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Abstract—Global Routing has been a traditional EDA problem.
It has congestion elimination as the first and foremost priority.
Despite of the recent development for popular rip-up and
reroute framework, the congestion elimination process remains
arbitrary and requires significant tunings. In order to achieve
more consistent congestion elimination, we propose a new pre-
processing framework for global routing. In the framework, we
first identify the most congested global routing locations by an
interval overflow lower bound technique. Then we use auction
based detour algorithm to compute which nets and where to
detour. The framework can be applied to any global router
and would help them to achieve significant improvement in both
solution quality and runtime.

I. INTRODUCTION

Global Routing is one of the most traditional computer
aided physical design problem. In global routing, the layout
regions are partitioned into coarse tiles. Capacity is assigned
to grid edge abstracted from the routing resources between
two neighboring tiles to limit the number of crossing wires.
The fundamental goal for global routers is to realize all
connections while minimizing total wirelength and conforming
to all capacity constraints.

When wiring demands exceed resources, routing congestion
arises. Congestion is an exacerbating issue for global routing
due to the fact that the growth of wiring demands keeps on
outpacing the growth of wiring resources [1]. The fact that the
number of metal layers continues to grow is an evidence of
routing resource shortage. Although we can always add more
metal layers in theory, it is unwise to do so due to manu-
facturability and cost. To make the matter worse, modern IC
designs tend to have extremely congested local regions caused
by complicated on-chip communication, IP blocking or timing
requirements. Global routers spend the majority of runtime
to detour nets involved in congested regions. Detour usually
comes along with a price tag of longer wirelength. It may
significantly deteriorate the timing for a design and complicate
detailed routing task. Congestion elimination becomes the key
feature to tell the performance of global routers due to the
increasing severity of congestion.

The most successful global routing framework for conges-
tion elimination is the sequential rip-up and reroute framework
[2]. In general, the sequential framework uses pattern routing
[3] to initialize a routing solution. With the initial solution, the
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framework sequentially rips-up a single net currently using
congested grid edges and reroutes the net to minimize its
routing cost using maze routing [4] to. The greedy manner
lacks the global view about the entire problem. In maze
routing, the cost function plays a crucial role for routing
quality. It needs to adaptively balance the extra wirelength and
congestion reduction caused by detour. Unfortunately, a global
router can never figure out whether to prioritize wirelength or
congestion reduction for a particular net in an optimal way.

The two global routing contests sponsored by ISPD in 2007
[5] and 2008 [6] confirmed the leading position of sequential
framework but also exposed its weakness. Top performers
proposed during or after the contests include NTHU-R [7]
[8], FGR [9], MaizeRouter [10], Archer [11], NTUgr [12]
and FastRoute 3.0 [13]. They all adopt the rip-up and reroute
framework and use history based cost function. In general, the
cost function includes a historical term to increase the cost for
consistently congested grid edges. Despite of the evolution of
the cost function, global routers still requires significant tuning
to function properly. The rip-up and reroute framework stays
as a trial and error approach.

There exist a few concurrent global routing frameworks but
their efficiency to eliminate congestion is questionable. The
multicommodity flow based global router [14] showed inferior
wirelength and congestion comparing to sequential routers
even for easy benchmarks. For integer linear programming
(ILP) based frameworks [15] [16] [17], the reluctance and
difficulty to correctly detour is more obvious. Only after
numerous efforts spent by ILP fail and indicate that current set
of candidate routes cannot generate congestion free solutions,
will concurrent routers include new candidates with more
detours. Even though [17] showed significant improvement
in terms of wirelength comparing to sequential routers, its
excessive runtime prohibits it from practical usage. Besides,
concurrent routers tend to generate results with more remain-
ing congestions when the benchmarks are extremely hard.

In order to eliminate congestion in a more systematic
manner, we propose an efficient pre-processing framework for
global routing to simultaneously detour nets that interact with
highly congested locations. The detour technique creates a
detour edge for each net considered and mandates that routing
for the net has to use the detour edge. In this way, we can
effectively detour a net to reduce congestion while preserve
the flexibility of routing in less congested region. The pre-
processing framework draws lesson from the market mecha-
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nism in economy theory. One of the fundamental principles of
economy theory recognizes that a fully competitive market will
optimally allocate resources and maximize social welfare. Our
work designs an efficient market to let routing nets compete
for precious routing resources to achieve better global routing
solutions. The key contributions of this work include:
• A pre-processing framework to determine detour before

global routing, which provides a new way to handle
congestion elimination problem.

• An interval overflow lower bound technique that accu-
rately computes the most congested interval for global
routing. It provides a more realistic hot spot detection
method for the pre-processing framework.

• An auction based detour algorithm that simultaneously
determines detouring nets and locations, considering im-
portant factors like wirelength minimization and conges-
tion reduction.

The flow of the detour pre-processing framework is shown
in Fig. 1. Assume multi-pin nets have been broken down into
2-pin nets, we first identify the most congested interval. Then
we use auction algorithm to simultaneously choose the nets to
detour and calculate the detour locations in step 2. For each
detoured 2-pin net A ∼ B with a detour edge p1 ∼ p2, we will
break the original 2-pin net into three parts: the detour edge
p1 ∼ p2 and two new nets A ∼ p1 and p2 ∼ B. The procedure
is repeated until there exists no significant congestion. The
modified 2-pin netlist is fed into a global router. The new
global routing flow significantly improves the global routing
wirelength and accelerates the convergence of global routing.
The newly proposed pre-routing framework is compatible with
any global router.

Fig. 1. New Global Routing Flow

The rest of this paper is organized as follows. Sec. II
presents the interval overflow lower bound technique while
Sec. III details the auction based detour algorithm. Sec. IV
provides the experimental results and the paper concludes with
Sec. V.

II. INTERVAL OVERFLOW LOWER BOUND

In the detour pre-processing framework, we need to first
identify the most congested locations.

One simple option for us is the currently available con-
gestion estimation techniques [20] [21] [22]. We find using
congestion estimator inaccurate for our purpose due to the

different behavior between global routers and congestion es-
timators.

Fig. 2. Intervals of Grid Edges

We propose an interval overflow lower bound (IOLB)
technique that calculates the lower bound of overflow on
an interval. An interval is defined as a horizontal sequence
of neighboring vertical grid edges or a vertical sequence of
neighboring horizontal grid edges, as shown in Fig. 2.

Fig. 3. Net-Interval Intersection

We call a net fully intersecting an interval if the bounding
box of the net crosses the interval twice. In Fig. 3, net A fully
intersects the interval but net B does not. Without detour, net
A has to use one grid edge in the interval while net B has
other choices. We define the demand DI for an interval I as
the total number of 2-pin nets that fully intersect the interval.
DI is the lower bound demand under the conditions of fixed
topology and no detour. These two conditions generally hold
for sequential global router when it generates tree structure
and uses pattern routing to initialize the routing solutions. If
the lower bound demand exceeds the total capacity CI of the
interval, we know for sure that some nets have to detour. So
we deduct the capacities of the interval from the lower bound
demand to generate interval overflow lower bound OI , where
OI = DI −CI . We need to detour at least OI nets that fully
intersect I so that there would no longer be any congestion
on the grid edges in the interval.

For a 2-pin net (y1, x1) ∼ (y2, x2), without loss of gener-
ality, we assume y1 < y2, x1 < x2 and denote q = x1 − x2.
The 2-pin net has impacts on every horizontal interval between
row y1 and row y2 − 1 that contains interval x1 ↔ x2. As
shown in Fig. 3, row y consists of vertical grid edges between
y and y + 1. If we go through every 2-pin net and update
its demand on every interval it fully intersects, the run time
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would be O(mn3) where m is the number of nets and n is
the maximum side size of global routing grid. This is too slow
for large scale designs.

Algorithm: IOLB for Horizontal Intervals
1. ∀y,∀x, ∀q, Sh[y][x][q] = 0
2. for every 2-pin connection (x1, y1) ∼ (x2, y2)
3. xmin = min(x1, x2), xmax = max(x1, x2)
3. ymin = min(y1, y2), ymax = max(y1, y2)
4. for y = ymin; y < ymax; y + +
5. Sh[y][xmin][xmax − xmin]+ = 1
6. for y = 0; y < yGrid− 1; y + +
7. for x = 0;x < xGrid;x+ +
8. extrah[x][0] = Sh[y][x][0]− capv[y][x]
9. for q = 1; q < x; q + +

10. extrah[x][q] = extrah[x][q−1]+Sh[y][x−q][q]
11. Oh[y][x][0] = Sh[y][x][0]− capv[y][x]
12. for q = 1; q < xGrid; q + +
13. for x = 1;x < q − 1;x+ +
14. Oh[y][x][q] = Oh[y][x][q−1] + extrah[x+ q][q]

Fig. 4. Interval Overflow Lower Bound Algorithm for Horizontal Intervals

We observe that IOLB for an interval IA consisting of
e1, e2, . . . , eq equals to the IOLB of the interval IB consisting
of e1, e2, . . . , eq−1, plus the number of nets that fully intersect
IA but not IB , minus the capacity of the grid edge eq . Based
on the observation, we propose an algorithm based on dynamic
programming that computes IOLB for all the intervals in
O(n3) time. The algorithm to compute IOLB of a horizontal
intervals is shown in Fig. 4.

In Fig. 4, xGrid and yGrid is the size of the global routing
grid. y denotes the intervals on the yth row of vertical grid
edges, counting from the lower corner. x sets the left boundary
index of the interval and q is the length of the interval. In the
grid graph, a vertical edge is indexed according to its lower
pin. ev[y][x] represents the grid edge between (y, x) and (y+
1, x) and capv[y][x] is the capacity for ev[y][x]. Horizontal
grid edges are indexed according to their left pins similarly.
Oh[y][x][q] holds all the horizontal IOLB we want to compute.

In line 2 to 5, for each net, we add its demand to the shortest
intervals it fully intersects from row ymin to row ymax − 1
to Sh[y][x][q]. Line 7 to 10 computes the number of nets that
fully intersect interval I[y][x][q] but not interval I[y][x][q−1],
minus the capacity of the edge ev[y][x+q]. Line 11 initializes
the IOLB for intervals consisting of a single grid edge. We
use line 13 to add up the two parts of IOLB together for
I[y][x][q]. The first part is the Oh[y][x][q − 1], IOLB for the
interval one grid edge shorter. The second part is the pre-
computed extrah[y][x][q]. Thus, we can compute IOLB for all
horizontal intervals based on efficient dynamic programming.

The three levels of for loops from line 6 to line 13 sets
the complexity of the IOLB algorithm to O(n3). Because we
generally have O(n3) intervals and IOLB computes all of
them, there exists no superior algorithm with less complexity.
We can obtain the interval overflow lower bound for vertical
intervals similarly.

We denote the interval I∗ with largest total overflow as the
most congested interval because a global router has to detour

OI∗ nets in order to eliminate congestion on the interval. So
the larger OI∗ is, the more onerous task global router has.

IOLB technique with O(n3) complexity is not a trivial oper-
ation for large scale designs. Since the detour step that follows
will change the routing solutions for nets fully intersecting the
most congested interval, we need to update IOLB for impacted
intervals. We use regional updating technique to confine the
overflow calculation to intervals impacted by the detouring
nets, instead of computing IOLB from scratch again. Although
the regional update technique also has a complexity of O(n3),
the size of the update region is much smaller than the entire
global routing grids.

IOLB is the lower bound for congestion on an interval.
Although it may under-predict the overflow significantly for
intervals with few fully intersecting nets, it is tight for the
most congested interval. Every net that does not fully intersect
I would avoid using grid edges in the interval. Every net that
fully intersect I has to use one grid edge in I if detour is
banned. Thus we accurately counts the nets that have no choice
other than the grid edges in I .

III. AUCTION BASED DETOUR ALGORITHM

Once we find the most congested interval, we want to detour
the smallest number of nets to eliminate the congestion on the
interval.We view the problem as a competitions between 2-pin
nets to stick to the grid edges in the interval so that their wire
length will not be prolonged. This leads us to think about
auction market. Auction market is considered very efficient
in resource allocation and welfare maximization. If we can
design a similar scheme for 2-pin nets to systematically bid
for the limited number of routing resources in the interval and
force nets with failed bid to use the grid edges outside the
interval, we solve the congestion elimination problem for the
most congested interval.

A. Detour Problem

The interval overflow lower bound calculated in Sec. II
gives the least amount of nets that need to detour to eliminate
congestion on the interval. All the detouring nets need to cross
an extended interval of the original congested interval and
the detour problem targets the issue that which nets should
be detoured and where the detouring net should intersect the
extended interval. The selection of detouring nets and the
crossing locations needs to consider the impacts of congestion
in affected region and the extra wirelength caused by detours.

For the most congested interval IC , we extend the interval
to find the shortest interval that fully contains IC and can
accommodate all crossing demands on itself. We denote the
new interval as Extended Interval (EI). Fig. 5 shows an
example of the extension process. For a given IC , we will
try to include one of the two grid edges neighboring the
boundary of the congested interval. The grid edge that leads
to an extended interval with smaller IOLB will be chosen.
We call it EI evaluation. After one grid edge is included, if
the extended interval has positive IOLB, we will extend EI
to include the grid edge we do not choose in previous EI
evaluation. In this way, we can achieve almost even extension
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Fig. 5. Extension for Congested Interval

on both sides of IC , which balances the detour on both sides
and leads to shorter wirelength. If the new EI is still congested,
we will go back to EI evaluation process. The EI evaluation
and the possible inclusion of the forsaken grid edge is repeated
until we find an interval with non-positive IOLB. For the
above example, EI4 is the final Extended Interval we want to
find. The extended portions of EI is called assisting intervals,
denoted as AI1 and AI2.

Fig. 6. 2-Pin Net Decomposition for a Determined Crossing

We create non-detour crossing sites on IC and detour
crossing sites on AI1 and AI2. Each crossing site corresponds
to using one unit of routing usage. If one net ni chooses one
crossing site sj on grid edge ek, as shown in Fig. 6, its routing
will consists of three components: the two smaller 2-pin sub
nets and the usage of ek. The pre-processing framework does
not calculate the routing of 2-pin sub nets since we do not
want to overly constraint the routing solution. Because the
pre-processing framework focuses on detour that eliminates
congestion, it only decomposes detouring nets to generate the
new set of 2-pin nets but not non-detouring nets that use the
crossing sites on IC .

Algorithm: Detour Site Creation
1. Omin = OIC
2. i = 1
3. while Omin > 0
4. nsei = max(0, Omin −max(OEIi , 0))
5. Omin = min(Omin, OEIi)
6. i+ +

Fig. 7. Detour Site Creation for Assisting Intervals

If the two assisting intervals consist of k grid edges, i.e.
e1, e2, . . . , ek, indexed according to the sequence of their
inclusion and the resulting extended interval after including
grid edge ei is labeled as EIi, the number of detour crossing

sites nsei created for ei is calculated in Fig. 7. The number of
detour crossing sites created for ei is basically OEIi−1−OEIi ,
the number of nets we can detour on ei without inducing
congestion on ei. However, if we directly use OEIi−1

instead
of Omin to calculate the number of sites, we would create 3
sites for e3 and 8 sites in total for the example given in Fig.
5. 8 is larger than the IOLB of IC because using OEIi−1 will
create one detour crossing site to detour a net fully intersecting
EI2 but not IC . Such detour should not be considered in the
detour problem for IC . Thus, we use Omin to guarantee that
we create OIC detour crossing sites. In line 4, we have two
max operations. The first max is used to prevent creating any
detour crossing sites on an already congested ei. The second
max limits the detour crossing sites to OIC because the final
EI may have a negative IOBL and lead to excessive detour
crossing sites.

For each grid edge ej in IC , we create capej non-detour
crossing sites. So in total, we create OIC detour crossing sites
on assisting intervals and CIC non-detour crossing sites on
IC . For the detour problem, we only consider the DIC nets
that fully intersect the most congested interval since we want
to choose a subset of those nets form them to detour and
determine their detour crossing sites on the assisting intervals.
The number of crossing sites actually equals to the number of
nets.

When crossing sites are created, each net and crossing site
pair is assigned a weight which we give the name “quality
loss”, denoted as ql and defined in Equation 1:

qli,j = α · detour + β · congestion (1)
In the above equation, detour is the extra wirelength caused
by the detour of net ni using site sj . congestion models the
impacts on congestion that would be caused by the two 2-
pin sub nets after the net decomposition, as shown in Fig. 6.
The congestion is calculated based on probabilistic Z routing
presented in [22].

We generate a bipartite graph in which every net has a node
residing on one side of the partition and every crossing site
is given a node residing on the other side. There exists an
edge between every pair of nodes on the different sides and
the edge weight is set as the “quality loss”.

We can use a minimum weighted bipartite matching to
achieve the optimal set of crossing locations for all the
nets. The minimum weighted bipartite matching solution
corresponds to the optimal crossings in terms of wirelength
and congestion impacts for the nets that cast their routing
demands on IC . However, the detour problem involve a dense
graph with potentially millions of edges. Directly solving the
bipartite matching would be very slow.

B. Problem Size Reduction

Since the detour problem size is very large, we use the
following simplification techniques to identify which nets to
detour and where they should detour more efficiently.

To reduce the problem size, we only create one crossing site
for each grid edge on the extended interval, instead of multiple
crossing sites on each grid edge. Each site can accept multiple
crossings and the number of acceptable crossings is equal to
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the number of crossing sites we originally create for the grid
edges.

The second type of simplification is congested interval
abstraction. The nets assigned to use the original congested
interval will not go through significant detour. Because the pre-
processing framework focus on generating necessary detour
to eliminate congestion, the non-detour crossings are pur-
posefully ignored to maintain routing flexibility. The actual
routing for non-detouring nets in the auction is left to global
router to determine. Thus, it does not make much sense to
compute where the non-detouring nets intersect with IC . So
we combine the grid edges in the original congested interval
into a single crossing site, with the ability to accept CIC bids.
The quality loss for this site is computed by assuming no
detour and minimum congestion impacts.

In addition, we carry out a pre-selection procedure to limit
the number of nets that would detour. It is obvious that some
nets will use a lot of detour or cross significantly congested
region to use any detour crossing site on the assisting intervals.
They can be ignored in the auction without sacrificing the
solution quality. So we selects 2OIC nets (if 2OIC < DIC )
with lowest “quality loss” to use the detour crossing sites.
Meanwhile, the number of the non-detour crossing site is
reduced accordingly to OIC .

The last type of speed up technique is side selection. The
principle is very simple. Some of the 2OIC nets will obviously
use one of the assisting interval instead of the other due to
detour or congestion. During the pre-selection process, we can
evaluate the quality losses derived from using the two assisting
intervals. Comparing the two quality losses, we categorize the
nets into three types: nets able to cross AI1, nets able to cross
AI2 and nets able to cross both assisting intervals. The side
selection limits the net to use detour crossing sites on one
assisting interval and the non-detour crossing site if they are
not categorized to be able to bid for both intervals.

The four types of simplification together can reduce the
problem size by more than 95% and allow us to solve the
detour problem for more congested intervals.

C. Auction Algorithm

Once we use the problem size reduction techniques, one
crossing site can accept several nets to use it. Then we can
no longer use the bipartite matching algorithm to solve the
problem because it cannot handle multiple-to-one mapping. So
we use auction algorithm to solve the detour problem because
it can be tailored to solve the detour problem after problem
size reduction.

We find an analogy between market economy and the
detour problem. In the detour problem, every net tries to
use smallest possible wirelength to complete routing and nets
using the same congested grid edge are competing to stay still
to preserve the shortest wirelength. If we treat every net as a
bidder, every crossing site as an item and allow every net to
seek after and compete for its desirable crossing sites, it would
be like holding auctions to allocate routing resources of the
extended interval. In fact,a few papers address the hidden link
between auction algorithm and matching algorithm [23] [24].

The auction algorithm in [23] presents a two-phase frame-
work to achieve an optimal assignment. In the first phase,
every bidder calculates a bid for one item it wants the most. In
the second phase, every item is assigned to its highest bidder.
The two steps are repeated until every bidder gets an item.

Auction algorithms use four types of prices to guide the
assignment. Firstly, every bidder has a fixed maximum bid
it is willing to pay for each item to be auctioned. Secondly,
every item has a price that always increases due to the bidding
process in the auction. Thirdly, at the beginning of each round
of auction, every bidder evaluates its benefit to buy each item
depending on its maximum bid and current price for the item.
An item with high maximum bid and low current price is very
beneficial for a bidder because it may place a quite low bid
to successfully buy the item. Finally, every bidder makes one
bid for the item that brings maximum benefits to it.

For detour problem, the desirability for a net ni to use the
crossing sites on grid edge ej is captured in the maximum bid
mbi,j it is willing to make to use ej . We use “quality loss”
defined in the last section to calculate mbi,j , the formula is
shown below:

mbi,j = (ql∗ + 1)− qli,j (2)

In Equation 2, ql∗ = maxi,j(qli,j). We invert quality loss to
achieve maximum bid because lower qli,j indicates that it is
more desirable for ni to use ej . We denote pj as the price
of ej . The net benefit of an assignment Π (net to grid edge
mapping) is defined as∑

ni

(mbi,π(i) − pπ(i)) (3)

We want to find Π∗ that maximizes the net benefit. The auction
algorithm is an iterative method to find the optimal prices and
an assignment that maximizes the net benefits.

The auction algorithm in [23] cannot be directly used for
the detour problem after problem size reduction because every
item can only accept one bid. So we modify the second step
of the auction algorithm so that every item, the crossing site
on every grid edge, can accept up to nse bids. We create a
priority queue of size nse for each edge to store temporary
leading bidders. The modified auction algorithm is shown in
Fig. 8.

In the modified auction algorithm, ε is introduced to prevent
endless cycles. If the value of ε is chosen properly, the
assignment generated by the terminated auction algorithm will
satisfy “ε complementary slackness”, i.e. all nets are assigned
to grid edges that are within ε of being best [24].

Generally, if an item receives a bid in k iterations, its pries
is at least kε. For a sufficiently large m, the item becomes
very expensive and every nets still not assigned will avoid
it. The auction algorithm converges in O(mw∗/ε) iterations,
where m is the number of auctioned grid edge and w∗ is
defined as maxi,j(wi,j). So the worst case complexity of the
modified auction algorithm is thus O(nm2w∗/ε), where n is
the number of bidding nets. In practice, due to the variance
of detour wirelength and congestion impacts, the increase in
bidding price is much larger than ε. The auction algorithm
runs quite efficiently.
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Algorithm: Modified Auction Algorithm
1. Initialize the assignment Π = Ø, the set of unassigned

net I = n1, . . . , nn, set prices pj = 0 for all ej .
2. Until I is an empty set, the algorithm repeats the

following two phases
3. Phase I: Bidding for all ni ∈ I
4. (1) Find benefit maximizing grid edge

ji = argmaxj{mbi,j − pj}
vi = maxj{mbi,j − pj}
ui = maxj 6=ji{mbi,j − pj}

5. (2) Compute the bid of bidder ni to grid edge ej
bni→ej = mbi,ji − ui + ε

6. Phase II: Assignment for each grid edge ej
7. (3) Let B(j) be the set of new bidders from which

ej received a bid in the current iteration and L(j)
be the set of nets leading the bid for and currently
assigned to it. If |B(j)|+ |L(j)| > nsej , only
the nsej highest bidder from P (j) ∪ L(j) will
be assigned to ej . If |B(j)|+ |L(j)| ≤ nsej , all
ni ∈ B(j) will be assigned to ej . pj will be set
to the lowest bidding price of the accepted net and
the priority queue for temporary leading bidders
will be updated.

Fig. 8. Modified Auction Algorithm

For the original auction algorithm, in which every item
accepts only one bid, [25] proved that the total net benefits
is within nε of being optimal. The modified auction algorithm
can be proved to be within nε of being optimal in a similar
manner and we skip the proof due to space limits.

The modified auction algorithm is a relaxation solution for
the original detour problem and it has several advantages. It
generates a solution within the vicinity of optimal solution
in theory. Our experimental results support such theoretical
solution quality. On the other hand, the modified auction al-
gorithm can be fully parallelized. The bidding price evaluation
of each net is independent from other nets and the assignment
procedure for every grid edge is independent from other grid
edges. So the auction algorithm is very suitable for today’s
multicore platforms. More importantly the auction algorithm
provides us a method to simultaneously decide crossings and
detour a minimum number of nets to eliminate the congestion
over the interval with largest IOLB.

D. Solution Refinement

We use the assignment solution to modify the netlist of
original benchmarks and feed the new set of 2-pin nets
that contains detour decisions to the global router. One of
our concerns is that the detour algorithm might hamper the
flexibility of solutions or cause congestion in the neighbor-
ing region where detour crossing sites are created. To such
problems, we design a solution refinement stage to use maze
routing to reroute the 2-pin nets that are decomposed in the
pre-processing stage. Such solution refinement brings in less
than 0.1% wirelength improvement, which indicates that the
original pre-processing framework is performing well. Thus,
we removed the solution refinement due to its inefficacy.

IV. EXPERIMENTAL RESULTS

We implement the pre-processing framework in C and
use FastRoute 4.0 [26] as the following global router. All
the experiments are conducted on a Linux machine with a
2.6GHZ Intel Processor and 32GB memory. We compare the
results of our work with the winning global routers in ISPD 08
global routing contests and the benchmarks we use are from
ISPD 08 contest too.

We separate the benchmarks into two categories: routable
benchmarks and unroutable benchmarks. The performance
comparison for routable benchmarks is shown in Table I.
Comparing to the contest winners, our work achieves shortest
wirelength with much less run time. Our work achieves 2.5%,
1.1% and 4.9% less wirelength comparing to FastRoute 4.0,
NTHU-R 2.0 and NTUgr respectively. In addition, the new
routing framework runs 1.1X , 1.4X and 19.8X faster than
the three global routers.

The performance comparison for unroutable benchmarks is
shown in Table II. Again, our work uses least amount of
time to generate solutions with shortest wirelength. It is worth
noticing that our work also achieves the smallest number of
remaining overflow for 3 benchmarks, which demonstrates the
effectiveness of the pre-processing framework that simultane-
ously determines detour. For “newblue3”, the solution of our
work falls short by 104 nets or 0.3% from the best result
generated by NTUgr. However, our work only spends 1.7%
runtime of NTUgr for this specific benchmark.

Table III shows the run time decomposition of our frame-
work. For easy benchmarks, it spends a significant portion
of runtime to calculate IOBL and host auctions while saving
relatively little runtime from global router. As benchmarks
become larger and harder, the advantage starts showing up. For
hard benchmarks, IOBL and auction algorithm spend less than
20% of total runtime. Because the framework actually outruns
FastRoute 4.0 by another 20% ∼ 40% for hard benchmarks,
the pre-processing framework effectively reduces the runtime
of the following global routing stage by around 50%.

TABLE III
RUNTIME DECOMPOSITION

Name IOBL Auction Global Routing
adaptec1 1% 45% 54%
adaptec2 7% 22% 71%
adaptec3 7% 40% 53%
adaptec4 21% 8% 70%
adaptec5 2% 24% 74%
bigblue1 1% 17% 82%
bigblue2 3% 19% 78%
bigblue3 7% 24% 68%
bigblue4 1% 19% 80%
newblue1 2% 13% 85%
newblue2 9% 9% 82%
newblue3 1% 9% 90%
newblue4 1% 12% 87%
newblue5 5% 14% 81%
newblue6 3% 16% 81%
newblue7 0.2% 5% 94.8%

V. CONCLUSIONS

In this work, we propose a detour pre-processing framework
for global routing. The framework consists of a two step
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TABLE I
COMPARISON OF ROUTING RESULTS ON ROUTABLE BENCHMARKS

Our Work FastRoute 4.0 [26] NTHU-R 2.0 [8] NTUgr [12]
Name Wirelength cpu(s) Wirelength cpu(s) Wirelength cpu(s) Wirelength cpu(s)

adaptec1 5352K 400 5460K 279 5344K 611 5740K 291
adaptec2 5151K 89 5277K 59 5229K 102 5370K 71
adaptec3 12922K 384 13213K 240 13101K 549 13500K 284
adaptec4 12021K 116 12249K 41 12169K 130 12370K 78
adaptec5 15394K 643 15866K 660 15538K 1160 15990K 988
bigblue1 5598K 333 5775K 530 5595K 690 6000K 1169
bigblue2 8919K 462 9352K 792 9059K 427 9120K 16044
bigblue3 12899K 203 13073K 158 13068K 253 13350K 258
newblue1 4575K 431 4686K 377 4653K 312 4930K 63161
newblue2 7459K 70 7636K 18 7570K 61 7690K 39
newblue5 22909K 595 23377K 777 23158K 977 24490K 1324
newblue6 17560K 565 18078K 884 17689K 912 18660K 1376

Comparison 1 1 1.025 1.12 1.011 1.44 1.049 19.8

TABLE II
COMPARISON OF ROUTING RESULTS ON UNROUTABLE BENCHMARKS

Our Work FastRoute 4.0 [26] NTHU-R 2.0 [8] NTUgr [12]
Name Overflow WL cpu(s) Overflow WL cpu(s) Overflow WL cpu(s) Overflow WL cpu(s)

bigblue4 132 22887K 1431 150 25147K 3640 162 23090K 6633 188 24280K 26692
newblue3 31128 10615K 1749 31634 10752K 1181 31454 10653K 6168 31024 18830K 57120
newblue4 130 12964K 1208 140 13821K 2382 138 13046K 4873 142 14380K 72246
newblue7 54 35177K 7312 58 35974K 10209 62 35522K 7252 310 37220K 93401

Comparison 1 1 1 1.017 1.050 1.49 1.012 1.008 2.13 1.007 1.16 21.3

flow . It first accurately identifies the most congested interval.
Later, it uses modified auction algorithm to simultaneously
detour a minimum number of nets fully intersecting the in-
terval to eliminate congestion. The pre-processing framework
significantly improves the performance of FastRoute 4.0. The
results outperform state-of-the-art global routers in wirelength,
overflow and runtime.
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