. Therefore, in non-slicing floorplan it is
necessary to design an efficient and optimal shaping algorithm that is
specifically formulated for fixed-outline floorplanning.

1.2 Our Contributions
This work presents an efficient, scalable and optimal slack-driven

shaping (SDS) algorithm for soft blocks in non-slicing floorplan. SDS
is specifically formulated for fixed-outline floorplanning. Given a
fixed upper bound on the layout width, SDS minimizes the layout
height by only shaping the soft blocks in the design. If such upper
bound is set as the width of a predefined fixed outline, SDS is ca-
pable of optimizing the area for fixed-outline floorplanning. As far
as we know, none of previous work in non-slicing floorplan consid-
ers the fixed-outline constraint in the problem formulation. In SDS,
soft blocks are shaped iteratively. At each iteration, we only shape
some of the soft blocks to minimize the layout height, with the guar-
antee that the layout width would not exceed the given upper bound.
The amount of change on each block is determined by systematically
distributing the global total amount of available slack to individual
block. During the whole shaping process, the layout height is mono-
tonically reducing, and eventually converges to an optimal solution.
Note that in [14] without a global slack distribution, all soft blocks
are shaped greedily and independently by some simple heuristic. In
their work, both the layout height and width are reduced in one shot
(i.e., not iteratively) and the solution is stuck at a local minimum.

Essentially, we have three main contributions.

• Basic Slack-Driven Shaping: The basic slack-driven shap-
ing algorithm is a very simple shaping technique. Iteratively, it
identifies some soft blocks, and shapes them by a slack-based
shaping scheme. The algorithm stops when there is no identi-
fied soft block. The runtime complexity in each iteration is lin-
ear time. The basic SDS can achieve an optimal layout height
for most cases.

• Optimality Conditions: To check the optimality of the shap-
ing solution returned by the basic SDS, two optimality con-
ditions are proposed. We prove that if either one of the two
conditions is satisfied, the solution returned by the basic SDS
is optimal.

• Slack-Driven Shaping (SDS): Based on the basic SDS and
the optimality conditions, we propose the slack-driven shap-
ing algorithm. In SDS, a geometric programming method is
applied to improve the non-optimal solution produced by the
basic SDS. SDS always returns an optimal shaping solution.

To show the efficiency of SDS, we compare it with the two shaping
algorithms in [11] and [12] on MCNC benchmarks. Even though
both of them claim their algorithms can achieve the optimal solution,
experimental results show that SDS consistently generates better so-
lution on each circuit with significantly faster runtime. On average
SDS is 253× and 33× faster than [11] and [12] respectively, to pro-
duce solutions of similar quality. We also run SDS on HB bench-
marks. Experimental results show that on average after 6%, 10%,
22% and 47% of the total iterations, the layout height is within 10%,
5%, 1% and 0.1% difference from the optimal solution, respectively.

The rest of this paper is organized as follows. Section 2 describes
the problem formulation. Section 3 introduces the basic slack-driven
shaping algorithm. Section 4 discusses the optimality of a shaping
solution and presents two optimality conditions. Section 5 describes
the algorithm flow of SDS. Experimental results are presented in Sec-
tion 6. Finally, this paper ends with a conclusion and the direction of
future work.

2. PROBLEM FORMULATION
In the design, suppose we are given n blocks. Each block i (1 ≤

i ≤ n) has fixed area Ai. Let wi and hi denote the width and
height of block i respectively. The range of wi and hi are given
as W min

i ≤ wi ≤ W max
i and Hmin

i ≤ hi ≤ Hmax
i . If block i

is a hard block, then W min
i = W max

i and Hmin
i = Hmax

i . Let xi

and yi denote the x and y coordinates of the bottom-left corner of
block i respectively. To model the geometric relationship among the
blocks, we use the horizontal and vertical constraint graphs Gh and
Gv , where the vertices represent the blocks and the edges between
two vertices represent the non-overlapping constraints between the
two corresponding blocks. In Gh, we add two dummy vertices 0 and
n+1 that represent the left-most and right-most boundary of the lay-
out respectively. Similarly, in Gv we add two dummy vertices 0 and
n + 1 that represent the bottom-most and top-most boundary of the
layout respectively. The area of the dummy vertices is 0. We have
x0 = 0 and y0 = 0. Vertices 0 and n + 1 are defined as the source
and the sink in the graphs respectively. Thus, in both Gh and Gv ,
we add one edge from the source to each vertex that does not have
any incoming edge, and add one edge from each vertex that does not
have any outgoing edge to the sink.

In our problem formulation, we assume the constraint graphs Gh

and Gv are given. Given an upper bound on the layout width as W ,
we want to minimize the layout height yn+1 by only shaping the soft
blocks in the design, such that the layout width xn+1 ≤ W . Such
problem can be mathematically formulated as follows:

PROBLEM 1. Height Minimization with Fixed Upper-Bound
Width

Minimize yn+1

subject to xn+1 ≤ W
xj ≥ xi + wi, ∀(i, j) ∈ Gh

yj ≥ yi + hi, ∀(i, j) ∈ Gv

W min
i ≤ wi ≤ W max

i , 1 ≤ i ≤ n
Hmin

i ≤ hi ≤ Hmax
i , 1 ≤ i ≤ n

wihi = Ai, 1 ≤ i ≤ n
x0 = 0
y0 = 0

It is clear that if W is set as the width of a predefined fixed outline,
Problem 1 can be applied in fixed-outline floorplanning.

3. BASIC SLACK-DRIVEN SHAPING
In this section, we present the basic slack-driven shaping algo-

rithm, which solves Problem 1 optimally for most cases.
First of all, we introduce some notations used in the discussion.

Given the constraint graphs and the shape of the blocks, we can pack
the blocks to four lines, i.e., the left (LL), right (RL), bottom (BL)
and top (TL) lines. LL, RL, BL and TL are set as “x = 0”, “x =
W ”, “y = 0” and “y = yn+1”, respectively. Let Δxi denote the
difference of xi when packing block i to RL and LL. Similarly, Δyi

denotes the difference of yi when packing block i to TL and BL.
For block i (1 ≤ i ≤ n), the horizontal slack sh

i and vertical slack
sv

i are calculated as follows:

sh
i = max(0, Δxi), sv

i = max(0, Δyi)

In Gh, given any path 2 from the source to the sink, if for all blocks
on this path, their horizontal slacks are equal to zero, then we define
such path as a horizontal critical path (HCP). The length of one HCP
is the summation of the width of blocks on this path. Similarly, we
can define the vertical critical path (VCP) and the length of one VCP
is the summation of the height of blocks on this path. Note that,
2By default, all paths in this paper are from the source to the sink in the constraint graph.

because we set RL as the “x = W ” line, if xn+1 < W , then there is
no HCP in Gh.

The algorithm flow of the basic SDS is simple and straightforward.
The soft blocks are shaped iteratively. At each iteration, we apply the
following two operations:

1. Shape the soft blocks on all VCPs by increasing the width and
decreasing the height. This reduces the lengths of the VCPs.

2. Shape the soft blocks on all HCPs by decreasing the width and
increasing the height. This reduces the lengths of the HCPs.

The purpose of the first operation is to minimize the layout height
yn+1 by decreasing the lengths of all VCPs. As mentioned previ-
ously, if xn+1 < W then there is no HCP. Thus, the second operation
is applied only if xn+1 = W . This operation seems to be unneces-
sary, yet actually is critical for the proof of the optimality conditions.
The purpose of this operation will be explained in Section 4. At each
iteration, we first globally distribute the total amount of slack reduc-
tion to the soft blocks, and then locally shape each individual soft
block on the critical paths based on the allocated amount of slack re-
duction. The algorithm stops when we cannot find any soft block to
shape on the critical paths. During the whole shaping process, the
layout height yn+1 is monotonically decreasing and thus the algo-
rithm always converges.

In the following subsections, we first identify which soft blocks
to be shaped (which we called target soft blocks) at each iteration.
Secondly, we mathematically derive the shaping scheme on the target
soft blocks. Finally, we present the algorithm flow of the basic SDS.

3.1 Target Soft Blocks
For a given shaping solution, the set of n blocks can be divided

into the following seven disjoint subsets (1 ≤ i ≤ n).8>>>>>>>><
>>>>>>>>:

Subset I = {i is hard}
Subset II = {i is soft} ∩ {sh

i �= 0, sv
i �= 0}

Subset III = {i is soft} ∩ {sh
i = 0, sv

i = 0}
Subset IV = {i is soft} ∩ {sh

i �= 0, sv
i = 0} ∩ {wi �= W max

i }
Subset V = {i is soft} ∩ {sh

i �= 0, sv
i = 0} ∩ {wi = W max

i }
Subset VI = {i is soft} ∩ {sh

i = 0, sv
i �= 0} ∩ {hi �= Hmax

i }
Subset VII = {i is soft} ∩ {sh

i = 0, sv
i �= 0} ∩ {hi = Hmax

i }
Based on the definitions of critical paths, we have the following ob-
servations 3.

OBSERVATION 1. If block i ∈ subset II, then i is not on any HCP
nor VCP.

OBSERVATION 2. If block i ∈ subset III, then i is on both HCP
and VCP, i.e., at the intersection of some HCP and some VCP.

OBSERVATION 3. If block i ∈ subset IV or V, then i is on some
VCP but not on any HCP.

OBSERVATION 4. If block i ∈ subset VI or VII, then i is on some
HCP but not on any VCP.

As mentioned previously, yn+1 can be minimized by reducing the
height of the soft blocks on the vertical critical paths, and such block-
height reduction will result in a decrease on the horizontal slacks of
those soft blocks. From the above observations, only soft blocks in
subsets III, IV and V are on the vertical critical paths. However, for
block i ∈ subset III, sh

i = 0, which means its horizontal slack cannot
be further reduced. And for block i ∈ subset V, wi = W max

i , which
means its height cannot be further reduced. As a result, to minimize
yn+1 we can only shape blocks in subset IV. Similarly, we conclude
3Please refer to Theorem 1 in [14] for the proof of these observations.

that whenever we need to reduce xn+1 we can only shape blocks
in subset VI. For the hard blocks in subset I, they cannot be shaped
anyway.

Therefore, the target soft blocks are the blocks in subsets IV and VI.

3.2 Shaping Scheme
Let δh

i denote the amount of increase on wi for block i ∈ subset IV,
and δv

i denote the amount of increase on hi for block i ∈ subset VI. In
the remaining part of this subsection, we present the shaping scheme
to shape the target soft block i ∈ subset IV by setting δh

i . Similar
shaping scheme is applied to shape the target soft block i ∈ subset VI
by setting δv

i . By default, all blocks mentioned in the following part
are referring to the target soft blocks in subset IV.

We use “i ∈ p” to denote that block i is on a path p in Gh. Sup-
pose the maximum horizontal slack over all blocks on p is sp

max. Ba-
sically, sp

max gives us a budget on the total amount of increase on the
block width along this path. If

P
i∈p δh

i > sp
max, then after shaping,

we have xn+1 > W , which violates the constraint “xn+1 ≤ W ”. So
we have to set δh

i accordingly, such that
P

i∈p δh
i ≤ sp

max for all p
in Gh.

To determine the value of δh
i , we first define a distribution ratio αp

i

(αp
i ≥ 0) for block i ∈ p. We assign the value of αp

i , such thatX
i∈p

αp
i = 1

LEMMA 1. For any path p in Gh, we haveX
i∈p

αp
i sh

i ≤ sp
max

PROOF. Because sp
max = MAXi∈p(sh

i), this lemma can be proved
as follows:X

i∈p

αp
i sh

i ≤
X
i∈p

αp
i sp

max = sp
max

X
i∈p

αp
i = sp

max

Based on Lemma 1, for a single path p, it is obvious that if δh
i ≤

αp
i sh

i (i ∈ p), then we can guarantee
P

i∈p δh
i ≤ sp

max.
More generally, if there are multiple paths going through block i

(1 ≤ i ≤ n), then δh
i needs to satisfy the following inequality:

δh
i ≤ αp

i sh
i , ∀p ∈ P h

i (1)

where P h
i is the set of paths in Gh going through block i. Inequality 1

is equivalent to the following inequality.

δh
i ≤ MIN

p∈P h
i

(αp
i)sh

i (2)

Essentially, Inequality 2 gives an upper bound on the amount of in-
crease on wi for block i ∈ subset IV.

For block i ∈ p, the distribution ratio is set as follows:

αp
i =

(
0 i is the source or the sink

W max
i −wiP

k∈p(W max
k

−wk)
otherwise (3)

The insight is that if we allocate more slack reduction to the blocks
that have potentially more room to be shaped, the algorithm will con-
verge faster. And we allocate zero amount of slack reduction to the
dummy blocks at the source and the sink in Gh. Based on Equation 3,
Inequality 2 can be rewritten as follows (1 ≤ i ≤ n):

δh
i ≤ (W max

i − wi)s
h
i

MAX
p∈P h

i

(
P

k∈p(W max
k − wk))

(4)

From the above inequality, to calculate the upper bound of δh
i ,

we need to obtain the value of three terms, (Wmax
i − wi), sh

i and
MAXp∈P h

i
(
P

k∈p(W max
k −wk)). The first term can be obtained in

constant time. Using the longest path algorithm, sh
i for all i can be

calculated in linear time. A trivial approach to calculate the third term
is via traversing each path in Gh. This takes exponential time, which
is not practical. Therefore, we propose a dynamic programming (DP)
based approach that only takes linear time to calculate the third term.

In Gh, suppose vertex i (0 ≤ i ≤ n + 1) has in-coming edges
coming from the vertices in the set V in

i , and out-going edges go-
ing to the vertices in the set V out

i . Let P in
i denote the set of paths

that start at the source and end at vertex i in Gh, and P out
i denote

the set of paths that start at vertex i and end at the sink in Gh.
For the source of Gh, we have V in

0 = φ and P in
0 = φ. For the

sink of Gh, we have V out
n+1 = φ and P out

n+1 = φ. We notice that
MAXp∈P h

i
(
P

k∈p(W max
k − wk)) can be calculated recursively by

the following equations.

MAX
p∈P in

0

(
X
k∈p

(W max
k − wk)) = 0

MAX
p∈P out

n+1

(
X
k∈p

(W max
k − wk)) = 0

MAX
p∈P in

i

(
X
k∈p

(W max
k − wk)) = MAX

j∈V in
i

(MAX
p∈P in

j

(
X
k∈p

(W max
k − wk)))

+(W max
i − wi) (5)

MAX
p∈P out

i

(
X
k∈p

(W max
k − wk)) = MAX

j∈V out
i

(MAX
p∈P out

j

(
X
k∈p

(W max
k − wk))

+(W max
i − wi) (6)

MAX
p∈P h

i

(
X
k∈p

(W max
k − wk)) = MAX

p∈P in
i

(
X
k∈p

(W max
k − wk))

+ MAX
p∈P out

i

(
X
k∈p

(W max
k − wk))

−(W max
i − wi) (7)

Based on the equations above, the DP-based approach can be applied
step by step as follows (1 ≤ i ≤ n):

1. We apply topological sort algorithm on Gh.

2. We scan the sorted vertices from the source to the sink, and
calculate MAXp∈P in

i
(
P

k∈p(W max
k − wk)) by Equation 5.

3. We scan the sorted vertices from the sink to the source, and
calculate MAXp∈P out

i
(
P

k∈p(W max
k − wk)) by Equation 6.

4. MINp∈P h
i
(
P

k∈p(W max
k − wk)) is obtained by Equation 7.

It is clear that by the DP-based approach, the whole process of cal-
culating the upper bound of δh

i for all i takes linear time.

3.3 Flow of Basic Slack-Driven Shaping
The algorithm flow of basic slack-driven shaping is shown in Fig-

ure 1. In this flow, for each block i in the design, we set its initial
width wi = W min

i (1 ≤ i ≤ n). Based on the input Gh, Gv and
initial block shape, we can calculate an initial value of xn+1. If such
initial value is already bigger than W , then Problem 1 is not feasible.

At each iteration we set δv
j = β ×MINp∈P v

j
(αp

j)sv
j for target soft

block j ∈ subset VI. By default, β = 100%, which means we set δv
j

exactly at its upper bound. One potential problem with this strategy
is that the layout height yn+1 may remain the same, i.e., never de-
creasing. This is because after one iteration of shaping, the length of
some non-critical vertical path increases, and consequently its length
may become equivalent to the length of the VCP in the previous it-
eration. Accidentally, such scenario may keep cycling forever, and

Basic Slack-Driven Shaping
Input: wi = W min

i (∀1 ≤ i ≤ n); Gh and Gv; upper-bound width W .
Output: optimized yn+1, wi and hi.
Begin
1. Set LL, BL and RL to “x = 0”, “y = 0” and “x = W ”.
2. Pack blocks to LL and use longest path algorithm to get xn+1.
3. If xn+1 > W ,
4. Return no feasible solution.
5. Else,
6. Repeat
7. Pack blocks to BL and use longest path algorithm to get yn+1.
8. Set TL to “y = yn+1”.
9. Pack blocks to LL, RL and TL, respectively.
10. Calculate sh

i and sv
i .

11. Find target soft blocks.
12. If there are target soft blocks,
13. ∀j ∈ subset IV, increase wj by δh

j = MINp∈P h
j
(αp

j)sh
j ;

14. ∀j ∈ subset VI, increase hj by δv
j = β × MINp∈P v

j
(αp

j)sv
j .

15. Until there is no target soft block.
End

Figure 1: Flow of basic slack-driven shaping.

thus yn+1 would never decrease. This issue can be solved, as long as
δv

j is set less than its upper bound. In this way, after one iteration of
shaping we can guarantee that the length of the VCP will be shorter
than the one in the previous iteration. Theoretically, any β < 100%
can break the cycling scenario and guarantee the algorithm conver-
gence. But because in SDS any amount of change that is less than
0.0001 would be masked by numerical error, we can actually calcu-
late a lower bound of β, and obtain its range as follows.

0.01

MINp∈P v
j
(αp

j)sv
j

% < β < 100%

In the implementation, whenever we detect that yn+1 does not change
for more than two iterations, we will set β = 90% for the next itera-
tion. For δh

j , we always set it at its upper bound.
Because in each iteration the total increase on width or height of

the target soft blocks would not exceed the budget, we can guarantee
that the layout would not be outside of the four lines after shaping.
As iteratively we set TL to the updated “y = yn+1” line, yn+1 will
be monotonically decreasing during the whole shaping process. Dif-
ferent from TL, because we set RL to the fixed “x = W ” line,
during the shaping process xn+1 may be bouncing i.e., sometimes
increasing and sometimes decreasing, yet always no more than W .
The shaping process stops when there is no target soft block.

4. OPTIMALITY CONDITIONS
For most cases, in the basic SDS the layout height yn+1 will con-

verge to an optimal solution of Problem 1. However, sometimes the
solution may be non-optimal as the one shown in Figure 2-(a). The
layout in Figure 2-(a) contains four soft blocks 1, 2, 3 and 4, where
Ai = 4, W min

i = 1 and W max
i = 4 (1 ≤ i ≤ 4). The given

upper-bound width W = 5. In the layout, w1 = w3 = 4 and
w2 = w4 = 1. There is no target soft block on any one of the four
critical paths (i.e., two HCPs and two VCPs), so the basic SDS re-
turns yn+1 = 5. But the optimal layout height should be 3.2, when
w1 = w2 = w3 = w4 = 2.5 as shown in Figure 2-(b). In this sec-
tion, we will look into this issue and present the optimality conditions
for the shaping solution returned by the basic SDS.

Let L represent a shaping solution generated by the basic SDS in
Figure 1. All proof in this section are established based on the fact
that the only remaining soft blocks that could be shaped to possibly

4
2

x5

y
5

0

(a)

4

x5

y
5

0

(b)

1

3

2
3.2

3

1

Figure 2: Example of a non-optimal solution from the basic SDS.

(a) (b) (c)

Figure 3: Examples of three optimal cases in L.

improve L are the ones in subset III. This is because L is the solution
returned by the basic SDS and in L there is no soft block that belongs
to subsets IV nor VI any more. This is also why we need apply
the second shaping operation in the basic SDS. Its purpose is not
reducing xn+1, but eliminating the soft blocks in subset VI. From
Observation 2, we know that any block in subset III is always at the
intersection of some HCP and some VCP. Therefore, to improve L
it is sufficient to just consider shaping the intersection soft blocks
between the HCPs and VCPs.

Before we present the optimal conditions, we define two concepts.

• Hard Critical Path: If all intersection blocks on one critical
path are hard blocks, then this path is a hard critical path.

• Soft Critical Path: A critical path, which is not hard, is a soft
critical path.

LEMMA 2. If there exists one hard VCP in L, then L is optimal.

PROOF. Since all intersection blocks on this VCP are hard blocks,
there is no soft block that can be shaped to possibly improve this
VCP. Therefore, L is optimal.

LEMMA 3. If there exists at most one soft HCP or at most one
soft VCP in L, then L is optimal.

PROOF. As proved in Lemma 2, if there exists one hard VCP in
L, then L is optimal. So in the following proof we assume there
is no hard VCP in L. For any hard HCP, as all intersection blocks
on it are hard blocks, we cannot change its length by shaping those
intersection blocks anyway. So we can basically ignore all hard HCPs
in this proof.

Suppose L is non-optimal. We should be able to identify some
soft blocks and shape them to improve L. As mentioned previously,
it is sufficient to just consider shaping the intersection soft blocks. If
there is at most one soft HCP or at most one soft VCP, there are only
three possible cases in L. (As we set TL as the “y = yn+1” line,
there is always at least one VCP in L.)

1. There is no soft HCP, and there is one or multiple soft VCPs
(e.g., Figure 3-(a))
In this case, L does not contain any intersection soft blocks.

2. There is one soft HCP, and there is one or multiple soft
VCPs (e.g., Figure 3-(b))
In this case, L has one or multiple intersection soft blocks.
Given any one of such blocks, say i. To improve L, hi has to be

reduced. But this increases the length of the soft HCP, which
violates “xn+1 ≤ W ” constraint. So, none of the blocks can
be shaped to improve L.

3. There is one or multiple soft HCPs, and there is one soft
VCP (e.g., Figure 3-(c))
In this case, L has one or multiple intersection soft blocks.
Given any one of such blocks, say i. Similarly, it can be proved
that “xn+1 ≤ W ” constraint will be violated, if hi is reduced.
So, none of the blocks can be shaped to improve L.

As a result, for all the above cases, we cannot find any soft block that
could be shaped to possibly improve L. This means our assumption
is not correct. Therefore, L is optimal.

5. FLOW OF SLACK-DRIVEN SHAPING
Using the conditions presented in Lemmas 2 and 3, we can de-

termine the optimality of the output solution from the basic SDS.
Therefore, based on the algorithm flow in Figure 1, we propose the
slack-driven shaping algorithm shown in Figure 4. SDS always re-
turns an optimal solution for Problem 1.

Slack-Driven Shaping
Input: wi = W min

i (∀1 ≤ i ≤ n); Gh and Gv; upper-bound width W .
Output: optimal yn+1, wi and hi.
Begin
Lines 1 – 14 are the same as the ones in Figure 1.
15. Else,
16. If Lemma 2 or 3 is satisfied,
17. L is optimal.
18. Else,
19. Improve L by a single step of geometric programming.
20. If no optimal solution is obtained,
21. Go to Line 7.
22. Else,
23. L is optimal.
24. Until L is optimal.
End

Figure 4: Flow of slack-driven shaping.

The differences between SDS and the basic version are starting
from line 15 in Figure 4. When there is not target soft block, instead
of terminating the algorithm, SDS will first check the optimality of L,
and if it is not optimal, L will be improved via geometric program-
ming. The algorithm stops when an optimal solution is obtained.

As mentioned previously, if the solution L generated by the ba-
sic SDS is not optimal, we only need to shape the intersection soft
blocks to improve L. In this way, the problem now becomes shaping
the intersection blocks to minimize the layout height yn+1 subject
to layout width constraint “xn+1 ≤ W ”. In other words, it is ba-
sically the same as Problem 1, except that we only need to shape a
smaller number of soft blocks (i.e., the intersection soft blocks). This
problem is a geometric program. It can be transformed into a convex
problem and solved optimally by any convex optimization technique.
However, considering the runtime, we don’t need to rely on geomet-
ric programming to converge to an optimal solution. We just run one
step of some iterative convex optimization technique (e.g., deepest
descent) to improve L. Then we can go back to line 7, and applied
the basic SDS again. It is clear that SDS always converges to the opti-
mal solution because as long as the solution is not optimal, the layout
height will be improved.

In modern VLSI designs, the usage of Intellectual Property (IP)
and embedded memory blocks becomes more and more popular. As
a result, a design usually contains tens or even hundreds of big hard

macros, i.e., hard blocks. Due to their big sizes, after applying the
basic SDS most likely they are at the intersections of horizontal and
vertical critical paths. Moreover, in our experiments we observe that
there is always no more than one soft HCP or VCP in the solution
returned by the basic SDS. Consequently, we never need to apply the
geometric programming method in our experiments. Therefore, we
believe that for most designs the basic slack-driven shaping algorithm
is sufficient to achieve an optimal solution for Problem 1.

6. EXPERIMENTAL RESULTS
This section presents the experimental results. All experiments are

run on a Linux server with AMD Opteron 2.59 GHz CPU and 16GB
memory. We use two sets of benchmarks, MCNC [11] and HB [15].
For each circuit, the corresponding input Gh and Gv are provided by
a floorplanner. The range of the aspect ratio for any soft block in the
circuit is set to [1

3
, 3].

After the input data is read, SDS will set the initial width of each
soft block at its minimum width. In SDS, if the amount of change on
the width or height of any soft block is less than 0.0001, we would
not shape such block because any change smaller than that would be
masked by numerical error. Such numerical error, which is unavoid-
able, comes from the truncation of an infinite real number so as to
make the computation possible and practical.

6.1 Experiments on MCNC Benchmarks
Using the MCNC benchmarks we compare SDS with the two shap-

ing algorithms in [11] and [12]. All blocks in these circuits are soft
blocks. The source code of [11] and [12] are obtained from the au-
thors.

In fact, these three shaping algorithms cannot be directly com-
pared, because their optimization objectives are all different:

• [11] is minimizing the layout area xn+1yn+1;

• [12] is minimizing the layout half perimeter xn+1 + yn+1;

• SDS is minimizing the layout height yn+1, s.t. xn+1 ≤ W .

Still, to make some meaningful comparisons as best as we can, we
setup the experiment in the following way.

• We conduct two groups of experiments: 1) SDS v.s. [11]; 2) SDS
v.s. [12].

• As the circuit size are all very small, to do some meaningful
comparison on the runtime, in each group we run both shaping
algorithms 1000 times with the same input data.

• For group 1, we run [11] first, and use the returned final width
from [11] as the input upper-bound width W for SDS. For
group 2, similar procedure is applied.

• For groups 1 and 2, we compare the final results based on
[11]’s and [12]’s objectives respectively.

Table 2 shows the results on group 1. The column “ws(%)” gives
the white space percentage over the total block area in the final lay-
out. For all five circuits SDS achieves significantly better results on
the floorplan area. On average, SDS achieves 394× smaller white
space and 23× faster runtime than [11]. In the last column, we re-
port the runtime SDS takes to converge to a solution that is better
than [11]. To just get a slightly better solution than [11], on average
SDS uses 253× faster runtime. As pointed out by [12], [11] does not
transform the problem into a convex problem before applying La-
grangian relaxation. Hence, algorithm [11] may not converge to an
optimal solution.

Table 3 shows the results on group 2. The authors claims the shap-
ing algorithm in [12] can find the optimal half perimeter on the floor-
plan layout. But, for all five circuits SDS gets consistently better half

Table 1: Comparison on runtime complexity.
Algorithm Runtime Complexity

Young et al. [11] O(m3 + km2)
Lin et al. [12] O(kn2mlog(nC))

Basic SDS O(km)

(k is the total number of iterations, n is the total number of blocks in
the design, m is the total number of edges in Gh and Gv , and C is

the biggest input cost.)

perimeter than [12], with on average 10× faster runtime. Again, in
the last column, we report the runtime SDS takes to converge to a
solution that is better than [12]. To just get a slightly better solution
than [12], on average SDS uses 33× faster runtime. We believe algo-
rithm [12] stops earlier, before it converges to an optimal solution.

From the runtime reported in Tables 2 and 3, it is clear that as the
circuit size increases, SDS scales much better than both [11] and [12].
In Table 1, we list the runtime complexities among the three shaping
algorithms. As in our experiments, it is never necessary to apply the
geometric programming method in SDS, we list the runtime com-
plexity of the basic SDS in Table 1. Obviously, the basic SDS has the
best scalability.

6.2 Experiments on HB Benchmarks
This subsection presents the experimental results of SDS on HB

benchmarks. As both algorithms [11] and [12] crashed on this set of
circuits, we cannot compare SDS with them. The HB benchmarks
contain both hard and soft blocks ranging from 500 to 2000 (see
Table 4 for details).

For each test case, we set the upper-bound width W as the square
root of 110% of the total block area in the corresponding circuit.
Let Y denote the optimal yn+1 SDS converges to. The results are
shown in Table 4. The “Convergence Time” column lists the total
runtime of the whole convergence process. The “Total #.Iterations”
column shows the total number of iteration SDS takes to converge to
Y . For fixed-outline floorplanning, SDS can actually stop early as
long as the solution is within the fixed outline. So in the subsequent
four columns, we also report the number of iterations when yn+1−Y

Y
starts to be less than 10%, 5%, 1% and 0.1%, respectively. The
average total convergence time is 1.18 second. SDS takes average
1901 iterations to converge to Y . The four percentage numbers in
the last row shows that on average after 6%, 10%, 22% and 47% of
the total number of iterations, SDS converges to the layout height that
is within 10%, 5%, 1% and 0.1% difference from Y , respectively.
In order to show the convergence process more intuitively, we plot
out the convergence graphs of yn+1 for four circuits in Figures 5(a)-
5(d). In the figures, the four blue arrows point to the four points when
yn+1 becomes less than 10%, 5%, 1% and 0.1% difference from Y ,
respectively.

Finally, we have four remarks on SDS.

1. As SDS sets the initial width of each soft block at its minimal
width, such initial floorplan is actually considered as the worse
start point for SDS. This means if any better initial shape is
given, SDS will converge to Y even faster.

2. In our experiments, we never notice that the solution generated
by the basic SDS contains more than one soft HCP or VCP.
So if ignoring the numerical error mentioned previously, SDS
obtains the optimal layout height for all circuits in the experi-
ments simply by the basic SDS.

3. The experimental results show that after around 1
5

of the total
iterations, the difference between yn+1 and Y is already con-
sidered quite small, i.e., less than 1%. So in practice if it is
not necessary to obtain an optimal solution, we can basically

Table 2: Comparison with [11] on MCNC Benchmarks († shows the total shaping time of 1000 runs and does not count I/O time).
#. Young et al. [11] SDS SDS stops when result

Circuit Soft ws Final Final Shaping ws Final Final Upper-Bound Shaping is better than [11]
Blocks (%) Width Height Time† (s) (%) Width Height Width W Time† (s) ws (%) Time† (s)

apte 9 4.66 195.088 258.647 0.12 0.00 195.0880 246.6147 195.0880 0.26 2.85 0.01
xerox 10 7.69 173.323 120.945 0.08 0.01 173.3229 111.6599 173.3230 0.23 6.46 0.01

hp 11 10.94 83.951 120.604 0.08 1.70 83.9509 109.2605 83.9510 0.10 7.96 0.02
ami33a 33 8.70 126.391 100.202 22.13 0.44 126.3909 91.7830 126.3910 3.97 8.67 0.28
ami49a 49 10.42 144.821 273.19 203.80 1.11 144.8210 247.4727 144.8210 1.86 9.74 0.20

Normalized 393.919 23.351 1.000 1.000 313.980 0.092

Table 3: Comparison with [12] on MCNC Benchmarks († shows the total shaping time of 1000 runs and does not count I/O time).
#. Lin et al. [12] SDS SDS stops when result

Circuit Soft Half Final Final Shaping Half Final Final Upper-Bound Shaping is better than [12]
Blocks Perimeter Width Height Time† (s) Perimeter Width Height Width W Time† (s) Half Peri. Time† (s)

apte 9 439.319 219.814 219.505 0.99 439.3050 219.8139 219.4911 219.8140 0.59 439.1794 0.01
xerox 10 278.502 138.034 140.468 1.24 278.3197 138.0339 140.2858 138.0340 0.30 278.4883 0.12

hp 11 190.3848 95.2213 95.1635 1.51 190.2435 95.2212 95.0223 95.2213 0.17 190.3826 0.10
ami33a 33 215.965 107.993 107.972 34.85 215.7108 107.9930 107.7178 107.9930 1.45 215.9577 0.46
ami49a 49 377.857 193.598 184.259 26.75 377.5254 193.5980 183.9274 193.5980 2.20 377.8242 0.44

Normalized 1.001 10.177 1.000 1.000 1.001 0.304

set a threshold value on the amount of change on yn+1 as the
stopping criterion. For example, if the amount of change on
yn+1 is less than 1% during the last 10 iterations, then SDS
will stop.

4. Like all other shaping algorithms, SDS is not a floorplanning
algorithm. To implement a fixed-outline floorplanner based on
SDS, for example, we can simply integrate SDS into a similar
annealing-based framework as the one in [14]. In each an-
nealing loop, the input constraint graphs are sent to SDS, and
SDS stops once the solution is within the fixed outline. The
annealing process keeps refining the constraint graphs so as to
optimize the various floorplanning objectives (e.g., wirelength,
routability [16] [17], timing, etc.) in the cost function.

7. CONCLUSION AND FUTURE WORK
This work proposed an efficient, scalable and optimal slack-driven

shaping algorithm for soft blocks in non-slicing floorplan. Unlike
previous work, we formulate the problem in a way, such that it can
be applied for fixed-outline floorplanning. For all cases in our exper-
iments, the basic SDS is sufficient to obtain an optimal solution. Both
the efficiency and effectiveness of SDS have been validated by com-
prehensive experimental results and rigorous theoretical analysis.

Due to the page limit, we have to reserve some problems on SDS as
the motivation of future work, which includes: 1) To use the duality
gap of Problem 1 as a better stopping criterion, because it indicates an
upper-bound of the gap between the intermediate and optimal shap-
ing solutions; 2) To propose a more scalable algorithm as a substitu-
tion of the geometric programing method in Figure 4; 3) To extend
SDS to handle classical floorplanning. Also, because of the similarity
between the slack in floorplanning and static timing analysis (STA),
we believe SDS can be modified and applied on buffer/wire sizing for
timing optimization.

Acknowledgment
The authors would like to thank Prof. H. Zhou from Northwestern
University for providing us the source code of algorithms [11] and [12].

8. REFERENCES
[1] L. Stockmeyer. Optimal orientations of cells in slicing

floorplan designs. Information and Control, 57:91–101,
May/June 1983.

[2] G. Zimmermann. A new area and shape function estimation
technique for VLSI layouts. In Proc. DAC, pages 60–65, 1988.

[3] J. Z. Yan and C. Chu. DeFer: Deferred decision making
enabled fixed-outline floorplanning algorithm. IEEE Trans. on
Computer-Aided Design, 43(3):367–381, March 2010.

[4] R. H. J. M. Otten. Efficient floorplan optimization. In Proc.
ICCD, pages 499–502, 1983.

[5] P. Pan and C. L. Liu. Area minimization for floorplans. IEEE
Trans. on Computer-Aided Design, 14(1):129–132, January
1995.

[6] T. C. Wang and D. F. Wong. Optimal floorplan area
optimization. IEEE Trans. on Computer-Aided Design,
11(8):992–1001, August 1992.

[7] M. Kang and W. W. M. Dai. General floorplanning with
L-shaped, T-shaped and soft blocks based on bounded slicing
grid structure. In Proc. ASP-DAC, pages 265–270, 1997.

[8] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani. Module
placement on BSG-structure and IC layout applications. In
Proc. ICCAD, pages 484–491, 1996.

[9] T. S. Moh, T. S. Chang, and S. L. Hakimi. Globally optimal
floorplanning for a layout problem. IEEE Trans. on Circuits
and Systems I, 43:713–720, September 1996.

[10] H. Murata and E. S. Kuh. Sequence-pair based placement
method for hard/soft/pre-placed modules. In Proc. ISPD, pages
167–172, 1998.

[11] F. Y. Young, C. C. N. Chu, W. S. Luk, and Y. C. Wong.
Handling soft modules in general non-slicing floorplan using
Lagrangian relaxation. IEEE Trans. on Computer-Aided
Design, 20(5):687–692, May 2001.

[12] C. Lin, H. Zhou, and C. Chu. A revisit to floorplan
optimization by Lagrangian relaxation. In Proc. ICCAD, pages
164–171, 2006.

[13] A. B. Kahng. Classical floorplanning harmful? In Proc. ISPD,
pages 207–213, 2000.

[14] S. N. Adya and I. L. Markov. Fixed-outline floorplanning:
Enabling hierarchical design. IEEE Trans. on VLSI Systems,
11(6):1120–1135, December 2003.

[15] J. Cong, M. Romesis, and J. R. Shinnerl. Fast floorplanning by
look-ahead enabled recursive bipartitioning. In Proc.
ASP-DAC, pages 1119–1122, 2005.

[16] Y. Zhang and C. Chu. CROP: Fast and effective congestion
refinement of placement. In Proc. ICCAD, pages 344–350,
2009.

[17] Y. Zhang and C. Chu. RegularRoute: An efficient detailed
router with regular routing patterns. In Proc. ISPD, pages
45–52, 2011.

Table 4: Experimental Results of SDS on HB Benchmarks.

Circuit #.Soft Blocks Upper-Bound Final Final Convergence Total #.Iterations when
yn+1−Y

Y
becomes

/ #.Hard Blocks Width W Width Height (Y) Time (s) #.Iterations < 10% < 5% < 1% < 0.1%

ibm01 665 / 246 2161.9005 2161.9003 2150.3366 0.82 2336 54 85 225 629
ibm02 1200 / 271 3057.4816 3056.6026 3050.4862 0.40 485 65 102 230 431
ibm03 999 / 290 3298.2255 3298.2228 3305.6953 0.36 565 62 97 231 456
ibm04 1289 / 295 3204.7658 3204.7656 3179.9406 3.65 3564 53 87 271 1076
ibm05 564 / 0 2222.8426 2222.8424 2104.4136 0.29 1456 102 142 279 522
ibm06 571 / 178 3069.5289 3068.5232 2988.6851 0.14 500 58 105 265 419
ibm07 829 / 291 3615.5698 3615.5696 3599.6710 1.86 3966 63 114 269 1210
ibm08 968 / 301 3855.1451 3855.1449 3822.5919 0.42 690 75 111 232 545
ibm09 860 / 253 4401.0232 4401.0231 4317.0274 1.20 2512 50 82 234 687
ibm10 809 / 786 7247.6365 7246.7511 7221.0778 0.49 472 28 56 162 377
ibm11 1124 / 373 4844.2184 4844.2183 4820.8615 0.60 654 64 96 253 509
ibm12 582 / 651 6391.9946 6388.6978 6383.9537 0.10 157 26 47 91 138
ibm13 530 / 424 5262.6052 5262.6050 5204.0326 1.03 2695 52 78 244 753
ibm14 1021 / 614 5634.2142 5634.2140 5850.1577 2.88 2622 75 109 237 634
ibm15 1019 / 393 6353.8948 6353.8947 6328.6329 2.94 3770 100 152 331 1039
ibm16 633 / 458 7622.8724 7622.8723 7563.6297 0.95 2038 41 65 193 520
ibm17 682 / 760 6827.7756 6827.7754 6870.9049 1.78 2200 46 67 139 389
ibm18 658 / 285 6101.0694 6101.0692 6050.4116 1.35 3544 57 82 185 454

Average 1.18 1901 5.9% 9.6% 22.3% 47.3%

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 0 500 1000 1500 2000 2500

#Iter = 2336, Height = 2150.3367

(a) ibm01

 3000

 3500

 4000

 4500

 5000

 5500

 0 50 100 150 200 250 300 350 400 450 500

#Iter = 485, Height = 3050.4861

(b) ibm02

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 0 20 40 60 80 100 120 140 160

#Iter = 157, Height = 6383.9536

(c) ibm12

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 0 500 1000 1500 2000 2500 3000 3500 4000

#Iter = 3770, Height = 6328.6328

(d) ibm15

Figure 5: Layout-height convergence graphs for circuits ibm01, ibm02, ibm12 and ibm15. (x-axis denotes the iteration number and y-axis denotes the
layout height.)

