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Abstract

Detailed routing is an important phase of realizing exact routing

paths for optimizing various design objectives and satisfying in-

creasingly complicated design rules. In this paper, we propose Reg-

ularRoute, a fast detailed router trying to use regular routing pat-

terns in a correct-by-construction strategy for better routability and

design rule satisfaction. Given a 2-D global routing solution and the

underlying routing tracks, we generate a detailed routing solution

in a bottom-up layer-by-layer manner. For each layer, the routing

tracks are partitioned into a number of panels. We formulate the

problem of assigning global segments into different tracks of each

panel as a Maximum Weighted Independent Set (MWIS) problem.

We propose a fast and effective heuristic to solve the MWIS prob-

lem. Then unassigned segments after MWIS are partially routed by

a greedy technique. For the unrouted portion of each segment, its

terminals are promoted so that the assignment is deferred to upper

layers. At top layers, we apply panel merging and maze routing

techniques to achieve better routability. Due to the unavailability

of academic detailed routing benchmarks, we proposed two sets of

detailed routing testcases derived from ISPD98 [1] and ISPD05 [2]

placement benchmark suites respectively. The experimental results

demonstrate the effectiveness and efficiency of RegularRoute.

1 Introduction

Because of the problem complexity, VLSI routing is usually divided

into global routing and detailed routing. In the global routing stage,

rough routing decisions are made based on G-Cell-to-G-Cell (e.g.,

global routing cell) connection on a global routing grid graph. De-

tailed Routing, on the other hand, realizes exact routing paths con-

sidering geometrical constraints based on the global routing solu-

tion. Detailed routing is an important stage in the sense that it is di-

rectly related to the routing completion and design rule satisfaction.

It also impacts many design metrics such as timing, manufacturabil-

ity, etc.

Detailed routing has been extensively studied since 70’s (e.g.,

[3,4]) but the topic is not frequently seen in recent publications. For

modern designs in which over-the-cell routing is applied, the most

common technique for detailed routing is rip-up and reroute such

as the one in Mighty [5]. However, such a sequential net-by-net

approach is ineffective in handling congested designs and it usu-

ally creates unnecessary detour. DUNE [6] and MR [7] proposed to

handle full chip gridless routing by similar multilevel approaches,

in which the routing undergoes a coarsening phase and an uncoars-

ening phase. But these multilevel routers still rely on the sequential

rip-up and reroute technique and nets at the upper levels of the hi-

erarchy are routed based on inaccurate information. There are sev-

eral attempts which consider nets in a more simultaneous manner

during detailed routing. Nam et al. [8] proposed a detailed router

for FPGA based on Boolean satisfiability. Though this approach

achieves good solution quality, the runtime is extremely long. Zhou

et al. [9] introduced track assignment as an intermediate step be-

tween global and detailed routing. In track assignment, segments

extracted from global routing solution are assigned to routing tracks.

This problem is NP-complete and is solved by a weighted bipartite

matching based heuristic. However, the connections of a segment to

pins or segments in other layers are not completed during track as-

signment. They are postponed to detailed routing, which may fails

to connect different parts of a net. Mustafa [10] presented an in-

sightful technique to perform escape routing for dense pin clusters,

which is a bottleneck of detailed routing. A multi-commodity flow

based optimal solution and a Lagrangian relaxation based heuristic

are proposed. Nevertheless, the technique is not proposed to solve

whole-chip scale detailed routing.

With diminishing feature size, many complex design rules are

imposed to ensure manufacturability. It has been reported that for

32nm process, the number of rules reaches several thousands [11]

and the design rule manual has roughly a thousand pages [12].

The dramatic increase in the number and complexity of the design

rules makes detailed routing progressively complicated and time-

consuming. We notice that many of those complex rules are trig-

gered only by non-trivial routing patterns. Here we define regular

patterns as those avoiding jogs and unnecessary detours as much

as possible. Figure 1 illustrates two routing solutions for the same

problem. The top one is irregular routing with many jogs and de-

tours while the bottom one is regular routing which only uses simple

patterns. If only regular patterns are used, it is not even necessary

to check many design rules and the routing solution will be correct

by construction. On the other hand, if a routing solution is irregu-

lar, even though it may not violate any design rule, it is likely to be

detrimental for both yield and routability. Moreover, regular rout-

ing introduces less vias, jogs and wirelength, and hence is better in

terms of timing, signal integrity and power consumption. In order

to reduce the implementation complexity and runtime of detailed

routers and to improve the electrical properties, yield and routability

of circuits, we propose to perform detailed routing based on regular

patterns. Note that this approach is along the lines of the restrictive

design rule approach that the industry has started applying to the de-

vice layers to enhance manufacturability. In this paper, we extend it

to the interconnect layers.

Potentially, regular routing may adversely affect routability be-

cause it is more restrictive and may be less effective in resolving

congestion. This paper shows that with an appropriate algorithm,

regular routing can be effective since the solution space can be ex-

plored much more effectively and efficiently. On the contrary, for

routing with general patterns, the solution space is much larger. But

it is also much harder to be explored. The best known approach is

to route the nets one by one using maze routing together with rip-up

and reroute. Such an approach is very time-consuming (especially if

complicated design rules need to be checked repeatedly throughout

the routing process) and is prone to getting stuck in local minima.

In this works, we present a fast and effective algorithm called

RegularRoute to perform detailed routing with regular patterns.
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Figure 1: (a) Non-trivial routing patterns. (b) Regular routing pat-

terns.

Novel techniques in RegularRoute are listed below:

• We introduce a new bottom-up layer-by-layer framework for

detailed routing.

• We propose a single trunk V-Tree topology for routing nets

local to a G-Cell.

• We decompose the routing problem of nets spanning multiple

G-cells into assignment of global segments into panels. This

approach facilitates parallel processing as assignment for dif-

ferent panels are independent of one another.

• We formulate the global segment assignment problem for each

panel as a Maximum Weighted Independent Set (MWIS) prob-

lem. This formulation enables all segments to be considered

simultaneously.

• We present a fast and effective heuristic to solve MWIS.

• We employ a technique to maximize the usage of a panel

by partially assigning some of the remaining segments after

MWIS.

• We introduce a terminal promotion technique to connect vari-

ous segments of each net assigned to different layers.

• We present panel merging and maze routing techniques to han-

dle unassigned segments at the top layers.

We implemented RegularRoute and tested its performance on de-

tailed routing testcases derived from ISPD98 [1] and ISPD05 [2]

placement benchmarks respectively. Experiments show that Regu-

larRoute performs well in both quality and runtime.

The rest of paper is organized as follows: Section 2 provides the

problem formulation and an overview of RegularRoute. Section 3

discusses the routing for local nets. In Section 4, we introduce tech-

niques for handling global segments assignment. Experimental re-

sults are shown in Section 5.

2 Preliminaries

In this section, we will present some terminologies, the problem

formulation and the algorithm flow of RegularRoute.

2.1 Terminologies and Problem Formulation

In this paper, as regular routing is considered, we model the routing

resource as a 3-D regular grid graph. Each grid edge can accom-

modate one wire except for edges with blockage, which cannot be

used. Each layer of the graph has a preferred routing direction and

the preferred directions of adjacent layers are perpendicular to each

other. We assume the preferred direction of lowest layer (metal1) is

horizontal. For each layer, the routing usage that is in the preferred

direction is called preferred usage. Otherwise, the routing usage that

is perpendicular to the preferred direction is called non-preferred us-

age. A sequence of unblocked grid edges along the preferred routing

direction of each layer is called a routing track.

Assume a placed netlist with exact pin locations and a corre-

sponding 2-D global routing solution are given. In this paper, we

assume all pins are on metal1. The detailed routing problem is to

route all nets on the grid according to the global routing solution

such that routes of different nets do not intersect. The primary objec-

tive of detailed routing is to complete as many nets as possible. The

secondary objectives include minimizing non-preferred usage, via

count and wirelength. In industrial applications, there may be many

other design metrics such as timing, crosstalk, yield, etc. These met-

rics can potentially be incorporated into our framework but they will

not be handled directly in this paper.

In our framework, the global routing solution of each net is par-

titioned into a set of segments by breaking it at the turning points.

Each segment is a horizontal (or vertical) route which spans multiple

G-Cells in a row (or column). Then detailed routing of global nets

is formulated as assigning the global segments to the routing tracks.

Ideally, each segment should be assigned to one track. In order to

make routing less restrictive, assigning a segment to more than one

tracks connected by short non-preferred usage or via is allowed but

discouraged. We define a panel to be the collection of all tracks on

one layer within one row (for odd layer) or one column (for even

layer) of G-Cells. Figure 2 shows the definitions of track, segment

and panel. Note that each segment can only be assigned to tracks on

a deck of panels that are on different layers but are associated with

the same row/column of G-Cells spanned by the segment. In other

words, it is natural to perform the global segment assignment in a

panel-by-panel manner.

G-Cell
track

panel

Segments

Figure 2: Definitions of track, segment and panel.

2.2 Algorithm Flow

We show the flow of RegularRoute in Figure 3. RegularRoute starts

with extracting global segments by breaking the 2-D global rout-

ing solution. Then local nets are pre-routed using the single trunk

V-Tree topology. In the following global segment assignment, the

routed path of local nets are treated as blockages. Next, we perform

global segment assignment in a bottom-up layer-by-layer manner.

At each layer, the segment assignment of different panels are han-

dled independently. For each panel, we formulate global segment

assignment using regular routing patterns as a MWIS problem and

solve it by an effective heuristic. After that, we apply a partial as-

signment technique to increase the utilization of the panel. Then

if we have not reached the top horizontal or vertical layers, for the

unassigned segments, we promote their terminals and defer their as-

signment to upper layers. For the unassigned segments at the top

layers, we utilize a panel merging technique which provides more



flexibility in the assignment by allowing segments to deviate from

the global routing solution. Finally, maze routing is applied for the

residual unassigned segments.

Global Segment Extraction 

Local Net Routing by Single Trunk V-Tree 

Global Segment Assignment 

Consider Bottom Layer 

Solve MWIS for Each Panel 

Partial Assignment for Each Panel 

Next Layer 

Terminal Promotion 

Panel Merging and Maze Routing 

Top 

Layer? 

No 

Yes 

Figure 3: Flow chart for RegularRoute.

3 Local Net Routing

In detailed routing, the net or sub-net that resides totally inside one

G-Cell is called a local net. In RegularRoute, local nets are routed

before assigning global segments. The routing solutions of the local

nets are treated as blockages in the following global segment assign-

ment. It is possible to route local nets and global segments simulta-

neously by integrating local net routing into the MWIS framework

in Sec. 4.1. But in order to reduce the size of MWIS problems and

hence the runtime of the whole algorithm, we choose to handle local

nets before global segments.

In this section, we first introduce local net routing by single trunk

V-Tree topology. We then demonstrate that single trunk V-Tree

topology can better preserve routing resources to be used in global

segment assignment. It is possible to have conflicts among the sin-

gle trunk V-Trees of different nets. Hence we also present a branch

and trunk shifting technique to resolve the conflicts.

3.1 Single Trunk V-Tree Topology

Single trunk tree has been proposed to predict the routing usage or

interconnect properties at early design stages [13]. In here, we use a

single trunk tree with the trunk being vertical to route the local nets.

We call this topology single trunk V-tree. Consider all the pins inside

a G-Cell. The x-coordinate of the trunk is set to be the median of

the x-coordinates of all pins. The trunk spans from the minimum y-

coordinate to the maximum y-coordinate of all pins. The trunk is on

metal2. We connect each pin to the trunk with a metal1 (horizontal)

connection, which we call a branch, and a via. Figure 4 shows an

example of single trunk V-Tree.

Single trunk V-Tree can be easily constructed in time linear to the

number of pins in a local net. In our testcases, the average pin count

is very small (around 3). So the runtime is negligible compared to

other steps.

There are many candidate topologies to construct the trees for lo-

cal nets. For instance, RSMT and RMST are promising candidates.

Single Trunk V-Tree RSMT

Figure 4: Track blockage count for single trunk V-Tree and RSMT.

The reason we choose single trunk V-Tree is for the sake of saving

routing resources on metal2. In Figure 4, single trunk V-Tree and

RSMT are presented for the same 5-pin net. In metal1, five tracks

are blocked in both cases. In metal2, only one track is blocked for

single trunk V-Tree, but three tracks are blocked for RSMT. As sin-

gle trunk V-Tree blocks fewer tracks on metal2, global segment as-

signment will have more tracks to use later on.

3.2 Trunk and Branch Shifting

During the local net routing, we first determine the vertical trunk. If

the total pin number is odd, the trunk has only one choice for min-

imum wirelength. Each branch has only one choice too. If there

are multiple local nets inside one G-Cell, there is a risk of conflict

among trees of different local nets. To avoid the conflict, we apply

trunk and branch shifting by trying neighboring tracks. Any un-

resolved conflict can be resorted to higher layers (e.g., metal3 and

metal4). But in our experiments, all local nets can be routed using

only metal1 and metal2. The results will be shown in Section 5.

4 Global Segment Assignment

In this section, we cover the details of global segment assignment.

We first present the detailed formulation of assigning global seg-

ments to a panel using regular routing patterns. The problem is

then converted into a Maximum-Weighted Independent Set (MWIS)

problem which is solved by a fast and effective heuristic. We next

discuss the technique to perform a partial assignment for increasing

the routing resource utilization of current layer. Then we talk about

the terminal promotion techniques to defer the unassigned segments

to upper layers. For the unassigned segments on the top layers, we

develop effective panel merging and maze routing techniques for

final routing closure.

4.1 MWIS based Solution for One Panel

In Section 2.1, we have mentioned the global segment assignment

problem for each layer is solved by a panel-by-panel strategy. Solv-

ing the segment assignment problem of one panel is a fundamental

component to the whole algorithm. In this subsection, we will inves-

tigate this problem. Without loss of generality, our examples only

consider horizontal panels (metal1, metal3, etc.).

A global segment is a horizontal only or vertical only portion of

a net extracted from the 2-D global routing solution. The remaining

portion of the net in either end of a segment is represented by a

terminal. When a segment is assigned to a track, each of its ends

should be connected to its associated terminal. A terminal can be a

pin, a partial assignment of the segment or a neighboring segment.

The concept of terminal is illustrated in Figure 5. In this figure,

we show two assigned segments. The first segment is incident to

a partial segment on the left and a pin on the right. The second

segment is incident to a neighboring segment (which has not been



assigned and is shown in dotted line) on the left and a pin on the

right. The connection between an assigned segment and its terminal

is called a terminal connection. Note that this example assumes the

pin and partial wire are on the same layer with the segment, but it is

not necessary to be true. We will have more discussion on terminals

in later subsections.

pin

partial wire

segment 1

terminal 

connection

neighboring 

segment

segment 2

Figure 5: Illustration of terminal.

We introduce the concept of choice for assisting the assignment

of a segment. A choice is a valid candidate solution to assign a

segment using a regular routing pattern when other global segments

are ignored. A choice is determined by the track being used and

the terminal connections being made. In particular, a choice for a

segment can be represented by (t, R). t is a track in the panel that

the segment is assigned to, and R is a collection of short wires and/or

vias that the assigned segment used to connect to its terminals. A

simple example is shown in Figure 6. In this example, segment i

has one choice c i1, and segment j have two choices c j1 and c j2.

Each choice specifies both the track and the short connections to the

terminals. The terminal connections are highlighted as R1, R2 and

R3 respectively. When two choices cannot co-exist, we said there

is a conflict between the two choices. For instance, c i1 conflicts

with c j2. Besides, different choices for the same segment mutually

conflict with each other. For example, c j1 conflicts with c j2.

tracks

c_j1
c_i2

vertex

edge

t1

t2

t3

t4
C_j1(t3, R3) c_i2 (t3, R2)

c_i1 (t1, R1)

c_i1

R1
R2R3

Figure 6: Conflicting choices and conflict graph.

We formulate the global segment assignment problem for one

panel as a Maximum-Weighted Independent Set (MWIS) problem.

We can represent the conflicts among the choices by a conflict graph

as shown in Figure 6. In the conflict graph, each choice is modeled

as a vertex. Each conflict between two choices is modeled as an

edge. Each vertex is assigned a weight specifying the benefit of

the assignment. Then the problem is to select a set of independent

vertices to maximize the total weight.

The weight calculation for each vertex is important in the MWIS

problem. It contains several components for differentiating choices

and leveraging various objectives. In general, it includes both the

segment differentiation as well as the choice differentiation. The first

one differentiates segments and all choices derived from the same

segment will share the common weight of this part. The second one

differentiates the choices derived from the same segment. We use

the following function for weighting a vertex (choice).

(c)

neighboring
segment

t1

t2

t3

(a) (b)

segment
harder easier

segment a

segment b

blockage

terminal 

connection

cross
grid

Figure 7: (a) G-Cell boundary density. (b) Terminal connection.

(c) Flexibility component

W (v) = L + α1 × ‖R‖ + α2 × (

P

b∈B
(Db)

2

‖B‖
)

+α3 × (F1 + F2)

(1)

We have four major components for determining the weight of a

choice.

1. Segment Length

L is the number of global routing grids that the segment spans.

It reflects length of the segment. In the weight calculation,

we encourage packing more usage to current layer. This is a

component for segment differentiation.

2. G-Cell boundary density

This component is used to increment weight for the segments

that cross dense G-Cell boundaries. We use the number of

crossing segments to represent the boundary density. Intu-

itively, the segment passing through denser G-Cell boundaries

is harder to assign. They can easily incur conflicts with other

segments. We use the average quadratic G-Cell boundary den-

sity for this component. In Figure 7(a), segment a is harder

to assign than segment b as it passes through denser G-Cell

boundaries. In Equation 1, B is the set of G-Cell boundaries

the segment passes through. Db is the density of boundary

b. We sum the quadratic value of density and divide it by the

number of boundaries. This component is also proposed for

differentiating segments.

3. Terminal Connection

This component increases the weight for the choices with

longer terminal connection route. The longer the terminal con-

nection, the more likely the segment incurs potential conflicts

with other segments. We divide the terminal connection usage

to be three parts: preferred usage, via count and non-preferred

usage. They are adjusted by different coefficients for leverag-

ing their importance. For instance, if via count is critical, then

we charge a higher cost for the number of vias in the terminal

connection. For the sake of simplifying pool of choices, we

generate terminal connection route by maze routing 1. This

component works for differentiating choices for the same seg-

ment.

1We could save the trouble of maze routing by terminal promotion, which

will be discussed later



4. Flexibility Component

The flexibility component is used to differentiate choices for

the segment with one or more ends that are incident to neigh-

boring segment which has not been assigned. The choice of

current segment which offers more flexibility for assigning the

neighboring segment will be better of routability. Since the

direction of the segment and its neighboring segments will be

perpendicular, the cross grid is the intersection of tracks be-

tween current layer and next layer. we define the flexibility

count to be the number of cross grids that have access to upper

layer inside the ending G-Cell. It indicates how much freedom

of assignment for the neighboring segment. In Equation 1, we

use F1 and F2 to represent the count for both ends. As in

Figure 7(c), the flexibility count for track t1, t2 and t3 are 2, 1

and 3 respectively. Thus t3 is better in terms of the flexibility

for assignment.

In the equation, there are three coefficients (α1, α2 and α3) for

tuning the importance of each component. Their exact value are

determined by experiment.

The MWIS problem is NP-Complete [14]. Solving it optimally

is time-consuming. (Typically there are hundreds of panels for each

layer and each panel contains thousands of segments). Instead we

develop an efficient and effective heuristic. We first define the cost

for each vertex:

Cost C(v) = W (v) − β × SumWi(v) − γ × SumWo(v) (2)

where W represents the weight of vertex v, SumWi is the inner

sum weight, SumWo(v) is the outer sum weight, and β and γ are

parameters. The inner and outer sum weight are defined with re-

spect to the clique containing all choices for a segment in the con-

flict graph. The cliques for two segments are illustrated in Figure 8.

Vertices A, B, C and D are choices for one segment and they form

clique1. Similarly, vertices E, F and G are choices for another

segment and they form clique2. For each vertex, inner (outer) sum

weight is the total weight of its neighboring vertices inside (outside)

its corresponding clique. The heuristic to find MWIS selects ver-

tices in the order of decreasing cost. When a vertex is selected, we

update the graph by removing all of its neighboring vertices (i.e.,

vertices conflicting with the selected vertex). The inner/outer sum

weight of all vertices incident to the removed vertices are also up-

dated. In order to improve the efficiency of extracting vertex with

largest cost and cost update, we utilize a heap to organize the cost

for each vertex.

clique1

clique2

A

B

E

C

D

F

G

Figure 8: Cliques for two segments in the conflict graph.

Basically, vertex with larger weight and smaller inner/outer sum

weight is prioritized. First, the vertex with higher weight is pre-

ferred since our algorithm tries to optimize the objective defined in

Equation (1). Second, larger inner sum weight means more choices

for the segment. Its assignment can be deferred so that routing re-

sources are reserved for less flexible segments. Thirdly, the vertex

with larger outer sum weight means more conflicts with other seg-

ments. Such choice is discouraged. The parameters β and γ are

experimentally determined and the same values are used for all test-

cases.

4.2 Partial Assignment

After solving the MWIS problem by our algorithm, there are poten-

tially large number of remaining unassigned segments in the con-

gested panels. In order to better utilize the routing resources of

current layer, we need explore more possibility beyond the choices

defined in the MWIS problem. We implement a partial assignment

for increasing the utilization of the panel.

partially 

assigned

assigned 

usage

blocking terminals

incident 

terminal

Figure 9: Partial assignment technique for unassigned segments.

For each unassigned segment, we will try assigning part of the

segment starting from the incident terminals. We rank the unas-

signed segment based on the grid length (i.e., number of G-Cells

passed) and process them in a decreasing order. There are poten-

tially different options to perform partial assignment starting from

one terminal by using different tracks. We use the same evaluat-

ing function as in Equation 1 to evaluate each option and select the

best one. The idea is roughly illustrated in Figure 9. Both termi-

nals of the unassigned segment are on the current layer. They are

highlighted with bigger round shape than other blocking terminals.

The assigned usage is treated as blockage as well. The partial as-

signment of the segment will be the route starting from the terminal

to the first blockage met. Please note that in this example we have

assumed the terminals are in the current layer. When we discuss the

definition of terminal in the beginning of this section, it is not nec-

essary to be true. But it is valid in our algorithm, the reason will be

clear after we discuss the next subsection.

We also observe that it is possible to fully assign the segment us-

ing two partial assignment originating from each terminal and non-

preferred connection to connect the two partial route. Actually the

situation is not rare, the routing resources are better utilized and we

will have more opportunity to assign more segments. Hence the par-

tial assignment largely improve the efficiency of our algorithm. Be-

sides our technique, an alternative idea is to incorporate the partial

assignment into the MWIS problem. In particular, we could enumer-

ate some partial assignment choices associated with each segment.

However, it introduces much more vertices and edges and the re-

sulting runtime can be significantly increased. Moreover, it is likely

that the routing solution might no be regular routing oriented. So

we only apply the partial assignment as postprocessing after solving

MWIS problem.

4.3 Terminal Promotion

For the unassigned segments after applying partial assignment, we

need defer their assignment to upper layers. However, there will

be terminal connection issue when the segment is assigned in upper

layer while its terminals are located in lower layers. Let’s suppose a



horizontal segment is finally assigned to metal5 and one of its termi-

nals is pin which is on metal1. In this case, the terminal connection

might not be successful when the routing resource is limited (i.e.,

nearby routing tracks are taken up), realizing this connection can be

headache and may finally results in big effort in rip-up and reroute.

After promoting terminals up, in the assignment in upper layer,

we could always treat the terminals as in current layer. The idea

could be highly effective for congested panels where the routing re-

sources are limited. Hence the main difference of our algorithm and

the track assignment [9] is that ours could guarantee a valid solution

after all segments are successfully assigned. Yet track routing may

spend a lot of rip-up and reroute effort for correcting failed terminal

connection and segments between different layers.

We count the number of tracks that the terminal can access in the

upper layer. If there is only one track that the terminal can access.

We select the track and promote the terminal accordingly. If the ter-

minal is capable of accessing multiple tracks, we pick the track that

is closest to the terminal. If there is no access to upper layer, we rip-

up the usage that is small and close to the terminal to guarantee it has

at least one access. We use a terminal connection route to promote

the terminal. In the upper layer, we create a virtual stripe covering

all the tracks in the upper layer that the original terminal can ac-

cess (virtual means we do not assign actual wire). If the segment is

eventually assigned to a track that is not the same as the track we

promote the original terminal to, we just rip-up the original terminal

connection and correct it.

In Figure 10, we show how we promote the old terminal to upper

layer. The horizontal tracks are current layer routing tracks and the

dotted tracks are tracks on the upper layer. The vertical short lines in

light color are potential via location. The original terminal is located

on track t1. To promote the old terminal, we extend it with a short

wire on track t1 and then add the via. The new terminal is shown on

the tracks of upper layer.

current layer

tracks

next layer

tracks

assigned usage 

in curret layer
old 

terminal

new 

terminal
vias

t1

Figure 10: Terminal promotion to avoid terminal connection fail-

ure.

Overall, the terminal promotion is a highly effective technique in

RegularRoute. A valid detailed routing solution is generated after

global segment assignment.

4.4 Unassigned Segments on Top Layers

For unassigned segments on the top two layers (top two layers with

horizontal and vertical tracks respectively), there are no upper layers

where we can defer the assignment to. For better routability, we

apply panel merging and eventually maze routing if the testcase is

too hard.

All of our discussion has been based on the assumption that each

segment respects the global routing solution. More specifically, the

input global routing solution determines which panel each segment

must be assigned. This assumption is restrictive in the fact that it

forbids the option of trying alternative panel for better routability.

More specifically, for the panel with unassigned segments, we try

to merge it with neighboring few panels and redo the assignment. In

the case when the neighboring panel has space for holding more seg-

ments, it is likely the problem can be resolved. In the experiment, we

merge the neighboring one panel (total three panels). This number

can be modified depends on the level of hardness and runtime. The

panel merging technique is effective for the segments with preferred

tracks near the panel boundary. The merging of panels eliminate the

boundary and the segment becomes more flexible.

For the very hard testcases, we could apply the panel merging in

lower layers instead of waiting till the top layer. Actually, we could

run RegularRoute initially for estimation and record the panels that

are congested (with unassigned segments). We then run Regular-

Route again starting from scratch with the precaution of congested

panels. The panels that are predicted congested could be merged

with neighboring panels since the lower layers. Again, it is a trade-

off between solution quality and runtime and we adopt this idea in

the case when testcase is too difficult to handle.

If there are still unassigned segment left, we eventually resort to

a line probe maze routing technique or a full 3-D maze routing tech-

nique. The maze routing is most flexible technique but detour-prone

and time-consuming. We adopt it as the last effort in RegularRoute.

Besides maze routing technique, we could also try academic

MWIS solver in order to better solve the problem. However, the

near-optimal solver such as [15] will be slow in nature. In order

to maintain the fast runtime, we keep the fast heuristic as the main

solver.

5 Experimental Results

All our experiments are performed on a machine with 2.67GHz Intel

Xeon CPU and 32G memory. We derive two sets of detailed routing

testcases from ISPD98 [1] and ISPD05 [2] respectively. In original

ISPD98 placement benchmarks, pins are set to be at the center of

each standard cell, we develop a program to randomly set the pin

coordinate and make sure they satisfy the spacing requirement at

the bottom layer. The size of each module in the derived testcases

is the same to that of the IBMv2 [16] placement benchmarks. We

use Dragon [17] to generate the placed testcases for ISPD98 derived

testcases and FastPlace 3.1 [18] for ISPD05 derived testcases. We

derive the global routing testcases similar to the format defined by

ISPD07/08 global routing benchmarks [19, 20]. We then use Fas-

tRoute 4.0 [21] to route the global routing testcases and generate the

2-D global routing solution. Both the global routing testcase and

the 2-D solution are imported into RegularRoute. Due to the lack of

available academic detailed routers, we compared our results with

an industrial router - WROUTE. However, WROUTE does not rec-

ognize bookshelf placement format or the global routing testcase

format we use. We therefore convert the placed testcases by pub-

licly available conversion tool2 to LEF/DEF format testcases which

we can import into WROUTE. Although the testcases are in differ-

ent formats, we make sure the basic information such as pitch size,

module size, routing region, routing layers etc. are identical for both

testcases.

5.1 Results of Local Net Routing
We first show RegularRoute’s performance on handling local nets

based on the single trunk V-Tree topology. We report the final unas-

2We use PlaceUtil executable developed by Umich,

http://vlsicad.eecs.umich.edu/BK/PlaceUtils/bin/Sol64



signed local nets, total CPU time, final metal2 usage and unassigned

global segment count. Here we only use metal1 and metal2. We

compare our results with RSMT topology.

In Table 1, the first column lists all experimental testcases. Due

to limited space, we only show the results for the ISPD98 derived

testcases. The next column shows the total number of local nets

for each testcase. The following six columns show results of sin-

gle trunk V-Tree and RSMT respectively. The RSMT is generated

by FLUTE [22] using default settings. First, #un.L. is the final

unassigned local nets. Single trunk V-Tree has no unassigned local

nets. But RSMT tree incurs some unassigned nets. Second, CPU

is the runtime in seconds. FLUTE runs faster than our algorithm.

But the local nets routing runtime is trivial compared with global

segment assignment. So the runtime advantage is not important.

Third, metal2 usage is the total usage on metal2 after routing local

nets. The single trunk V-Tree introduces 20% to 30% less metal2

usage, which saves more resources on metal2. #un.G. is the fi-

nal unassigned global segment if either topology is applied. RSMT

may incur some unassigned global segments and it further suggests

RSMT is inferior in preserving routing resources.

Single Trunk V-Tree RSMT

#Loc. #un. CPU metal2 #un. #un. CPU metal2 #un.

Name Nets L. (sec.) usage G. L. (sec.) usage G.

ibm01 1081 0 0.04 6300 0 0 0.02 9600 0

ibm02 1750 0 0.09 12800 0 0 0.04 15300 0

ibm07 4479 0 0.18 22300 0 7 0.05 32600 5

ibm08 5539 0 0.23 27800 0 0 0.11 39600 0

ibm09 5429 0 0.20 28200 0 9 0.08 37900 0

ibm10 2984 0 0.27 17400 0 0 0.12 29400 1

ibm11 6983 0 0.26 38900 0 4 0.07 50100 7

ibm12 2433 0 0.32 14500 0 0 0.12 26800 0

Table 1: Results for Local Net Routing on ISPD98 Testcases

5.2 Global Segment Assignment Results for

ISPD98 Testcases

In Table 2, we show the results for global segment assignment of

RegularRoute on the eight ISPD98 testcases. We compare the re-

sults with WROUTE (version 3.0.61). The testcase statistics are

shown in the first seven columns, for total number of nets (#Nets),

G-Cell grids (Grid), total number of global segments (#Seg.),

total number of local nets (#Loc.Nets), the average net degree

for the whole netlist (Avg.Deg.), maximum number of segment

(MaxSeg.) in one panel and maximum number of pin in one panel

(MaxPin) respectively. These statistics provide an overall idea

about the complexity of these testcases. The next column shows the

runtime for FastRoute 4.0 [21]. The global routing runtime gives

the rough idea of how fast our detailed router compared with the

the global router. The following columns show the results of Reg-

ularRoute and WROUTE respectively. #unassigned is the count

of segments that cannot be handled by RegularRoute. We develop

an internal checker to make sure the assigned segments respect the

design rules we have specified (spacing rule). CPU is the runtime

in seconds. The WROUTE results are reported with similar metrics

except ”viol.”, the number of design rule violations.

First, RegularRoute is capable of routing through all the eight

testcases. WROUTE, nevertheless, can route four testcases without

violation. Here the number of violation is the number of spacing

rule violation caused by inability to allocate the nets. Second, in

terms of runtime, RegularRoute is better compared with WROUTE,

which spends a lot of runtime on rip-up and reroute. Please note that

it is likely that WROUTE incorporates more design objectives than

ours, though we strived to turn off all non-relevant design objec-

tives. However, the point we want to demonstrate is the restrictive

regular routing is doable for good routing completion. As we have

mentioned in earlier part, we could incorporate more design metrics

into our framework. The weight function or cost function for solving

MWIS problem can be thus extended to incorporate other design ob-

jectives. And we also see better chance for satisfying various design

rules, as more and more complicated design rules are triggered by

non-trivial routing patterns. The good routing completion rate could

also save additional effort during the design rule clean-up stage and

thus better manufacturability. Third, we achieve comparable results

in terms of wirelength and via count. It is because RegularRoute

tries to restrict the usage of detoured routing path. During the rout-

ing we also charge additional penalty for the regular routing choices

with larger via count.

5.3 Global Segment Assignment Results for

ISPD05 Testcases
We show the complete results on six testcases derived from ISPD05

[2] placement benchmarks. They are much bigger in problem size

and more challenging in complexity than the ISPD98 derived test-

cases. We only show the results for six testcases (eight bench-

marks in total) because the other two testcases cannot be routed

by WROUTE (crashes during execution). As mentioned earlier,

these testcases are made following the similar procedure of ISPD98

testcases. We use FastPlace 3.1 [18] to place all the placement

benchmarks with default setting. Likewise, the results are also

compared with WROUTE. We show the number of unassigned

segments(#unassigned), the CPU time, the via count and total

wirelength for RegularRoute. We additionally show the violation

(viol.) count for WROUTE. RegularRoute is capable of routing five

testcases without unassigned segments, and WROTUE can route

three testcases. WROUTE is likely to incur a number of design

violations. Like the experiments for ISPD98 testcases, we tried our

best to switch off unrelated design objectives. Based on the results,

we show RegularRoute is also doing well for larger designs.
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7 Conclusion

In this paper, we propose a detailed router which seeks to route

global segments with regular routing patterns. The whole algorithm

is based on a bottom-up layer-by-layer processing. The problem

for each layer is partitioned into sub-problems by panels. Inside

each panel, the global segment assignment is formulated as a MWIS

problem. An effective heuristic and a few postprocessing techniques

are developed. We have shown RegularRoute’s performance on de-

tailed routing testcases derived from real circuits. In the future, we

would like to further improve RegularRoute’s performance and in-

corporate more design objectives to make our tool more suitable for

industrial applications. In addition, we are interested in making a

parallel version of our tool for further runtime reduction.
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