
1

MGR: Multi-Level Global Router
Yue Xu and Chris Chu

Department of Electrical and Computer Engineering
Iowa State University, Ames, Iowa 50011-3060, USA

{yuexu,cnchu}@iastate.edu

Abstract—Global routing faces an increasing problem size and
urgent demand on improvement in solution quality. Despite of
the recent developments of global routers, there exist only two
types of choices: slow 3D routers with good solution quality or
efficient 2D routers with relatively poor solution quality. We
propose a multi-level 3D global router called MGR to fill the
gap. MGR resorts to an efficient multi-level framework to reroute
nets in the congested region on the 3D grid graph. Routing on
the coarsened grid graph speeds up the global router while 3D
routing introduces less vias. The powerful multi-level rerouting
framework wraps three innovative routing techniques together:
adaptive resource reservation in coarsening process, a new 3-
terminal maze routing algorithm and network flow based solution
propagation in uncoarsening process. As a result, MGR can
achieve the solution quality close to 3D routers with comparable
runtime of 2D routers.

I. INTRODUCTION

Due to the increasing size of modern circuits, together with
complex demands from performance and manufacturability,
every major physical design automation problem faces an
exploding size and intricate tradeoff to balance. Global routing,
one of the most traditional physical design problems, is no
exception. The sheer problem size requires an efficient global
routing solution. Meanwhile, increasingly unbalanced routing
demands and resources requires global routers to find new
methods to resolve routability issues.

In addition, design for manufacturability adds new factors to
optimize in global routing. The number of vias has become a
standard parameter to minimize in global routing. The reasons
why via is so important in global routing come twofold.
Via has a higher probability to cause open connection due
to its manufacturing process, which lowers circuit yields. To
make it worse, via has large variations in its resistance value,
which causes performance degradation. Although double via
insertion and post routing optimization eases the severity of
such issues, the number of vias in global routing remains as
one of the determining factors in solution quality.

There are generally two kinds of global routers depending
on how they take via into consideration. 3D routers directly
work on the metal layers in the layout while 2D routers append
traditional single-layer global routers with layer assignment
techniques. FGR [1] and GRIP [2] belong to the first category.
While FGR sequentially uses 3D maze routing to reroute
nets for an existing routing solution, GRIP employs integer
linear programming (ILP) to select routing solutions. Despite
of their leading results of wirelength and the number of vias,

1This work was partially supported by IBM faculty award.

they run too slowly to be practical. The majority of academic
global routers belong to the second category. NTHU-R 2.0 [3],
NTUgr [4], FastRoute 4.0 [5], NCTU-R [6] and BoxRoute 2.0
[7] all use a two-stage framework to solve the global routing
problem. In the first stage, the first four 2D global routers adopt
sequential rip-up and reroute strategy while BoxRoute uses
ILP to search the best 2D solutions. In the second stage, they
all use layer assignment technique to extend the 2D solutions
into final 3D solutions.

It is natural to wonder whether we can make 2D routers
to take a leap to generate solutions as good as 3D routers
or whether it is possible to dramatically cut down 3D routers’
runtime to the level of 2D routers. The recent developments of
2D routers tend to disprove first attempt. Efforts to improve
2D maze routing by Liu et al. [6] or layer assignment by
Lee et al. [8] only bring in marginal improvements. It seems
that directly constructing routing solutions on multiple metal
layers is indispensable for high quality global routers. To get
the combination of short runtime and short wirelength, we
propose a multi-level 3D global routing framework MGR to
achieve high solution quality and keep runtime in check. MGR
exploits 3D maze routing to explore a much larger solution
space but formulates it on the coarsened grid graph to get
small problem size.

Multi-level framework is a quite mature concept in physical
design, commonly used to speed up partitioning and placement
tools. Multi-level framework has also been used in gridless
routing by Cong et. al. in MARS [9] and Chen et. al. [10].
Gridless routing includes the task of both global routing
and detailed routing. It is now rarely used since the routing
problem becomes too complex to handle all at once. Detailed
routing nowadays is typically treated as a stand-alone problem
to handle myriads of design rules.

We propose the first academic multi-level global router
and name it MGR. MGR uses pattern routing and layer
assignment to initiate a 3D solution. Then it uses a coarsening-
uncoarsening multi-level framework to reroute nets in the
congested region. Rerouting on coarsened grid graph greatly
speeds up MGR while 3D routing provides better solution
quality by exploiting the entire 3D solution space. The two
factors balance out and lead MGR to improve the performance
and runtime of global routers. The key contributions of MGR
include:
• A multi-level 3D global rerouting framework to effi-

ciently generate high quality solutions. Unlike previous
multi-level gridless routers, the framework starts with
initial 3D solution which is refined by only one round



2

(a) Cell Structure Coarsening and Uncoarsening

(b) Grid Graph Coarsening and Uncoarsening
Fig. 1. Cell Structure and Grid Graph Views of the Multi-Level Framework

of coarsening and uncoarsening process.
• An adaptive resource reservation technique in coarsening

process, which provides accurate routing resource calcu-
lation for rerouting on coarsened grid structure to guide
routing in higher levels.

• A new 3-terminal maze routing algorithm to optimally
connect 3 separate terminals for a net. It provides better
routing solutions for multi-pin nets comparing to tradi-
tional 2-terminal maze routing based technique.

• A network flow based solution propagation technique
in uncoarsening stage, which introduces certain degree
of concurrency to achieve better solution refinement in
wirelength, congestion and the number of vias together,
comparing to pure sequential method.

The rest of this paper is organized as follows. Section 2
introduces the global routing grid graph model and the flow
of MGR. Section 3 details the key techniques used in MGR.
The experimental results are provided in Section 4 and the
paper concludes with Section 5.

II. PRELIMINARY

A. Global Routing Grid Graph

In global routing, the die is partitioned into 3D global
cells. Every cell is modeled as a node. On each metal layer,
the boundary between two neighboring cells is given certain
capacity to accommodate several cross-cell nets while intra-
cell nets are ignored in global routing. Grid edges are created
to model the capacity and usage on cell boundaries. The
capacity ce of a grid edge is defined as the maximum number
of nets that can use the grid edge. The usage ue is the actual
number of nets that use the grid edge. Overflow oe is defined

as max(ue − ce, 0). All the grid edges together form the grid
graph, as shown in the rightmost figure in Fig. 1(b).

For multi-level global routing, we need to create multi-level
grid graphs. The original cell structure and grid graph with
finest structure is denoted as level-1. The level increases as
global cells in cell structure become larger and grid graph
becomes coarser. We derive the level-2 cell structure from
level-1 cell structure in the following manner. 4 neighboring
cells are merged into one, as shown in Fig. 1(a) by grey areas.
The top level is denoted as level-t. Level-i grid graph models
the crossing on boundaries of level-i cell structure. For level-
(i+1) grid graph, the four corresponding level-i grid nodes
grouped in shadow are merged into a node as shown in Fig.
1(b). One level-(i+1) grid edge corresponds to two level-i grid
edges. The hierarchy is built up until each layer in the top
level grid graph becomes smaller than or equal to the size of
8-by-8. In the hierarchy, nets that exist on level-i grid graph
but disappear in level-(i+1) grid graph are denoted as level-i
nets. Level-i nets do not belong to level-(i-1) nets because they
still exist on level-i. Grid graphs at all levels have the same
number of metal layers as level-1 grid graph and coarsening on
different layers is vertically synchronized to maintain regular
3D cell and grid graph structures.

In the abstraction process, complex design rules are simpli-
fied away. So long as overflow for all grid edges stays 0 and
all nets are connected, global routing is considered to have a
valid solution.

B. Flow of MGR

The flow of MGR is illustrated in Fig. 2. MGR starts with
3D global routing initialization. MGR needs the initializa-
tion stage to provide guidance on how wire-length focused



3

Fig. 2. MGR Flow

routing would generate congestion so it can detour high-level
nets from the congested region. Our initialization consists
of Steiner tree generation [11], a pattern routing step and
dynamic programming based greedy layer assignment step
just like previous 2D sequential routers [3] [5] without maze
routing. Such process is very fast and can provide accurate
enough congestion information for the following 3D multi-
level rerouting stage.

In the rerouting stage, we use 3D routing to explore the
entire solution space and adopt multi-level framework to speed
up such exploration. MGR first coarsens the grid graph to build
hierarchy. The goal of coarsening is to generate higher level
grid graphs to reduce the problem size and calculate accurate
routing resource estimation based on the initial solution on
those grid graphs. We use adaptive resource reservation to
adjust the capacities for high level grid edges, so that high
level nets would not over utilize routing resources in congested
region, which would reduce the need to rip-up and reroute
high level routing solutions in low level grid graphs and thus
effectively control run time and improve solution quality. After
the coarsening stage, we achieve all levels of grid graphs
and their routing resource estimations. MGR then uses 3D
maze routing, including the newly proposed 3-terminal maze
routing, to eliminate congestion on the level-t grid graph.
Then MGR uses network flow based solution propagation to
project routing of level-t nets onto level-(t-1) grid graph. For
a level-t net, its routing solution can only use grid edges
on level-(t-1) grid graph its level-t solution represents. In
general, before propagating level-i solutions to level-(i-1), we
use 3D maze routing to minimize congestion on level-i. Our
newly proposed 3-terminal maze routing is adopted to enhance
MGR’s congestion reduction capability. This rerouting and
propagation iteration inner loops as shown in the right part of
Fig. 2 works from level-t to level-2. At the end of this loop,
we achieve a rerouted level-1 solution. If the overflow remains
after multi-level rerouting, MGR uses 3D maze routing on
level-1 grid graph to eliminate it.

III. MULTI-LEVEL GLOBAL REROUTING FRAMEWORK

A. Coarsening Process

The coarsening process generates smaller sized grid graphs
for 3D maze routing. But it should not sacrifice routing
quality with inaccurate estimations of routing resources on the
coarsened grid graphs. MGR uses pattern routing and simple
layer assignment to provide an initial solution so that the
coarsening stage can calculate routing capability for higher

level grid graphs based on the actual usage of lowest level grid
graph. It differs from previous multi-level gridless routers in
the way that previous works rely on inner cell routing blockage
model to estimate boundary capacity.

In the coarsening process, we need to make sure that we do
not render high level grid graphs with excessive capacity so
that high level nets lack incentive to avoid congested region.
Such situation will naturally happen if we simply add up
the grid edge capacities of the two lower level grid edges
corresponding to each higher level grid edge. A higher level
grid edge represents larger layout boundary. The possibility
of overflow on that boundary tends to diminish as the level
goes higher, due to the fact that the demand will average out
over a long boundary. The larger area a cell includes, the less
likely demands on its boundary exceed the capacity. Just like
ideal global routing would detour global nets from locally
congested global cells, we want MGR to guide level-(i+1)
nets to avoid congested edges on level-i. The most effective
way to achieve this is through adaptively capacity adjustment
for higher level edges. Without adjustment, the capacity of a
level-(i+1) grid edge would be the sum of capacities of the
two level-i grid edges it represents. This method has a major
drawback. It ignores the congestion inside level-(i+1) cells
and leads to much less detour than desirable amount. This
stems from the nature of routing problem: If the boundary
has ample routing resources while the cell is congested with
intra-cell nets, routing on that boundary will aggravate intra-
cell congestion. Thus, MGR adjusts the capacity of high level
grid edges according to existing inner cell routing solution in
an adaptive manner to guarantee that high level routing will
not take up critical lower level routing resources for lower
level nets.

Fig. 3. Coarsening Process in Grid Graph (graph would be changed)

Consider the coarsening step from level-i to level-(i+1), Fig.
3 shows a part of the grid graph that will go through the
coarsening step. First, MGR contracts e1, e2, e3, and e4 into
a level-i+1 grid graph node. For the node, MGR assigns a
node adjustment value avn, which is oe1 + oe2 + oe3 + oe4,
the sum of overflow of the level-i grid edges it includes. The
node adjustment value represents the need to discourage higher
level nets to use the node in order to resolve congestion on
level-i. Nevertheless, routing on a grid graph with both edge
and node constraints overly complicates the problem. So in the
second phase, we convert the node adjustment value to edge
capacity adjustment on the same level by distributing the node
adjustment value to the capacity of grid edges connecting to
the node. For the level-(i+1) edges that connect to n1, their
capacities will each be reduced by a quarter of avn. If the node
is at the corner of grid graph, the capacities of the two edges



4

connecting to the node will be reduced by half of the node
adjustment value. In this way, we propagate level-i overflow
information into level-(i+1) grid graph.

B. 3D Maze Rerouting

During the uncoarsening process, MGR needs to reroute
some nets to eliminate congestion. Recently, Min Et. Al.
expanded maze routing to multi-source and multi-sink maze
routing to handle multi-pin nets to further reduce congestion
[12]. Instead of rerouting two subtrees from the two fixed
endpoints of the ripped-up edge, they use any points on the
subtrees as the reconnecting point to adaptively adjust net
topology. However, the effectiveness of such adjustment is
limited because it only optimally configures the one segment
that connects the two unconnected subtrees while the subtrees
themselves remain suboptimal. For multi-pin nets, which count
for more than 40% in the benchmarks used in ISPD 2008
global routing contest [13], relying on 2-terminal maze routing
to restructure net topology may lead global router to run
many iterations before it can get a fairly good solution.
Optimally connecting multi-pin nets will greatly improved
solution quality. Our first effort goes to routing 3-pin nets
optimally and it can be extended to optimize multi-pin nets
iteratively.

On a second thought, rather than starting the analysis for
rerouting 3-pin nets and later extending it to connecting
subtrees, we draw lessons from [12] and propose an optimal
method to connect nets ripped-up into 3 terminals directly.
Here a terminal could be a pin or a subtree. Generating the
minimum cost solution to connect nets ripped-up into three
terminals has two parts. While searching for a point to be
the optimal Steiner point is the first obstacle, fiiguring out the
paths between the Steiner point and each terminal stands as
the second catch. One easy way to accomplish the two parts
is through three independent wavefront propagations from
the 3 terminals respectively. We can add the cost for the 3
propagation together and set the point with least sum to be the
Steiner node. The optimal solution can be derived from back
tracking the wavefront from the Steiner point to the terminals.
The only problem is the efficiency of such technique. The
search region has to be large enough to contain the optimal
Steiner point, which means that the wavefront propagation
might propagate to a large area. On the contrary, traditional
2-terminal maze routing can stop when the two wavefronts
meet each other. Fortunately, we proved Theorem 1 to greatly
limit the propagation area and thus improve the efficiency of
the 3-terminal maze routing technique.

Theorem 1. The wavefront propagation from one terminal
used in 3 terminal maze routing can stop whenever it reaches
any of the two other terminals.

Proof: As shown in Fig. 4, we have three terminals:
tA, tB and tC . Without loss of generality, we assume
that we have an optimal Steiner point P , md(tB , P ) >
min(md(tB , tA),md(tB , tC)). Here, “md” is the minimum
path distance between two terminals. The inequality indicates
that point P is out of range of the wavefront propagation started
from terminal B. It is obvious that md(tA, P )+md(tC , P ) ≥

Fig. 4. 3 Terminal Maze Routing

md(tA, tC) due to triangular inequality. If we add the two
inequalities together, we can get md(tA, P ) + md(tC , P ) +
md(tB , P ) > md(tA, tC) + min(md(tB , tA),md(tB , tC)).
The right part of the inequalities represents a solution that
can connect the three terminals together with lower cost than
the shortest paths through point P . Thus, we prove Theorem
1 by contradiction.

In the proof of Theorem 1, we do not need to specify
whether the terminal is a point or a sub-net. Thus, we can
apply the multi-source multi-sink maze routing proposed in
FastRoute 2.0 [12] to get a fast 3 terminal multi-source multi-
sink maze routing. Besides, since minimum distance could be
adjusted by any non-decreasing cost function, the algorithm
works well for obstructions so long as routing over them gives
large cost.

So the 3-terminal maze routing algorithm for nets with 3
pins or more runs as follows. Instead of ripping-up a 2-pin
edge, MGR rip-ups three 2-pin edges that connect to a shared
Steiner node, generating 3 separate terminals waiting to be
connected. Then MGR starts the maze wavefront propagation
for each terminal until it meets any one of the other two
terminals. After the propagations, we find the least cost Steiner
node by checking the region visited by all three wavefront
propagation procedure. With the least cost Steiner node at
hand, the algorithm backtracks and constructs the paths to
connect the 3 terminals together. The runtime bottleneck for 3-
terminal maze routing still is the wavefront propagation, which
results in a complexity of O(n·log(n)), the same as traditional
2-terminal maze routing.

Traditionally, sequential routers run as little maze routing
as possible to save runtime. One advantage for MGR is
that it has a relatively small problem on higher level grid
graphs so it can afford running more maze routing. On higher
levels, MGR picks up extra duty to balance out usage profile
between large global cells to help eliminate lower level local
congestions. To achieve that, MGR rips-up and reroutes every
net using 3D maze routing for the top 2 levels to get better
solutions. Running these extra maze routing improves high
level solutions and consume little runtime due to small grid
graphs and limited number of high level nets. On lower levels,
MGR only use 3D maze routing to reroute congested nets, just
like the behavior of traditional 2D sequential routers.



5

C. Routing Propagation to Lower Level

Once MGR reaches the top level and balances routing
demands according to routing resources, it needs to propagate
routing decisions made in the higher level to lower levels, in
other words, from coarser grid graph to finer grid graphs.

Fig. 5. High Level Routing Propagation into Lower Level Grid Graph

The propagation for a single net is a relatively easy problem.
As shown in Fig. 5, the higher level net just need to choose
among the edges that is abstracted away during the corre-
sponding coarsening process. Such propagation can easily be
realized by dynamic programming. However, sequential net
by net propagation ignores the impacts of one net onto its
spatially correlated nets. The ideal solution with best results
would be a simultaneous net propagation for all the high level
nets. However, it has too big a problem size to finish in tight
schedule, which is especially true for uncoarsening process for
the few bottom levels. In the end, we come up with a balanced
solution between solution quality and runtime concern. MGR
propagates all the nets or part of the nets that use the same
column or same row in the grid graph. We call each column or
row a slice. In a grid graph, a slice is defined as the grid nodes
on all metal layers of same row or column index together with
all the grid edges among the nodes.

Without loss of generality, we pick a row on level-(i+1) for
the following analysis. This row consists of 2 neighboring rows
in level-i grid graph, together with all the vertical edges that
connect them. This forms the backbone of one subproblem. In
each subproblem, we use network flow algorithm to propagate
routing solution on the row into the finer lower level grid
structure. To save more via, we relax the problem by allowing
each high level net to choose new routing layer instead of the
metal layer decided in its high level solution. This relaxation
helps MGR to correct any layer assignment mistakes made in
the previous level. The uncoarsening problem is decomposed
into network flow sub-problems on slices. The decomposition
disentangles the complex uncoarsening problems but still
concurrently considers the competitions among all the nets
that use a single slice.

Fig. 6. Network Flow for High Level Net Propagation

The formal problem formulation is defined as follows. We
slice the entire column or row from the grid graph. On level-i,

we have a single line with multiple layers while at level-(i-
1), we have 2 grid-edge lines together with a row of vertical
grid edges that connects them. This slice of grids forms the
backbone structure of the network flow problem. The grid
graph edges are assigned a cost depending on the initial
routing solutions and current routing solutions. The capacity
and usage for the backbone is assigned in the following
manner. Initially, the backbone has the capacity estimated
during the coarsening process. Based on that, we add fixed
usage that represents the propagated routing solution by level-i
propagation subproblems finished earlier, if any. Furthermore,
for each level-i nets not propagated yet but will use the vertical
grid edges in the backbone, we add 0.5 usage on each of
the two possible grid edges. For the network flow problem,
we would compute the cost for each grid edge by a logistic
function similar to [12] based on the capacity and usage
calculated just above.

After the costs are calculated, we assign net or part of net,
which we denote as a path from here, to the backbone to model
routing demands on the slice. If a path has a pin on the slice,
we create an anchor at the pin location. Otherwise, if the path
just “passes” the slice, we create the anchor depending on the
direction in which the path turns. Take net A in Fig. 6 as an
example, it comes from up, use the the slice and goes down.
So we create anchor A′ at the top row of the backbone and
another anchor A” at the bottom. Every path that uses the
slice has two anchors. If we scan through the slice from its
minimum index to its maximum, whenever we find the first
anchor belonging to a path, we connect it to the source node
“s”. When we find the second anchor, we connect it to the
sink node “t”. The scan adds edges to the backbone to model
routing demands. Every edge connected to “s” or “t” has a
capacity of 1 and a cost of 0. Besides, with the scan direction,
we can assign the two rows of grid edges the same direction,
which simplifies the network flow problem.

The optimal solution we want to find is a minimum cost
maximum flow from “s” to “t” on the network we just created.
We use ILP to solve this discrete flow problem. Since the prob-
lem size is relatively small, comparing to the entire routing
problem, runtime is not a concern here. If the maximum flow
equals to the number of paths that has demands on the slice,
the uncoarsening process for this slice is successful. If not,
then some high level nets cannot be routed. All the slices are
sorted by how congested they are. The higher congestion one
slice has, the earlier its network flow propagation would be
solved, because less congested columns or rows could afford
the reduced flexibility due to more fixed usage added onto their
network flow backbone from earlier probagation subproblems.

We wait for the uncoarsening process for all slices to finish
before we run reroute for all unconnected high level nets,
and some level-(i-1) nets if they are involved in congestion
too. In the reroute process, we use 3-terminal maze routing
mentioned in previous section for nets with more than 2 pins
and traditional maze routing for 2-pin nets. Then uncoarsening
process will proceed to solve network flow based propagation
problem from current level to the next lower level.



6

TABLE I
COMPARISON OF ROUTING RESULTS ON ROUTABLE BENCHMARKS

MGR NTHU-R 2.0 [3] NTUgr [4] FastRoute 4.0 [5]
Name Wirelength cpu(s) Wirelength cpu(s) Wirelength cpu(s) Wirelength cpu(s)

adaptec1 5282K 304 5344K 611 5740K 291 5460K 279
adaptec2 5146K 72 5229K 102 5370K 71 5277K 59
adaptec3 12892K 334 13101K 549 13500K 284 13213K 240
adaptec4 11996K 98 12169K 130 12370K 78 12249K 41
adaptec5 15323K 550 15538K 1160 15990K 988 15866K 660
newblue1 4558K 312 4653K 312 4930K 63161 4686K 377
newblue2 7446K 55 7570K 61 7690K 39 7636K 18
newblue5 22800K 453 23158K 977 24490K 1324 23377K 777
newblue6 17486K 487 17689K 912 18660K 1376 18078K 884
bigblue1 5582K 349 5595K 690 6000K 1169 5775K 530
bigblue2 8892K 415 9059K 427 9120K 16044 9352K 792
bigblue3 12875K 200 13068K 253 13350K 258 13073K 158

Comparison 1 1 1.015 1.7 1.053 23.5 1.029 1.33

TABLE II
COMPARISON OF ROUTING RESULTS ON UNROUTABLE BENCHMARKS

MGR NTHU-R 2.0 [3] NTUgr [4] FastRoute 4.0 [5]
Name Overflow WL cpu(s) Overflow WL cpu(s) Overflow WL cpu(s) Overflow WL cpu(s)

bigblue4 134 22573K 1475 162 23090K 6633 188 24280K 26692 150 25147K 3640
newblue3 31026 10722K 1384 31454 10653K 6168 31024 18830K 57120 31634 10752K 1181
newblue4 136 12854K 1083 138 13046K 4873 142 14380K 72246 140 13821K 2382
newblue7 56 34902K 7624 62 35522K 7252 310 37220K 93401 58 35974K 10209

Comparison 1 1 1 1.015 1.016 2.16 1.01 1.175 21.6 1.02 1.057 1.5

IV. EXPERIMENTAL RESULTS

We implement MGR in C and conduct all the experiments
on a Linux machine powered by a 2.6GHZ Intel Processor
with 16GB memory. We use the benchmarks from ISPD
08 global routing contest and compare the results of our
work with leading academic global routers: NTHU-R 2.0 [3],
NTUgr [4] and FastRoute 4.0 [5].

The comparison are conducted in two parts: for routable
benchmarks and for unroutable benchmarks, separated by
whether academic global routers can generate congestion free
solutions up to now, because routers may adopt very distinctive
behavior when facing the final few violations to resolve. Table
I shows the comparison for routable benchmarks. Comparing
to the contest winners, MGR generates solutions with least
wirelength using much less run time. The solutions generated
by MGR has 1.5%, 5.3% and 2.9% less wirelength comparing
to NTHU-R 2.0, NTUgr and FastRoute 4.0 respectively. In
addition, the new routing framework runs 1.7X , 1.4X and
19.8X faster than the three global routers.

Table II shows the comparison for unroutable benchmarks.
Once more, MGR generate solutions with shortest wirelength
while using least runtime. The improvement for unroutable
benchmarks is more significant than the improvement for
routable benchmarks. It is because MGR could resolve the
violations during the multi-level coarsening and uncoarsening
process in a faster manner and later resort to level-1 3D maze
routing to minimize the number of violations.

V. CONCLUSIONS

In this work, we propose a multi-level global router called
MGR. MGR consists of uncoarsening process and coarsening
process. In the uncoarsening process, MGR adaptively adjusts
the capacities for high level grid graphs to effectively direct
high-level nets from congested region. In the coarsening
process, we propose a novel three-terminal maze routing and

network flow based solution propagation. These two new
techniques together guarantee better routing solutions. This
multi-level solution can greatly speeds up global routing
and provides better solutions comparing to existing academic
global routers.

REFERENCES

[1] J. A.Roy and I. L. Markov, “High-performance routing at the nanometer
scale,” Proc. IEEE/ACM Intl. Conf. on Compuer-Aided Design, pp. 496-
502, 2007.

[2] T. Wu, A. Davoodi and J. Linderoth, “GRIP: scalable 3D global routing
using integer programming,” Proc. of Design Automation Conference,
pp. 320-325, 2009.

[3] Y.-J. Chang, Y.-T. Lee, and T.-C. Wang, “NTHU-Route 2.0: a fast and
stable global router,” Proc. International Conference on Computer Aided
Design, pp. 338-343, 2008.

[4] Y. Chen, C. Hsu and Y. Chang“High-Performance Global Routing
with Fast Overflow Reduction,” Proc. Asia and South Pacific Design
Automation Conf., pp. 582-587, 2009.

[5] Y. Xu, Y. Zhang and C. Chu, “FastRoute 4.0: global router with efficient
via minimization,” Proc. Asia and South Pacific Design Automation
Conf., pp. 576-581, 2009.

[6] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “Multi-Threaded
Collusion-Aware Global Routing with Bounded-Length Maze Routing,”
Proc. of Design Automation Conference, pp. 200-205, 2010.

[7] M. Cho, K. Lu, K. Yuan, and D. Z. Pan, “BoxRoute 2.0: Architecture
and Implementation of a Hybrid and Robust Global Router,” Proc.
International Conference on Computer Aided Design, pp. 503-508, 2007.

[8] T.-H. Lee and T.-C. Wang, “Robust Layer Assignment for Via Optimiza-
tion in Multi-layer Global Routing,” Proc. International Symposium on
Physical Design, pp. 159-166, 2009.

[9] J. Cong, M. Xie and Y. Zhang, “MARS - A multilevel fullchip gridless
routing system,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 24, no. 3, pp. 382-394, 2005.

[10] T.-C. Chen, Y.-W. Chang, and S.-C. Lin, “A novel Framework for
Multilevl Full-Chip Gridless Routing,” Proc. Asia and South Pacific
Design Automation Conf., pp. 636 - 641, 2006.

[11] C. Chu and Y. C.Wong, “FLUTE: Fast Lookup Table-based Rectilinear
Steiner Minimal Tree Algorithm for VLSI Design,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no.
1, pp. 7083, 2008.

[12] M. Pan and C. Chu, “FastRoute 2.0: A High-quality and Efficient Global
Router,” Proc. Asia and South Pacific Design Automation Conf., pp. 250
- 255, 2007.

[13] http://www.ispd.cc/contests/ispd08rc.html.


