
GDRouter: Interleaved Global Routing and Detailed Routing
for Ultimate Routability

Yanheng Zhang
Placement Technology Group

Cadence Design Systems
San Jose, CA 95134 USA

yhzhang@cadence.com

Chris Chu
Department of ECE

Iowa State University
Ames, IA 50010 USA

cnchu@iastate.edu

ABSTRACT
Improving detailed routing routability is an important objective of
a global router. In this paper, we propose GDRouter, an interleaved
global routing and detailed routing algorithm for the ultimate routabil-
ity i.e., detailed routing routability. The newly proposed router makes
the global routing aware of detailed routing routability by correctly
setting global capacity to reduce the inconsistency between the two
stages. The final result contains both the detailed routing guided
global routing and deailed routing solutions.

Fast and efficient academic global routing and detailed routing tools
FastRoute [1] and RegularRoute [2] are interleaved in GDRouter. In
the Initial Capacity and Routing Weight Esitmation (ICRWE) phase,
the weight for each global and detailed routing grid is calculated to
make GDRouter aware of pin distribution based on a Gridded Voronoi
Diagram method. Then the algorithm generates initial global capac-
ity based on both local usage and global segment usage. In particu-
lar, Spine routing is utilized to estimate local usage. And a virtual
routing i.e. fast implementations of FastRoute and RegularRoute,
is performed to estimate global segment usage. The initial global
capacity is applied in Full Routing phase to obtain detailed routing
routability i.e., number of unassigned global segment. To further im-
prove routability, in the following Iterative Test Routing (ITR) phase,
GDRouter incrementally applies the interleaved global routing and
detailed routing to adjust the global capcity based on detailed routing
solution. To save runtime, GDRouter quits the loop if detailed routing
routability stops improving or it reaches maximum iteration.

Experimental results reveal that the newly proposed algorithm is ca-
pable of enhancing detailed routing routability. In particular, GDRouter
reduces number of unassigned global segments by 90% for ISPD98 [3]
derived testcases and around 60% for ISPD05/06 [4, 5] derived test-
cases with 2.9× runtime overhead.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits—Design Aids

General Terms
Algorithms, Design, Performance

Keywords
Routing, Physical Design, VLSI CAD

1. INTRODUCTION
VLSI routing is an important design stage where module and cell

pins are connected by over-the-cell metal wires. As the fabrication
technology enters the nanometer scale, the routability issue is becom-
ing increasingly challenging. First, there are more and more tran-
sistors integrated on chip and the size of routing problem is growing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7,2012,San Francisco, California, USA.
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

much bigger. Second, the integration of reusable unit of logic i.e., In-
tellectual Property (IP) cores due to the increasing design complexity
poses more constraints on routing resources.

It has been proved that the routing problem, even the small case
containing only a couple of two-pin nets, is NP-hard [6]. Due to the
enormous computational complexity, routing is typically carried out
through consecutive global routing and detailed routing stages. In
global routing, the entire routing region is divided into regular global
cells(i.e., G-Cells) and routing is performed based on these G-Cells.
The obtained global routing results are used to generate detailed rout-
ing solution considering exact metal shapes and positions.

FastRoute [1] RegularRoute [2]
Name O.F. CPU(sec.) unassiged CPU(sec.)

adaptec1 0 195 3233 566
adaptec2 0 48 1038 442
adaptec3 0 324 3352 1285
adaptec4 0 66 4027 1330
adaptec5 0 559 8826 3782

Table 1: Detailed routing results generated by Regular-
Route on five reportedly routable global routing benchmarks
in ISPD07/08 [7, 8] global routing contest

The primary objective for global routing is to generate a conges-
tion free global routing solution on G-Cells where the wiring demands
across the G-Cell boundary is below its capacity. The global capac-
ity is an estimation of how many wires can be accommodated dur-
ing detailed routing. There have been many research conducted on
improving global routing routability since the two consecutive ISPD
2007 and 2008 global routing contests [7, 8]. For instance, contest-
winning routers like BoxRouter [9], NTHU-R [10], FGR [11] and Fas-
tRotue [1,12] are proposed to drive the global routing congestion lower
with consistent effort. However, the ultimate routability i.e., detailed
routing routability is not consistently pursued. In Table 1, we present
the detailed routing results by taking the global routing solution of five
routable testcases generated by the FasRoute. According to Table 1,
all five testcases are easily routable by FastRoute in global routing
stage. We use recently proposed detailed router RegularRoute [2] to
generate the detailed routing solution. Nevertheless, none of the test-
cases can be easily routed by RegularRoute based on the pre-defined
pitch size. The detailed routing routability i.e., number of unassigned
global segment reaches several thousands. The results reveal the in-
consistency between global routing and detailed routing stages. Or in
other words, global capacity is not set in agreement with the detailed
routing routability.

Traditionally, global capacity is estimated based on empirical meth-
ods. For instance, to reserve routing resources for local usage and pin
escape routing, global capacity is reduced for global edges on first
horizontal and vertical metal layers. To simulate the effect of macro
porosity for big macros, global capacity of the covered global edges is
scaled by a fixed percentage. However, these methods are not accurate
enough to estimate the detailed routing routability since they simply
overlook the exact pin distribution and actual detailed routing usage.

In this paper we will present a novel algorithm called GDRouter for
the overall routability in routing problem. We intend to address the
inconsistency between global and detailed routing by setting the global
capacity more accurately. It is a systematic approach interleaving
both global routing and detailed routing beyond the scope defined in
conventional routing flow. As far as we know, it is the first attempt
in academia to interleave the global routing and detailed routing for
the detailed routing routability.

Efficient global routing and detailed routing tools FastRoute [1] and
RegularRoute [2] are interleaved. In the the Initial Capacity and Rout-
ing Weight Estimation (ICRWE) phase, we calculate the weight for
each global and detailed routing grid to make GDRouter aware of pin

distribution. We propose a Gridded Voronoi Diagram method to eval-
uate pin distribution. We also generate initial global capacity based
on local usage and global segment usage. In particular, we use a Spine
routing technique to estimate the local usage. And we apply a virtual
routing based on fast implementations of FastRoute and RegularRoute
to estimate global segment usage. The initial global capacity is applied
in the Full Routing phase to obtain detailed routing routability. In
the following Iterative Test Routing phase, we run interleaved global
routing and detailed routing to further improve routability. Detailed
routing solutions are adaptively used to update global capacity. To
speed up the whole algorithm, we propose incremental global routing
and a history based detailed routing for FastRoute and RegularRoute
respectively. To save runtime, GDRouter terminates when it reaches
maximum iteration or detailed routing routability stops improving.

Therefore, the novel techniques that will be presented in this paper
are as follows:

• Novel routing algorithm interleaving global routing and detailed
routing for detailed routing routability

• Effective initial capacity and routing weight estimation captur-
ing pin distribution, local usage and global segment usage

• Efficient mechanism to adaptively update the global capacity
based on detailed routing solutions

• Useful incremental global routing technique and history based
detailed routing technique to reduce runtime overhead

We implemented GDRouter and tested its performance on routing
testcases drived from ISPD98 [13] and ISPD05/06 [4, 5] benchmarks
respectively. Experimental results show that GDRouter is capable of
improving detailed routing routability in terms of number of unas-
signed global segments. In particular, the number is improved by
90% for ISPD98 and around 60% for ISPD05/06 with 2.9 × runtime
overhead.

The rest of the paper is organized as follows: In Section 2, we first
review the global routing and detailed routing tools FastRoute and
RegularRoute and present the overview of GDRouter. Section 3 dis-
cusses the initial capacity and routing weight estimation (ICRWE)
phase. In Section 4, we present techniques in iterative test routing
(ITR) phase for how to update global capacity based on detailed rout-
ing solution. Experimental results are presented in Section 5 and we
will make conclusion of this paper in Section 6.

2. GDROUTER OVERVIEW
In this section, we will first present necessary definitions and prob-

lem formulations for global routing and detailed routing respectively.
We then present review for global and detailed routing tools FastRoute
and RegularRoute. Finally, we will present the flow of GDRouter.

2.1 Problem Formulation
We will introduce the formulation for global routing and detailed

routing respectively.

2.1.1 Global Routing Formulation
In global routing, layout region on each metal layer is divided into 3-

D global routing cells (3-D G-Cells). The 3-D global routing grid graph
is drived where each grid denotes one 3-D G-Cell and each 3-D global
edge represents the common boundary between two 3-D G-Cells. Each
edge is assigned with 3-D global capacity representing the maximum
allowable global routing usage. The overflow is the exceeding amount
of global routing usage over global capacity.

The major objective in global routing is to minimize total overflow.
Since FastRoute generates 2-D global routing solution, we lump the
3-D G-Cells on different layers into a 2-D global routing cells (2-D
G-Cell or simply G-Cell). The capacity, usage and overflow will be
accumulated as the capacity, usage and overflow of the G-Cell respec-
tively. The 3-D grid graph is therefore projected to become a 2-D
grid graph. The global routing solution is generated using global path
based on the 2-D grid graph. 1

2.1.2 Detailed Routing Formulation
The detailed routing resource is modeled as a 3-D regular grid

graph. Each grid edge can accommodate exact one wire detailed rout-
ing usage. Please note that the grid defined here are not of the same
concept with the global routing counterpart. We call the grid detailed
routing grid or finest grid. It is defined by the pitch size so the detailed
routing path on the grid would not cause spacing rule violations. Each
routing layer has a preferred routing direction and the preferred direc-
tion iterates between adjacent layers. The routing track is defined as

1In the following contexts, G-Cell, global edge and global capacity
mean 2-D G-Cell, 2-D global edge and 2-D capacity.

G-Celltrack

panel

Segments

(a) (b)

Upper
layer

3-D

global

edge

via

Figure 1: Problem formulation for global routing and de-
tailed routing (a) Detailed routing with panel, track, seg-
ments with two layers (b) Corresponding global routing grid
graph

Global Segment Extraction

Input 2-D Global Routing
Solution and 3-D Grids

Local Nets Routing by
Single Trunk V-Tree

Global Segment
Assignment

Output Detailed Routing
Solution

Assigned segments

Unassigned segments

(a) (b)

Track Routing

Regular Routing

Pin

via

Figure 2: (a) Overview of RegularRoute (b) Comparison
between track routing and regular routing

a sequence of grid edges along the preferred routing direction of each
layer.

The input is 2-D global routing solution We extract global segments
from the global routing solution. Each global segment spans multiple
G-Cells that the global route goes through. Panel is defined to be
the collection of parallel tracks in a row of column of G-Cells for each
metal layer. It is introduced to favor the global segment assignment for
paralleism. Spacing rule related design rule violations account for the
majority of design rule violations in a typical VLSI design. We mainly
consider the spacing rules during detailed routing since they have been
captured by the application of detailed routing grid. The congestion
of detailed routing is evaluated by the number of unassigned global
segments, meaning such global segments cannot be properly assigned
due to conflicts with other usage.

In Figure 1, we show the definitions we have mentioned for global
routing and detailed routing respectively. Simply speaking, global
routing generates global routing solution based on 2-D global routing
grid. The obtained results are used to generate the detailed routing
solution based on detailed routing grid. Hence the ultimate routabil-
ity should be pertinent to the congestion (number of unassigned seg-
ments) of detailed routing solution.

2.2 FastRoute and RegularRoute
Next we introduce the global routing and detailed routing algo-

rithms that are interleaved in GDRouter.
FastRoute is very fast and effective global router. It incorporates a

couple of ideas for solving the challenging global routing testcases. It
contains a number of works: FastRoute [14] is the first work which pre-
sented congestion-driven Steiner tree construction and edge shifting.
FastRoute 2.0 [15] introduced a novel monotonic routing to enhance
the pattern routing and a multi-source multi-sink maze routing to im-
prove maze routing. In FastRoute 3.0 [12], a virtual capacity technique
is proposed to achieve fast convergence of maze routing. FastRoute [1]
introduces routing techniques for reducing via count.

RegularRoute [2] is a recently proposed grid-based detailed rout-
ing technique. The router strives to generate regular routing patterns
(less turning) to benefit design rule satisfaction. In general, it adopts
a bottom-up layer-by-layer and panel-by-panel scheme. It employs a
spine routing technique to route the local nets. The global segments
are assigned panel-by-panel and a Maximum Weighted Independent

Set (MWIS) problem is formulated for each panel. RegularRoute em-
ployes a fast and effective heuristic to solve the problem for each panel.
For better detailed routing routability, the router introduces the ter-
minal promotion and partial assignment. RegularRoute looks similar
to the track routing problem [16] but there are great difference be-
tween the two. One important factor is that RegularRoute generates
a valid detailed routing solution where terminal connections are con-
sidered. General track routing simply overlooks terminal connection.
In Figure 2(a), we show the overview of RegularRoute and its algorith-
mic flow. In Figure 2(b), we present the example of solutions for both
RegularRoute and general track routing. We could easily discover the
difference between the two problems.

2.3 Algorithm Flow
The general flow of GDRouter is shown in Figure 3. Basically

the flow contains three main phases: (1) Initial Capacity and Rouing
Weight Estimation (2) Full Routing (3) Iterative Test Routing. The
flow of GDRouter interleaves the flow of FastRoute and RegularRoute
but it is not simply an addition of the two. There are many new
techniques introduced for better detailed routing routability and less
runtime overhead.

Phase 1: Initial Capacity and Routing Weight Estimation
1. Pin distribution analysis based on Gridded Voronoi
Diagram of detailed routing grids
2. Local usage estimated by Spine routing
3. Virtual routing by fast implementations of
FastRoute and RegularRoute

Phase 2: Full Routing
4. FastRoute
5. Global segment extraction
6. RegularRoute

Phase 3: Iterative Test Routing
7. Global capacity update based on RegularRoute’s solution
8. Incremental FastRoute to reroute nets
with unassigned global segments
9. History based RegularRoute to tune number of choice
of global segments
10. Repeat Phase 3 until reaching maximum iteration or
detailed routing routability stops improving

Figure 3: Flow of GDRouter

In particular, in ICRWE phase, pin distribution is analyzed based
on Gridded Voronoi Diagram. The weight for each global and detailed
routing grid is calculated and will be applied in the following global
and detailed routing. Spine routing and a virtual routing are per-
formed to generate the initial global capacity based on the estimated
local usage and global segment usage. Based on the initial global
capacity computed in Phase 1. GDRouer applies FastRoute and Reg-
ularRoute in full-routing mode to obtain detailed routing soluiton.
Next, GDRouter enters routing (ITR) phase to iteratively update the
global capacity to make sure the global routing is guided to avoid
detailed routing hotspots. To speed up the whole algorithm, an incre-
mental global routing technique and a history based global segment
assignment technique are applied for FastRoute and RegularRoute.
They are proposed to replace the time-consuming full routing. It
should be noted that in GDRouter, detailed routing has been fully in-
tegrated in our full-chip routing framework. The final routing solution
contains not only the detailed routing guided global routing solution,
but also the very detailed routing solution accompanied with it.

3. INITIAL CAPACITY AND ROUTING WEI-

GHT ESTIMATION
In this section, we will introduce techniques in ICRWE phase in

detail. In the first part, we will discuss a Gridded Voronoi Diagram
method to analyze pin distribution and how to compute the weight
for each global routing and detailed routing grid. Next, we introduce
the Spine routing to estimate local usage. Finally, we discuss virtual
routing to capture the global segment usage by fast implementations
of FastRoute and RegularRoute and how we generate initial global
capacity based the two techniques.

3.1 Pin Distribution Analysis based on Gridded
Voronoi Diagram

Pin distribution is an important indicator of potential routing con-
gestion. In the past, people usually use pin density i.e., number of
pins in one G-Cell to estimate pin related local hotspots. However,
pin density cannot fully capture detailed routing routability. Consider
one G-Cell containing 5 pins with even distribution while the other
G-Cell with 4 pins but with all pins concentrated in the G-Cell. The
latter one has lower pin density but more likely to be unroutable.

Q

M

P

(a)

A

B

C

(b)

a
b

Seed

0 1 2 3 4

0

1

2

3

4

Figure 4: (a) General Voronoi diagram with seeds and prox-
imity cells (b) Gridded Voronoi Diagram of detailed routing
grid

Therefore we propose to adopt pin distribution analysis along with
pin density in GDRouter.

In the work of [17], the paper utilizes voronoi diagram [18] to es-
timate the wire distribution and the corresponding critical area. In
this paper, we utilize Gridded Voronoi Diagram to estimate pin dis-
tribution. In a general Voronoi Diagram, the entire region indicates
the whole area under analysis, a seed indicates the subject of which
we are investigating the distribution (e.g., pin in our case). The prox-
imity cell of a seed is the sub-region in which each point has closest
proximity to the seed. The proximity cell boundary consists of the
points along the cell boundary, which have equivalent cloest proximity
to multiple seeds. Figure 4 illustrates a general voronoi diagram for a
region with nine seeds. For instance, point a belongs to seed P , and
point b is along the cell boundary of seed Q and has equal proximity
to P and Q.

The size of proximity cell indicates the distribution in the area
around the particular seed. For the case with evenly distributed seeds,
the voronoi diagram proximity cell is equivalent in size. For a case with
non-evenly distributed seeds, the relative size of the proximity cell in-
dicates the seeds’ distribution i.e., the smaller the size of a cell, the
denser seed’s distribution will be. For instance, in Figure 4(a), seed
P has smaller proximity cell than seed M , so points around P have
denser seeds’ distribution than M .

Based on this intuition, we could extend the general voronoi dia-
gram to detailed routing grid, and we call it Gridded Voronoi Diagram.
The main difference is the the region is now grid based and the seed
has become the pin. In our formulation, since each pin is located on
one detailed routing grid of M1 (metal 1), we will only look at the 2-D
detailed routing grid in M1 instead of other metal layers.

We define the proximity grids for a pin as the detailed routing grids
with closest proximity to a pin. And we define the peripheral grids
as the grids with equivalent cloest proximity with multiple pins. To
analyze the pin distribution for each grid, we first calculate the average
count of proximity grids (θ) for all pins, which is equal to total grids
divided by total pins. For any pin, we supppose the pin has g proximity
grids, the distribution for the pin’s proximity grids is calculated as
follows,

Dpx
g = β × (

θ

g
)α (1)

β =
θ × (p + 1)

W 2
(2)

where α is a parameters that need be tuned for optimization. In our
experiemnt, alpha equals 1.5. β is another factor tuning the distribu-
tion value. W is the length of square window which contains number
of grids cloest to g i.e., W 2 ≈ g . p is the number of pins inside the
window.2 For each peripheral grid, its distribution is equal to the
average of all pins it has closest proximity.

Dpr
g =

P

D
px
g

Npr

(3)

In the equation Npr is the total number of pins the peripheral grid
has closest proximity.

A gridded voronoi diagram for detailed routing grids is illustrated
in Figure 4, which contains a 5×5 grid with three pins. We list out
the closest proximity pin for each grid. For instance, grid (1, 1) in
coordinate is a peripheral grid which has equivalent closest proximity
to pin B and pin C. While grid (2, 0) and (2, 1)are two proximity grids
of pin C. And the pin distribution for each grid can ben computed
accordingly.

2The window is introduced to partly capture the impact of pin density
and to defferentiate grids in the same proximity cell.

The pin distribution of one G-Cell is calculated by averaging all
grids inside the G-Cell including both proximity grids and peripheral
grids, which is

Dcell =

P

Dg

G
(4)

In the equation, Dcell is the average pin distribution value of G-Cell,
and G is the number of grids inside the G-Cell.

Based on these computations, we assign the weight of each G-Cell in
global routing and each detailed routing grid in detailed routing. More
specifically, in global routing, the global path generation is weighed by
Dcell. And during detailed routing, the cost of assigning each global
segment is also weighed by Dg .

3.2 Local Usage Estimation
One factor that may affect global capacity is the local usage inside

one G-Cell. A net or part of a net that resides inside a G-Cell is a local
net. The local usage is treated as blockages when assigning global seg-
ments. Hence global capacity needs to be adjusted. In RegularRoute,
spine routing is applied to route local nets. Spine routing construct
routing tree using one vertical trunk and several horizontal branches.
The major advantage in terms of routability is the preservation of
routing resources. We apply spine routing for estimating local usage.

G-Cell

-1

-1

ok

-1

Close to Boundary

Exceed track limit

Figure 5: (a) Spine routing for estimating local usage

We reduce the global capacity for a global edge if local usage is close
to the boundary of the G-Cell (smaller than 3 grids) or the total usage
of one track inside the G-Cell is over 50%. Local usage that close to G-
Cell boundary is likely to block global segment usage (routing across
the G-Cell). And the track is likely to be blocked when the total local
usage is high, in which case we need to reduce capacity for both global
edges (e.g., left and right edges). In Figure 5, we show global capacity
adjustment when local usage is close to G-Cell boundary. It is also
illustrated that one track is assigned with usage more than 50%, the
capacity is reduced for both left and right global edges.

3.3 Virtual Routing for Estimating Global Seg-
ment Usage

The mere local usage estimation is not capable of accurately finding
detailed routing hotspots. In many cases, congestion occurs simply
when global segment cannot be assigned. In Figure 6, we show a
congested global edge with the global capacity of four. And the global
edge is used by four nets, which does not cause overflow in global
routing. But in reality only three of the segments can be assigned in
detailed routing. In this case congestion is caused by global segment
usage and the mismatch between global capacity and detailed routing
routability.

Since it is computationally hard to predict global segment usage
and its impact on global capacity, we propose to apply a virtual rout-
ing for global capacity adjustment. The virtual routing consists of
fast implementations of global and detailed routing. In particular, in
FastRoute, we only apply very fast pattern routing in ”L” and ”Z”

Global Edge
C_e = 4
U_e = 1
O_e = 0

G-Cell

Figure 6: Global segment derived congestion in detailed
routing without pin and local usage

shapes [19]. Although we may not obtain overflow free global rout-
ing solution, it provides with the information of global segment usage
with actual global routing paths. Next, the global routing solutions
are imported into RegularRoute. Likewise, we employ a fast mode
of RegularRoute with restricted solution space instead of trying to
generate the optimized solution. In particular, each global segment is
allowed to try fewer regular routing shapes. Terminal promotion and
partial assignment are disabled for saving runtime. As a matter of
fact, in such configuration, we only perform track routing.

After virtual routing, we obtain the detailed routing routability in
terms of the unassigned global segments. For each global edge e along
the unassigned global segment, suppose we have the global capacity
Ce, the global routing overflow Oe and the total number of unassigned
segments is Ue. Although global edge e has global routing overflow Oe,
in detailed routing, the actual unassigned global segment is Ue. The
mismatch of global capacity and detailed routing is actually Ue −Oe.
We adjust the global capacity by the following equation, C′

e is the
new capacity, γ is a coefficient to suppress the over-adjustment of the
global capacity. γ equals 0.5 in our experiment.

C′

e = Ce − γ × (Ue − Oe) (5)

Based on the spine routing and the virtual routing, we obtain the
inital global capacity. With the initial global capacity, GDRouter
enters full routing phase in which FastRoute and RegularRoute are
applied in full-routing modes.

4. ITERATIVE TEST ROUTING
In this section we present techniques in the iterative test routing

(ITR) phase. The main idea is to update global capacity iteratively
based on interleaved global and detailed routing. Detailed routing
routability in terms of unassigned global segments is utilized to ad-
just the global capacity. To improve runtime, an incremental global
routing technique is proposed for the interleaved global routing. And
a novel history based detailed routing technique is proposed for the
interleaved detailed routing. ITR terminates when it reaches max-
imum iteration or the number of unassigned global segments stops
improving. In the end, the routing solution contains not only a de-
tailed routing guided global routing solution, but also the very detailed
routing solution accompanied with it.

4.1 Adaptive Global Capacity Update
As the flow shown in Figure 3, after ICRWE, we apply global rout-

ing and detailed routing using FastRoute and RegularRoute with full-
routing features. During the global routing stage, the 2-D global
routing solution in terms of the global route on the global routing
grids is obtained. We extract global segments based on the solution.
In the subsequent detailed routing stage, RegularRoute is applied to
route local nets and assign global segments. After detailed routing,
the detailed routing routability is obtained in terms of the number of
unassigned global segments, with the indication of where the actual
detailed routing congestion is. We need to update the global capac-
ity to make sure global routing is properly guided by actual detailed
routing bottlenecks.

As defined in Section 2.1.2, a global segment represents an interval
spanning multiple G-Cells. It should be assigned to the tracks to the
panels it belongs to. If a segment is unassigned, it suggests the panels
are unable to accommodate the segment. We update global capacity
based on the global edges along the unassigned global segment. For
each global edge e after detailed routing, Ae is the number of assigned
global segment, Ce is the original global capacity, Ue is the number of
unassigned segments, and Re is the accumulated amount of capacity
adjustment (positive for reduction, negative for increase). We will
adaptively update the global capacity based on the following cases
(we use C′

e to represent the new capacity): i) If Ae + Ue > Ce + Re

and Ue > 0.2 × (Ce + Re, when the global capacity is excessively
overestimated, C′

e = Ce × 0.9; ii) If Ae + Ue > Ce + Re and 0.2 ×
(Ce+Re) ≥ Ue > 0, when global capacity is moderately undertimated,
C′

e = Ce − 1; iii) If Ae + Ue ≤ Ce + Re − 2 and Ue = 0, when global
capacity is underestimated, C′

e = Ce + 1; iv) In all other cases, when
global capacity is roughly accurate, C′

e = Ce. In general, capacity
reduction and increase is carried out without too large amount since
(1) The detailed routing hotspot may change over-time, it is not proper
to drastically reduce the global capacity. (2) We do not intend to
disturb the original solution, otherwise it takes more computational
effort in the subsequent global routing and detailed routing in ITR.

4.2 Techniques to Reduce Runtime Overhead
Runtime is the major overhead in ITR if we apply FastRoute and

RegularRoute in full-routing features. As a matter of fact, in very con-
gested designs global capacity might become very restricted, and the
global routing could become too congested to achieve routing conver-
gence. In such case, RegularRoute would spend longer runtime due to

the extra global segment usage introduced by the detoured global path
in FastRoute. To reduce runtime overhead, we propose techniques for
FastRoute and RegularRoute to improve runtime in ITR. More specif-
ically, we propose incremental global routing technique for FastRoute
and history based global segment assignment for RegularRoute.

4.2.1 Incremental Global Routing
Instead of applying FastRoute with full features in ITR, we propose

an incremental global routing technique. As introduced in Section 2.2,
FastRoute is a sequential global router which is rip-up and reroute
based. Nets are routed sequentially from step to step. Therefore,
we rip-up and reroute nets using over-capacity edges. This approach
would reduce the number of routed nets significantly. Moreover, most
global routers like FastRoute strive to minimize global routing overflow
and spend long runtime on maze routing. We propose to terminate
maze routing when the congestion improvement is less than a thresh-
old value, which is 5% of the initial total global routing overflow. After
obtaining incremental global routing solution, we only re-extract the
global segments of the nets that are rerouted.

4.2.2 History Based Detailed Routing
In RegularRoute, solution space of assigning global segment is ex-

plored based on a number of regular routing shapes i.e., the specific
track, layer and terminal routing, of each global segment. Each can-
didate shape is defined as one Choice of the segment. Basically one
segment is more flexible given more choices. As noted earlier, to per-
form RegularRoute in full features inside ITR would be very compu-
tationally expensive. We propose the history based detailed routing
to reduce runtime overhead. In particular, for the nets that are not
rerouted in incremental global routing, we will recommend to use the
choices of global segments of last iteration, or in other words, we rank
the recommended those choices with higher priority. If one segment
is consistently assignable, we gradually decrease the number of choice
or even just provide the choice of last iteration. This technique is
especially effecitve for the panels that are not congested. Conversely,
for the tough-to-handle global segments, we increase their number of
choices to improve routability. But with the algorithm continues, fewer
global segments are unassignable and the runtime for each iteration
of ITR is further reduced.

5. EXPERIMENTAL RESULTS
We implement GDRouter in C and all our experiments are per-

formed on a machine with 2.67GHz Intel Xeon CPU and 32G mem-
ory. We derive the testcases from ISPD98 [3] and ISPD05/06 [4, 5]
placement benchmarks. In original ISPD98 benchmarks, pins are set
to be at the center of each standard cell, we develop a program to ran-
domly set the pin coordinates and make sure they satisfy the spacing
requirements at the bottom layer.3 We use Dragon [20] to generate
the placed testcases for ISPD98 benchmarks and use FastPlace [21] to
generate those for ISPD05/06 benchmarks. Other placement meth-
ods [22] [23] [24] are worthy alternatives but it is out of the content of
this paper. We will then derive the global routing benchmark based
on placed testcase with the same format as ISPD07/08 global routing
contest benchmarks [7, 8].

5.1 Initial Capacity Estimation Results

EM1 EM2 EM3 ICRWE
Name unass-CPUunass-CPUunass- CPU unass-CPU

igned (sec.) igned (sec.) igned (sec.) igned (sec.)
ibm01 0 9.7 0 7.3 4 18.6 0 11.2
ibm02 25 19.2 36 15.6 78 44.3 21 18.4
ibm07 55 37.6 66 34.3 108 98.5 43 42.5
ibm08 19 62.4 23 41.6 26 122.1 20 57.1
ibm09 24 78.2 32 52.5 42 175.2 19 55.4
ibm10 55 98.4 65 73.2 99 188.4 34 103.6
ibm11 25 93.4 19 68.9 46 155.9 16 87.2
ibm12 145 206.5 168 114.5 255 355.2 102 137.2
Sum 348 605.4 409 407.9 658 1158.2 255 512.6
Norm 1.36 1.48 1.60 1 2.58 2.84 1 1.26

Table 2: Results comparison with three empirical methods
for estimating global capacity up to full routing phase (Phase
2) in GDRouter on ISPD98 derived testcases.

We present experimental results of techniques in the initial capacity
and routing weight estimation phase on ISPD98 derived testcases.
The results are summarized in Table 2. We compare ICRWE against
three empirical methods, namely EM1, EM2 and EM3 respectively. In
particular, EM1 assumes the first two metal layers (M1 and M2) have

3We assume all pins are on M1.

0% of full capacity and the rest of layers have 50% of the full capacity.
EM2 assumes the first two metal layers have 20% of full capacity and
the rest of layers have 80%. And EM3 assumes the first two metal
layers have 40% of full capacity and the rest of layers have 100%. In
our experiments, all parameters are identical for the four cases.

In Table 2, we present the results for each case respectively. We
could notice that ICRWE is capable of achieving best routability
among the four methods. EM1 tends to underestimate the global
capacity. It makes the global routing much harder to solve and cre-
ates more extra detours. The extra detoured usage is likely to incur
more global segment usage and thus affect detailed routing routability.
On the other hand, EM3 tends to overestimate the global capacity.
The global routing problem in EM3 is easier to solve, but it leads to a
harder-to-solve detailed routing problem. The runtime becomes much
worse since the runtime spent on detailed routing increases dramati-
cally. EM2 generates reasonably good solution. But the same success
cannot be guaranteed for all design cases. Overall, ICRWE provides
more accurate global capacity estimation than the empiricle methods
and it generates best routability.

5.2 GDRouter Results on ISPD98 Derived Test-
cases

We present experimental results for GDRouter on the eight ISPD98
derived testcases. We compare our results with three variations of
GDRouter. All the results are summarized in Table 3. In the table,
the first three columns provides us the basic statistics of the testcases.
#Nets is the total number of nets in the testcase, Grid is the scale of
global routing grid, Avg.Deg. is the average net degree for the entire
netlist. These statistics provide an overview of the complexity for each
testcase.

The next columns show the results on three different variations of
GDRouter. In particular, the first one is GDRouter without ICRWE
phase. It applies EM2 (20% M1-M2, 80% All other layers). Second
variation is GDRouer without ITR phase. It is the same as reported
in Table 2 for the ”ICRWE” case. The third variation is GDRouter
without incremental global routing and history based detailed routing
techniques. And the last three columns show results for GDRouter
with all proposed techniques.

From the table, it is noticeable that all proposed techniques are
indispensable in GDRouter. In particular, ICRWE provides a good
starting point with more accurate initial global capacity. Likewise,
ITR is an important component since the number of unassigned seg-
ments is consistently reduced in this phase. And the incremental
global routing technique and history based detailed routing technique
significantly reduce runtime overhead (roughly 2 times), though Fas-
tRoute and RegularRoute in full features generate slightly better QoR.
In terms of runtime, GDRouer without ITR is close to conventional
routing flow (except some runtime spent in ICRWE phase). It shows
GDRouter is capable of reducing number of unassigned segments by
90% with 2.9× runtime overhead.

5.3 GDRouter Results on ISPD05/06 Derived Test-
cases

We present experimental results for GDRouter on the eight ISPD05
/06 derived testcases. Similarlly, we compare our results with three
variations of GDRouter. All the results are summarized in Table 4.
The circuit statistics report the similar metrics of each testcase. They
are typically much larger in design size than the testcases derived from
ISPD98 benchmarks. In ISPD07/08 [7,8] global routing contests, the
pitch size is set to 2 to make the global routing benchmarks more
challenging. They are not easy to handle in detailed routing. Hence
we perform our experiments on testcases with two cases (pitch size
equals one and two respectively).

Like the experiments on ISPD98 derived testcases, we compare
GDRouter with three variations, GDRouter without ICRWE, GDRou-
ter without ITR and GDRouter without incremental global routing
and history based detailed routing. We could notice for large designs,
GDRouter is also effective in improving detailed routing routability.
In particular, it shows that GDRouter reduces over 60% unassigned
global segments when pitch size is two and over 90% when pitch size is
one. And it is also noticeable that all techniques are indispensable in
GDRouter. In terms of runtime, GDRouter spends 2.8× and 2.1× of
conventional routing flow (GDRouter without ITR) for the two cases
with pitch size equals 2 and 1 respectively. Overall, GDRouter is
capable of generating cost efficient detailed routing results.

6. CONCLUSION
In this paper, we propose GDRouter: an interleaved global rout-

ing and detailed routing algorithm for the ultimate routability. It
contains three phases: initial capacity and routing weight estimation
(ICRWE), full routing and iterative test routing (ITR). Pin distribu-
tion is analyzed based on the novel Gridded Voronoi Diagram and
each global grid and detailed routing grid is assigned weight based on

statistics w/o ICRWE w/o ITR w/o Runtime GDRouter
Avg. unass- CPU unass- CPU unass- CPU unass- CPU

Name #Nets Grid Deg. igned (sec.) iter igned (sec.) iter. igned (sec.) iter. igned (sec.) iter.
ibm01 11507 133×132 3.85 0 7.3 0 0 11.2 0 0 11.2 0 0 11.2 0
ibm02 18427 152×151 4.23 2 54.6 5 21 18.4 0 0 95.5 5 0 60.5 5
ibm07 44394 229×228 3.70 0 104.2 4 43 42.5 0 0 202.3 4 0 111.4 4
ibm08 47944 239×238 4.13 0 130.9 4 20 57.1 0 0 288.6 4 0 142.0 4
ibm09 50393 243×242 3.73 8 162.3 4 19 55.4 0 0 302.6 5 0 177.6 5
ibm10 64227 316×315 4.19 6 221.6 5 34 103.6 0 0 523.2 5 2 220.4 5
ibm11 66994 276×275 3.54 8 213.6 4 16 87.2 0 0 402.6 4 0 235.1 4
ibm12 67739 341×340 4.34 30 466.7 7 102 137.2 0 12 988.1 7 21 498.5 7
Sum - - - 54 1361.2 - 255 512.6 - 12 2814.1 - 23 1456.7 -
Norm - - - 2.3 0.93 - 11.1 0.35 - 0.5 1.9 - 1 1 -

Table 3: Results comparison for GDRouter for variations (GDRouter w/o ICRWE, GDRouter w/o ITR, GDRouter w/o
incremental global routing and history based detailed routing in ITR) on ISPD98 derived testcases

statistics w/o ICRWE w/o ITR w/o Runtime GDRouter
Avg. Pitch unass- CPU unass- CPU unass- CPU unass- CPU

Name #Nets Grid Deg. igned (min.)iter igned (min.)iter. igned (min.)iter. igned (min.)iter.
adaptec1 219243 893×892 4.28 1244 42 4 3019 16 0 1044 81 4 1259 44 4
adaptec2 257659 1174×1172 4.09 221 24 3 972 11 0 189 55 3 198 26 3
adaptec3 466293 1935×1946 4.01 1462 85 5 3177 29 0 993 186 5 1088 89 5
adaptec4 515300 1933×1945 3.70 1755 67 4 3822 27 0 1450 110 4 1562 71 4
adaptec5 867344 1935×1946 3.99 2 3345 205 5 8467 74 0 2844 420 5 3177 211 5
newblue1 331106 934×932 3.68 45 18 4 376 7 0 32 31 4 34 19 4
newblue5 1257334 2122×2132 3.87 2821 197 5 7718 71 0 2444 409 5 2593 206 5
newblue6 1286448 2310×2318 4.09 3672 220 5 8892 84 0 3012 449 5 3411 226 5

Sum - - - 14565 858 - 36443 319 - 12008 1741 - 13322 892 -
Norm - - - 1.09 0.96 - 2.7 0.36 - 0.90 1.95 - 1 1 -

adaptec1 / / / 0 12 0 0 14 0 0 14 0 0 14 0
adaptec2 / / / 0 8 0 0 10 0 0 10 0 0 10 0
adaptec3 / / / 2 42 2 16 26 0 0 94 2 0 45 2
adaptec4 / / / 0 48 3 44 23 0 0 90 3 0 52 3
adaptec5 / / / 1 30 155 4 156 62 0 10 298 4 18 160 4
newblue1 / / / 0 5 0 0 6 0 0 6 0 0 6 0
newblue5 / / / 24 139 4 81 55 0 0 266 4 4 144 4
newblue6 / / / 16 98 3 42 63 0 0 212 3 0 102 3

Sum - - - 72 507 - 339 259 - 10 990 - 22 533 -
Norm - - - 3.27 0.95 - 15.4 0.49 - 0.45 1.86 - 1 1 -

Table 4: Results comparison for GDRouter for variations on ISPD05/06 derived testcases

pin distribution. Spine routing and virtual routing are applied to gen-
erate initial global capacity. In ITR, GDRouter further polishes the
initial global capacity based on detailed routing results. Experimental
results on both ISPD98 and ISPD05/06 derived testcases demonstrate
the effectiveness and efficiency of our algorithm.

We will continue to improve GDRouter’s performance and scalabil-
ity. We will propose more systematic frameworks to perform capacity
update. Meanwhile, we will also enhance the solution quality of the
interleaved global routing and detailed routing algorithms.

7. REFERENCES
[1] Y.Xu, Y.Zhang, and C.Chu. FastRoute 4.0: Global router with

efficient via minimization. In Proc. Asia and South Pacific
Design Automation Conf., pages 576–581, 2009.

[2] Y. Zhang and C. Chu. RegularRoute: An efficient detailed
router with regular routing patterns. In Proc. ACM/SIGDA
Intl. Symp. on Physical Design, pages 146–151, 2011.

[3] ISPD98 global routing benchmarks.
http://www.ece.ucsb.edu/∼kastner/labyrinth.

[4] ISPD05 placement contest benchmarks.
http://www.sigda.org/ispd2005/contest.htm.

[5] ISPD06 placement contest benchmarks.
http://www.sigda.org/ispd2006/contest.htm.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman, NY,
1979.

[7] ISPD07 global routing contest benchmarks.
http://www.sigda.org/ispd2007/contest.htm.

[8] ISPD08 global routing contest benchmarks.
http://www.sigda.org/ispd2008/contest.htm.

[9] K. Yuan M. Cho, K. Lu and D. Z. Pan. Boxrouter 2.0:
Architecture and implementation of a hybrid and robust global
router. In Proc. Intl. Conf. on Computer-Aided Design, pages
503–508, 2007.

[10] P.-C. Wu J.-R. Gao and T.-C. Wang. A new global router for
modern designs. In Proc. Asia and South Pacific Design
Automation Conf., pages 232–237, 2008.

[11] M. M. Ozdal and M. D.F. Wong. High-performance routing at
the nanometer scale. In Proc. Intl. Conf. on Computer-Aided
Design, pages 496–502, 2007.

[12] Y. Zhang, Y. Xu, and C. Chu. FastRoute 3.0: A fast and high
quality global router based on virtual capacity. In Proc. Intl.
Conf. on Computer-Aided Design, pages 344–349, 2008.

[13] IBM-Place 1.0 benchmark suites.
http://er.cs.ucla.edu/benchmarks/ibm-place/.

[14] M. Pan and C. Chu. Fastroute: A step to integrate global
routing into placement. In Proc. Intl. Conf. on Computer-Aided
Design, pages 464–471, 2006.

[15] M.Pan and C.Chu. FastRoute 2.0: A high-quality and efficient
global router. In Proc. Asia and South Pacific Design
Automation Conf., pages 250–255, 2007.

[16] S. Batterywala, N. Shenoy, W. Nicholls, and H. Zhou. Track
assignment: A desirable intermediate step between global
routing and detailed routing. In Proc. Intl. Conf. on
Computer-Aided Design, pages 59–66, 2002.

[17] H. Chen, S. Chou, S. Wang, and Y. Chang. Novel wire density
driven full-chip routing for cmp variation control. In Proc. Intl.
Conf. on Computer-Aided Design, pages 831–838, 2007.

[18] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkoph. Computational Geometry: Algorithms and
Applications. Springer, 1997.

[19] E. Bozorgzadeh R. Kastner and M. Sarrafzadeh. Pattern
routing: Use and theory for increasing predictability and
avoiding coupling. IEEE Trans. on Computer-Aided Design and
Integrated Circuits and Systems, 21(7):777–790, July 2002.

[20] X.Yang, B.Choi, and M.Sarrafzadeh. Routability-driven white
space allocation for fixed-die standard-cell placement. IEEE
Trans. on Computer-Aided Design and Integrated Circuits and
Systems, 22(4):410–419, April 2003.

[21] N.Viswanathan, M.Pan, and C.Chu. FastPlace 3.0: A fast
multilevel quadratic placement algorithm with placement
congestion control. In Proc. Asia and South Pacific Design
Automation Conf., pages 135–140, 2007.

[22] Y. Zhang and C. Chu. CROP: Fast and effective congestion
refinement of placement. In Proc. Intl. Conf. on
Computer-Aided Design, pages 344–350, 2009.

[23] J.Z. Yan and C. Chu. Handling complexities in modern
large-scale mixed-size placement. In Proc. ACM/IEEE Design
Automation Conf., pages 436–441, 2009.

[24] J.Z. Yan and C. Chu. DeFer: defered decision making enabled
fixed-outline floorplanner. In Proc. ACM/IEEE Design
Automation Conf., pages 161–166, 2008.

