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Abstract

FLUTE [1,2] is a very fast and accurate rectilinear Steiner minimal
tree (RSMT)1 algorithm particularly suitable for VLSI applications.
It is optimal for nets up to degree 9 and is still very accurate for
nets up to degree 30. However, for higher degree nets, the original
FLUTE algorithm is not effective.

In this paper, we present an improvement of FLUTE which is
more effective in handling nets with degree tens or more. The main
idea is to partition a net according to a spanning tree into small sub-
nets that can be handled effectively by the original FLUTE algo-
rithm. Several novel techniques are proposed to partition a net into
small subnets and to merge the Steiner trees for the subnets together.
Some improvements of the original FLUTE algorithm, and a scheme
to allow users to control the tradeoff between accuracy and runtime
are also presented.

We show experimentally that the resulting algorithm FLUTE-3.0
achieves a much better accuracy-runtime tradeoff than the original
FLUTE algorithm for degree 30 or more. It produces better quality
of result than the well-known near-optimal BI1S algorithm [3]
in a runtime shorter than the highly scalable BGA algorithm [4].
FLUTE-3.0 is also highly scalable. It can route a 3-million-pin net
in about 25 minutes.

1 Introduction

Rectilinear Steiner minimal tree (RSMT) construction is a funda-
mental problem that has many applications in VLSI design. In early
design stages like physical synthesis, floorplanning, interconnect
planning and placement, it can be used to estimate wireload, routing
congestion and interconnect delay. In global and detailed routing
stages, it is used to generate the routing topology of each net. Many
previous works have addressed this problem. For example, the
GeoSteiner package is currently the fastest optimal RSMT imple-
mentation [5,6]. Griffith et al. [3] (Batched Iterated 1-Steiner (BI1S)
heuristic) and Mandoiu et al. [7] are two well-known near-optimal
algorithms. These optimal and near-optimal algorithms have high
runtime complexities and are impractical for nets with more than a
few hundred pins.

Recently, RSMT algorithms capable of routing nets with more
than a few hundreds pins are increasingly important. Huge-degree
nets like scan enable, which may have up to tens of thousands of pins
in a large module, are becoming more common in modern designs
due to the increased emphasis on design for test [4]. In addition,
to model non-zero pin dimensions (e.g., nets with pre-routes) by
representing each pin with a set of electrically equivalent points,
very large RSMT instances with as many as 100,000 points have
been created [8]. The contribution of this paper is a highly scalable

1A rectilinear Steiner minimal tree is a tree with minimum total edge
length in Manhattan distance to connect a given set of nodes possibly through
some extra (i.e., Steiner) nodes.

RSMT algorithm that produces near-optimal solutions to both low-
degree and high-degree nets.

To handle high-degree nets, many attempts have been made to
design RSMT algorithms with low runtime complexity. Borah et
al. [9] presented anO(n2) time algorithm in which a spanning tree
is iteratively improved by connecting a point to a nearby edge and
deleting the longest edge on the created cycle. AnO(n log n) time
but very complicated alternative implementation was also proposed.
Zhou [10] used spanning graph [8] to help both generating the initial
spanning tree and finding good candidates for the edge substitution
idea in [9]. The resulting algorithm runs inO(n log n) time, and
produces better solution in slightly less runtime than the one in [9].
Kahng et al. [4] gave a practicalO(n log2 n) heuristic called BGA
based on a batched version of the greedy triple contraction algo-
rithm. This algorithm matches the solution quality of [9] and [10]
but requires a much shorter runtime in practice.

Recently, a very fast and accurate RSMT algorithm called
FLUTE is presented [1,2]. In FLUTE, low-degree nets (up to degree
9 in current implementation) are handled optimally and efficiently
by a lookup table approach. All other nets are recursively broken
down until lookup table can be used. FLUTE is extremely fast and
accurate for low-degree nets. So it is particularly suitable for tradi-
tional VLSI applications in which most nets have a degree 30 or less.
FLUTE is also very efficient for high-degree nets as it has a runtime
complexity ofO(n log n) with a small hidden constant. However,
the accuracy of FLUTE worsens rather quickly for higher net de-
grees. The reason is that the simple net break techniques described
in [1, 2], while computationally very efficient, introduce significant
error to the solution every time the net is broken.

In this paper, we investigate the problems of how to partition a net
into small subnets and how to merge the Steiner trees for the sub-
nets together so that the error introduced will be minimized. Several
novel heuristics for partitioning and merging will be introduced. In
addition, some improvements of the original FLUTE algorithm, and
a scheme to allow users to control the tradeoff between accuracy and
runtime will also be presented. The resulting algorithm FLUTE-
3.0 has a runtime complexity ofO(n log2 n), and is extremely fast
and accurate in practice. Comparing with the original FLUTE algo-
rithm [2], the accuracy-runtime tradeoff achieved by FLUTE-3.0 is
better for degree 10 or more, and is significantly better for degree
30 or more. It produces better quality of result than the well-known
near-optimal BI1S algorithm [3] in a runtime shorter than the highly
scalable BGA algorithm [4]. FLUTE-3.0 is also highly scalable. For
instance, it can route a 100000-pin net in less than 1 minute and a
1-million-pin net in less than 10 minutes.

The remainder of the paper is organized as follows. In Section
2, a brief review and several improvements of the original FLUTE
algorithm are provided. In Section 3, a tree-based net breaking tech-
nique for high degree nets is discussed. In Section 4, experimental
results are shown. The paper is concluded in Section 5.



2 Original FLUTE and Improvements

FLUTE is a lookup table based technique originally designed for
wirelength estimation [1]. It is extended to RSMT construction and
improved in [2]. For a given degreen, a table of very compact rep-
resentations called potentially optimal wirelength vectors (POWV)
is used to represent all the possible routing topologies of the nets of
the same degree. To find the RSMT of a net, it is only necessary
to search through a subset of these POWVs and evaluate the corre-
sponding topologies, according to the relative positions of the pins.
For low degree, the size of the table is very small and it is extremely
economical to evaluate a net. For example, it takes only 10.81MB
to store the table for all nets up to degree 9 and there is an average
of only 30 POWVs to search for with degree 9.

For high-degree nets, however, both the table size and the num-
ber of operations to evaluate a net will be impractically large. So
in [1, 2], a lookup table is constructed for nets with degree up to
a user-defined parameterD (D = 9 in the latest implementation).
Nets with higher degree are recursively divided into sub-nets by a
net breaking technique until the lookup table can be used. The net
breaking technique first checks if the net can be broken optimally
according to a condition derived in [2]. If the condition is not satis-
fied, it tries to divide the net at all pin positions and in both directions
(i.e., horizontal and vertical). Then the best solution is picked. For
a given pin and breaking direction, pins with a smaller coordinate
than the given pin in the breaking direction form one sub-net and
other pins form another sub-net. The given pin is also included into
both sub-nets as shown in Figure 1(a). However, if recursive calls
are really made to evaluate each of the possible pins and directions,
the runtime will be very significant. So a score is computed for each
possible way of breaking. Recursive calls are made only for the few
ways with the highest scores.

(a) (b) (c)

Figure 1:Illustration of the original net breaking technique.

Without loss of generality, consider breaking the net according to
y-coordinate at pinr. In [1], the scoreS(r) is defined as:

S(r) = −S0(r)

whereS0(r) is the total half-perimeter wirelength (HPWL) of the
two subnets. Note that negative ofS0(r) is used as smaller total
HPWL is more desirable. For example, according to the HPWL
score, Figure 1(c) is a better selection than Figure 1(b).

In [2], the score is computed as follows. For ann-pin net, letxi

be the x-coordinate of some vertical Hanan grid line such thatx1 ≤
x2 ≤ · · · ≤ xn, and letyj be the y-coordinate of some horizontal
Hanan grid line such thaty1 ≤ y2 ≤ · · · ≤ yn. Assume the pins
are indexed in ascending order of y-coordinate. Letsi be the rank
of pin i if all pins are sorted in ascending order of x-coordinate. The
score for breaking at pinr is a weighted sum of three components:

S(r) = S1(r)− 0.3× S2(r)− 0.3× S3(r)

where

S1(r) = yr+1 − yr−1

S2(r) =

(
2× (x3 − x2) if sr = 1 or 2
xsr+1 − xsr−1 if 3 ≤ sr ≤ n− 2
2× (xn−1 − xn−2) if sr = n− 1 or n

S3(r) =

˛̨̨̨
sr −

n + 1

2

˛̨̨̨
× dx +

˛̨̨̨
r − n + 1

2

˛̨̨̨
× dy

dx =
xn−1 − x2

n− 3
, dy =

yn−1 − y2

n− 3
.

The accuracy of FLUTE can be controlled by changing the num-
ber of ways of breaking each net. It is observed in [2] that a better
tradeoff between accuracy and runtime can be obtained if sub-nets
in lower recursive level are handled with less accuracy. Based on
this observation, an accuracy control scheme is presented in [2] to
allow users to select the tradeoff between accuracy and runtime. A
user-defined accuracy parameterA is introduced. The original net
is handled with accuracyA. That meansA different ways of break-
ing are tried. Then for each level of recursive call, the accuracy is
reduced by 1 unless it is already 1. The default value ofA is set to
3.

In this paper, we propose the following two improvements of the
original FLUTE algorithm. First, we modify the score to:

S(r) = S1(r)− 0.3×S2(r)−
7.5

n + 10
×

„
S3(r) + 12× S0(r)

n− 3

«
.

The weights for the componentsS3(r) andS0(r) are experimen-
tally determined. This modification increases the accuracy of net
breaking significantly but makes the algorithm marginally slower
(as the computation of HPWL takes time). Overall, the accuracy-
runtime tradeoff is much improved. Second, in the accuracy control
scheme, for each level of recursive call, instead of reducing the ac-
curacy parameter by 1, the parameter is divided by 2. This modifi-
cation decreases the accuracy but dramatically reduces the runtime
by making fewer recursive calls at the lower levels. Overall, the
accuracy-runtime tradeoff is also much improved. These two modi-
fications together produce significantly improved accuracy-runtime
tradeoff over previous versions of FLUTE in [1] and [2].

3 Tree-based Net Breaking

Since FLUTE in [1, 2] recursively cuts a net into subnets using ei-
ther a horizontal line or a vertical line only, it may miss some better
way of cutting. This is usually not a problem for small nets, when
the solution space is not large, as FLUTE compensates this draw-
back by trying many different break points under the control of the
parameterA. The impact on the quality, however, begins to show
up as the net size grows, say, beyond a few tens. To overcome this
problem, we use a divide-and-conquer approach based on a span-
ning tree breaking idea.

Let P be the input pin set. If|P | is small enough, we simply ap-
ply FLUTE directly on it. Otherwise the following recursive heuris-
tics is used. Suppose we start with a base spanning treeTbase of P
that we know is a good approximation to the RSMT we are search-
ing for. Obviously a minimum spanning tree ofP will be a rea-
sonable choice, but we shall see in Section 3.3 that there are other
choices as well.Tbase is broken into a number of subtrees. Each of
these subtrees is optimized recursively. The optimized subtrees are
then merged together to form the resulting Steiner treeT .

It is clear that the merging step plays an important role in achiev-
ing a good quality of the resulting Steiner tree. We have considered
two variants on implementing the above divide-and-conquer scheme
with different merging strategies. The first one puts the recursive
call inside a loop. The idea consists of simply blending the sub-
trees at their touching points to formT . We then make use of the
information thatT provides to try to improveTbase. The newTbase

is used to start another round of the divide-and-conquer procedure.
The intuition is that this newTbase is likely to be a better RSMT
than the original one, and it may in turn lead to a better newT . The
loop finishes either when a certain number,R, of rounds have been
tried, or when there is no further improvement onT . We call this
multi-round strategy FLUTE-MR.

The second strategy, which we call FLUTE-AM, uses a more ag-
gressive merging step to obtain the final Steiner treeT , but it elimi-
nates the use of the loop. The idea is to find potential improvement



during the merge. Exactly two subtrees are created and individually
optimized at each recursive step. At merging, a heuristics similar to
the edge-based heuristics [9] is applied to look for local improve-
ment arising from connecting a node from one subtree to an edge on
the other subtree.

FLUTE-AM is usually much faster than FLUTE-MR. On the
other hand, FLUTE-MR in general gives better result when enough
number of rounds is allowed. We therefore leverage the advan-
tages of these two heuristics by applying them in different situations:
FLUTE-MR is used to handle medium-degree nets and FLUTE-AM
is applied to high-degree nets. Note that low-degree nets are handled
by the original FLUTE with the improvements described in Section
2. We rename it as FLUTE-LD here.

Figures 2, 3 and 4 show the pseudo code of the above descrip-
tion. We call the whole algorithm FLUTE-3.0.D1 and D2 are
pre-defined parameters that determine when each heuristics should
be used. Details of the major steps in the algorithm are explained
below.

Algorithm FLUTE-3.0 (P )
Input: Set of pinsP .
Output: A rectilinear Steiner tree ofP .
Begin

if |P | ≤ D1

return FLUTE-LD(P)
else if|P | ≤ D2

return FLUTE-MR(P)
else

return FLUTE-AM(P)
End

Figure 2: Algorithm of FLUTE-3.0.

Algorithm FLUTE-MR (P )
Input: Set of pinsP .
Output: A rectilinear Steiner tree ofP .
Begin

Tbase←MST(P )
Tbest ← Tbase

for eachround ∈ (1, . . . , R) {
Let S = PARTITION-TREE(Tbase, τ ) be the set of subtrees
for eachTi ∈ S

Ti← FLUTE-LD(pins ofTi)
pop the first elementT from S
while S is non-empty{

pop an elementT ′ from S that is touchingT
T ← SIMPLE-MERGE(T , T ′)
}
if T is no better thanTbest then

returnTbest

else
Tbest ← T

Tbase← IMPROVE-SPANNING-TREE(T )
}
returnTbest

End

Figure 3: A multi-round tree-based heuristics for FLUTE.

3.1 Partitioning the Spanning Tree

In FLUTE-MR, we limit the size of each subtree by a thresholdτ .
The PARTITION-TREE function takes a spanning treeT and the
thresholdτ as input and proceeds as follows. First it identifies the
least-expensive edge ofT (according to the effective distance de-
fined in Section 3.3), and chooses one of its endpoints as the root.

Algorithm FLUTE-AM (P )
Input: Set of pinsP .
Output: A rectilinear Steiner tree ofP .
Begin

Tbase←MST(P )
(T1, T2)← BIPARTITION-TREE(Tbase)
T ′

1← FLUTE-3.0(pins ofT1)
T ′

2← FLUTE-3.0(pins ofT2)
T ← AGGRESSIVE-MERGE(T ′

1, T
′
2)

returnT
End

Figure 4: A tree-based approach with aggressive merging.

Then it imposes a child-parent relationship along each edge in the
obvious way (i.e., the node being closer to the root is the parent).
Now denote the subtree rooted at a nodeu by Tu. The partition-
ing is done by repeatedly finding a nodeu such that|Tu| ≤ τ but
|Tparent(u)| > τ , and then cutting the tree atu. Nodeu is repli-
cated before the subtreeTu is cut out. By doing so we make sure
that adjacent subtrees that are cut out share a common node.

In FLUTE-AM, we always partition the base spanning tree into
two subtrees that are roughly equal in size. BIPARTITION-TREE
is similar to PARTITION-TREE but it implicitly assumes that the
size threshold is|P |/2 and returns exactly two subtrees. Hence it is
possible that one of them could be slightly larger than|P |/2.

3.2 A Simple Merging Step

First let us define some notations. For any pin nodeu of a Steiner
treeT , letN (u, T ) denote the set of pin nodes ofT that are reach-
able fromu without going through any other pin nodes. And let
FSC(u, T ) be the subtree ofT induced byN (u, T ) (i.e., it also in-
cludes all the associated Steiner nodes connectingN (u, T )). Note
that whenu is also a leaf node ofT then this is afull Steiner com-
ponentof T [4].

Given two adjacent Steiner treesT1 and T2 that share a com-
mon nodec, the SIMPLE-MERGE step in FLUTE-MR joins them
together atc in a straight-forward manner to form Steiner treeT .
It then performs a minimal-effort improvement onT in the neigh-
borhood ofc by the following operation: the subsetFSC(c, T1) ∪
FSC(c, T2) is replaced by FLUTE-LD(N (c, T1) ∪ N (c, T2)).
Since this neighborhood is usually very small in size, FLUTE-LD
is sufficient to handle it and the cost of the call is very low. At the
same time, we observe empirically that there is usually slight im-
provement on the quality ofT .

3.3 Improving the Base Spanning Tree

The partitioning of the base spanning treeTbase in FLUTE-MR can be
viewed as providing a way of breaking the net into groups of subnets. The
Steiner treeT obtained after the simple merging step provides some insight
on how the pin nodes could be grouped in a better way. The rationale is that
there are probably some groupings of pin nodes that are obvious inT but not
in Tbase. The basic idea is that the closeness of two edges inT may help to
shorten theeffective distancebetween their end-points, as a potential Steiner
point may be added to bridge one of the end-points to the other edge. We
would therefore like to include such consideration when we create the new
Tbase in the next round.

The algorithm in Figure 5 shows how it is done. Letdisteff be the effec-
tive distance matrix. In the first round of FLUTE-MR, we do not yet have any
information ofT . Sodisteff is the original Manhattan distance matrix. Sub-
sequentlydisteff is updated in the function IMPROVE-SPANNING-TREE
as follows. It loops through each edge of the input Steiner treeT in a scan
line fashion. For each edgee = (u, v) it checks for any other edge(p, q)
that is disjoint frome and falls within a neighborhood ofe. For each such
edge pair, it finds the closest node pair(x, y) ∈ {u, v} × {p, q} such that



bothx andy are pin nodes. If such pair exists, then their effective distance
is updated as

disteff (x, y) = shortest-distance(bbox(u, v), bbox(p, q)) (1)

wherebbox() is the bounding box function. After all scanning is done, a
newTbase is calculated by computing the minimum spanning tree of the pin
set with respect to the updated matrixdisteff .

Algorithm IMPROVE-SPANNING-TREE (T )
Input: A Steiner tree.
Output: A spanning treeTbase of the pin nodes ofT .
Begin

S← edges ofT in increasingx order
for eache = (u, v) in S {

if both u andv are Steiner nodes, then continue;
for eache′ = (p, q) in neighborhood(e) {

if e ande′ are touching, then continue;
if both p andq are Steiner nodes, then continue;
find shortest-dist pair(x, y) ∈ {u, v} × {p, q}

s.t. bothx andy are pin nodes
updatedisteff (x, y) according to eq. (1)
}
}
Tbase ←MST of pin nodes ofT w.r.t. disteff
returnTbase

End

Figure 5: The algorithm to improve the base spanning tree.

3.4 An Aggressive Merging Step
The heuristics in Section 3.3 allows FLUTE-MR to repeatedly improve the
quality ofT in a global sense, as all the information about the potential addi-
tional Steiner nodes are collected first beforeT is re-generated. However, the
advantage of such global improvement is obtained at the expense of runtime.

An alternative is to updateT locally whenever a good Steiner node is
found during the search, but to avoid the recursive call in the multiple rounds.
This forms the basis of the AGGRESSIVE-MERGE heuristics for FLUTE-
AM. Figure 6 describes the algorithm. The inputs are two Steiner subtrees
T1 andT2 that share a common nodec. It first joins the trees atc, and
makes the combined treeT rooted atc (essentially imposing a parent-child
relationship on the nodes of each edge). The edges are then sorted and ex-
amined one by one in a scan line manner similar to the way as in Section 3.3.
However, only pin nodes (instead of tree edges) in the neighborhood of an
edge are collected this time. For an edge(p, q) (wherep is the parent ofq
in T ) and a pin nodeu in its neighborhood, the Manhattan distance between
bbox(p, q) andu is calculated. It is compared to the length of the current
longest edgee between(p, q) andu in T (if e happens to be(p, q) then
the second longest one, if it exists, replacese in the subsequent discussion).
If the former is smaller,T is updated by creating a Steiner edge fromu to
(p, q) and breaking the cycle ate.

Obviously the order of the edges being scanned has a direct impact on
the quality of the finalT . In order to optimize the chances of improvement,
AGGRESSIVE-MERGE does it by first scanning the edges horizontally and
then scanning the updated edge set again vertically. The whole process is
then repeated until no further improvement can be found. Since the inputs
T1 andT2 come from a recursive call in FLUTE-AM, their qualities are
already very good and so we expect that the number of repetition for the
process to converge is very small. In our empirical finding, it usually takes
no more than three iterations to exit.

The most expensive step in AGGRESSIVE-MERGE is identifying the
longest edge between(p, q) andu. We have implemented a simple approach
as follows. First the least common ancestorlca of p andu is computed. This
can be done by following the respective paths fromp andu to the rootc of
T until a common ancestor is found. There are three cases: (i)lca is neither
p noru, (ii) lca is p, or (iii) lca is u. In any case, the rest of the computation
reduces to one of finding the longest edge from a node to an ancestor, and it
is done by tracing the corresponding path.

With two major changes, there is also a batched version that helps speed-
ing up the heuristics. First, only those edge-pin pair(p, q) andu that come
from opposite input trees are considered. That is, if(p, q) belongs toT1,
thenu is searched fromT2, and vice versa. Second, instead of updating

Algorithm AGGRESSIVE-MERGE (T1, T2)
Input: Two adjacent Steiner trees.
Output: A combined Steiner tree.
Begin

Let c be the common node ofT1, T2.
T ← T1 ∪ T2

MakeT rooted atc
repeat{

S← edges ofT sorted in horizontal order
for each(p, q) ∈ S {

for each pin nodeu in neighborhood(p, q) {
d← distance(bbox(p, q), u)
e← longest-edge(p, u)
if (d < length(e)) then{

removee from T
create Steiner edge fromu to (p, q)
if new Steiner nodex is created in last step{

insert(p, x) into S
p← x
}
}
}
}
repeat the above loop with

S← edges ofT sorted in vertical order
} until no more improvement
returnT

End

Figure 6: The aggressive-merge algorithm.

T immediately during the scan loop, the potential edge-pin pair candidates
are collected but not processed yet. After the loop, this set of candidates is
re-examined andT is updated accordingly. In this way, the longest-edge cal-
culation within the scan loop can be done very efficiently as follows. Before
the scan loop, we calculate for each node the longest edge along the path
from it to the nodec in the corresponding tree. This is achieved with linear
complexity through a depth-first traversal ofT1 andT2 respectively, starting
from the common nodec. This information allows the longest edge between
edge(p, q) and nodeu to be computed in constant time during the scanning.

The set of candidates collected during the scan loop is relatively small in
general. This strategy effectively helps cutting the run time significantly by
avoiding a lot of dynamic longest-edge computation. The quality is com-
promised slightly. Therefore, we only use it for extremely high degree nets.
Another threshold,D3, is added to control it: the heuristics is switched from
the non-batched version to the batched one when|T1|+ |T2| ≥ D3.

3.5 Accuracy Control Scheme
As in the original FLUTE, we introduce a user-defined accuracy parameter
A. A can take any integral value≥ 1 and is practical up to about 20. Based
on A, other parameters of the algorithm are experimentally determined to
control the tradeoff between accuracy and runtime.

The thresholdτ on the partition size in FLUTE-MR is:

τ = 8 + 1.3A

To control the accuracy of FLUTE-MR, the number of roundsR and the
accuracy parameterbA used when calling FLUTE-LD are defined below:

R =


1 if A ≤ 6

A− 5 if A > 6

bA =


A if A ≤ 6

6 + 2× bA−5
4

c if A > 6

Note that bA is always set to an even number whenA > 6. Because the
accuracy parameter in the accuracy control scheme of FLUTE-LD is always
divided by 2, we notice that an even value forbA produces marginally better
results. In fact, powers of 2 are even better but the difference is insignificant.

The accuracy of FLUTE-AM is controlled by setting the accuracy pa-
rameter bA of the recursive calls to FLUTE-3.0 asA. We could control the



accuracy of AGGRESSIVE-MERGE by adjusting the stopping criteria of
its main loop, but we have not incorporated this idea in the current imple-
mentation. As a result, we currently are not very effective in controlling the
accuracy of FLUTE-AM.

Based on the tradeoff characteristics of FLUTE-LD, FLUTE-MR, and
FLUTE-AM over nets of various degree, the thresholds determining which
heuristics to use are set as below:

D1 = 25 + 120/A2

D2 =


500 if A ≤ 6

75 + 5A if A > 6

D3 =


1000 if degree ≤ 10000
10000 otherwise

Note thatD2 is set in such a way that the use of FLUTE-AM is prohibited
whenA ≤ 6 unless the degree is high.

The time complexity of FLUTE-3.0 isO(n log2 n). The analysis is omit-
ted due to space limitation.

4 Experimental Results
We have implemented FLUTE-3.0 in C. We perform two sets of experiments.
The first set focuses on nets with low and medium degree, and is run on a
1.8GHz Pentium 4 laptop with 256MB memory. We compare FLUTE-3.0
with four other algorithms: an efficientO(n2) implementation of Prim’s
algorithm (RMST) [11], the near-optimal Batched Iterated 1-Steiner (BI1S)
heuristic [3], theO(n log2 n) near-optimal batched greedy heuristics (BGA)
reported in [4], and FLUTE-2.0 with accuracyA = 3 andA = 6 [2]. We
also run the exact RSMT software GeoSteiner 3.1 [6] to generate the optimal
solutions as the reference. 1000 randomly generated nets is used for each
degree. BI1S crashes for degrees 400 and 500.

Tables 1 and 2 show respectively the average wirelength error and run-
time comparisons. It is clear from the tables that FLUTE-3.0 has compara-
ble quality with the well-known near-optimal BI1S heuristics. In particular,
with accuracyA ≥ 10, it gives the best quality of result among all the al-
gorithms being compared.2 At the same time, it is much faster than BI1S
(by at least one to two orders of magnitude). It is also faster than the highly
scalable BGA algorithm wheneverA ≤ 12. We would also like to remark
that wheneverA ≥ 12, FLUTE-3.0 consistently produces a result that is
within 0.5% of the optimial solution. The tables also show that although
FLUTE-2.0 can be extremely fast (with a smallA), it fails to generate ac-
curate solutions for medium-degree nets even with a largeA value (i.e., a
high runtime). FLUTE-3.0 can generate far more accurate solutions in less
runtime.

Figures 7 and 8 show the tradeoff between accuracy and runtime for nets
with degree 30 and 300, respectively. As expected, these figures confirm
that the quality of FLUTE-3.0 improves consistently whenA increases. On
the other hand, they show that the runtime increases only moderately, and
is within reasonable range even whenA = 18. The figures also show that
FLUTE-3.0 provides a much better accuracy-runtime tradeoff than FLUTE-
2.0 and BGA. Note that in Figure 8, FLUTE-2.0 is not included because its
wirelength errors are far too high to be plotted in the same graph (wirelength
error> 4.4% for the corresponding runtime range). Figure 8 shows a large
jump in accuracy and runtime betweenA = 6 andA = 7 for degree 300.
The jump is caused by the application of FLUTE-AM whenA ≥ 7 and
degree> D2 = 75 + 5A. Such a jump does not exist when degree≤ D2
as illustrated in Figure 7.

The second set of experiment illustrates the scalability of FLUTE-3.0.
It is run on a 3GHz Xeon desktop with 4GB memory. Figures 9 and 10
compare respectively the runtime and quality of FLUTE-3.0 with those of
BGA for very high degree nets. Note that BGA runs out of memory for nets
with over 1 million pins. Since GeoSteiner cannot handle such large nets,
we measure the quality of result by the percentage improvement over the
rectilinear minimum spanning tree of the same set of pins. For each degree,
10 randomly generated nets are routed and the average runtime and quality is
reported. It can be seen that both FLUTE-3.0 and BGA are highly scalable.
However, the runtime of FLUTE-3.0 is not only smaller but also increases
in a much slower rate than BGA. In particular, whenA = 12, FLUTE-3.0
is 3.7 times faster than BGA and achieves a better quality in routing one
million pins. Moreover, BGA refuses to handle more than one million pins
due to insufficient memory, while FLUTE-3.0 can handle 3-million-pin nets
in our experiment.

2In fact, FLUTE-3.0 gives the best quality of result among all the algo-
rithms being compared whenA ≥ 9.
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FLUTE-2.0 FLUTE-3.0
Degree RMST BI1S BGA A = 3 A = 6 A = 4 A = 6 A = 8 A = 10 A = 12 A = 14 A = 16 A = 18

10 11.982 0.349 0.443 0.182 0.061 0.083 0.037 0.028 0.028 0.027 0.027 0.027 0.027
20 12.168 0.421 0.518 0.920 0.327 0.583 0.348 0.221 0.187 0.153 0.137 0.124 0.115
30 12.551 0.552 0.619 1.727 0.628 1.223 0.761 0.447 0.338 0.331 0.251 0.250 0.232
40 12.727 0.556 0.624 2.462 0.990 0.999 0.893 0.507 0.349 0.329 0.321 0.320 0.293
50 12.684 0.567 0.628 3.156 1.300 1.032 0.955 0.515 0.384 0.357 0.321 0.316 0.279
60 12.729 0.580 0.647 3.629 1.482 1.034 0.954 0.567 0.443 0.403 0.340 0.336 0.322
70 12.848 0.557 0.630 3.977 1.759 1.083 1.001 0.593 0.447 0.403 0.355 0.349 0.340
80 12.862 0.573 0.639 4.374 1.914 1.106 1.016 0.643 0.473 0.437 0.404 0.395 0.359
90 12.889 0.590 0.669 4.625 2.133 1.128 1.024 0.661 0.493 0.452 0.415 0.404 0.375
100 12.867 0.599 0.678 4.922 2.285 1.181 1.081 0.702 0.547 0.497 0.437 0.427 0.401
200 13.015 0.609 0.689 6.633 3.516 1.250 1.156 0.517 0.444 0.421 0.396 0.390 0.367
300 13.054 0.617 0.689 7.502 4.419 1.277 1.192 0.502 0.453 0.437 0.416 0.408 0.392
400 13.134 N/A 0.704 8.156 5.068 1.302 1.222 0.527 0.460 0.441 0.419 0.416 0.398
500 13.076 N/A 0.681 8.535 5.595 1.306 1.222 0.522 0.463 0.444 0.419 0.412 0.390

Table 1:Average wirelength error (in %) for nets of different degree.

FLUTE-2.0 FLUTE-3.0
Degree RMST BI1S BGA A = 3 A = 6 A = 4 A = 6 A = 8 A = 10 A = 12 A = 14 A = 16 A = 18

10 0.01 0.27 0.44 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.02 0.03
20 0.02 1.57 1.29 0.05 0.24 0.06 0.12 0.23 0.35 0.57 0.78 1.28 1.61
30 0.03 4.81 2.27 0.09 0.90 0.13 0.27 0.65 1.25 1.56 2.40 2.67 4.14
40 0.05 11.08 3.35 0.14 2.04 0.29 0.35 1.05 2.18 2.83 4.10 4.64 6.87
50 0.08 20.91 4.64 0.19 3.66 0.38 0.46 1.37 2.81 3.67 5.72 6.48 10.40
60 0.10 35.48 5.96 0.26 5.69 0.47 0.56 1.77 3.64 4.85 7.47 8.55 13.20
70 0.15 55.08 7.48 0.31 8.06 0.56 0.67 2.19 4.55 6.12 9.57 11.03 17.11
80 0.17 80.73 8.98 0.37 10.79 0.66 0.78 2.64 5.48 7.43 11.58 13.43 20.84
90 0.22 116.19 10.55 0.44 13.84 0.76 0.90 3.07 6.42 8.80 13.78 16.06 24.90
100 0.26 159.37 12.31 0.50 17.19 0.85 1.01 3.56 7.41 10.25 16.06 18.78 29.24
200 0.99 1360.44 31.46 1.22 60.28 2.67 3.04 12.61 20.06 25.57 36.82 42.18 62.24
300 2.20 4711.17 53.88 1.99 113.32 5.06 5.54 25.17 35.31 42.62 58.92 72.15 108.32
400 3.89 N/A 79.82 2.79 172.72 7.88 8.50 39.01 53.17 63.97 86.64 97.54 138.86
500 6.08 N/A 110.22 3.59 237.34 11.23 11.98 57.19 73.65 87.79 117.57 133.62 190.15

Table 2:Runtime per net (in ms) for nets of different degree.
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5 Conclusion

A tree-based net breaking technique and modifications to the original re-
cursive bisection based net breaking technique are proposed to enhance
FLUTE [1, 2] for rectilinear Steiner minimal tree construction for all de-
grees. The performance improvement is significant. It provides a better
quality of result, with a smaller runtime, than BI1S [3] and BGA [4], the two
state-of-the-art near-optimal RSMT algorithms found in the public domain.

We also provide a scheme to control the runtime and quality tradeoff for
the new FLUTE algorithm, through the parameterA. It is shown that the
runtime increases only moderately with the accuracy, and is within practi-
cal range even whenA is set to as large as 20. Therefore the algorithm is
very suitable for RSMT computation in various VLSI design applications,
ranging from cases where fast computation is important (e.g., congestion es-
timation during placement), to cases where high accuracy is required (e.g.,
global / detailed routing).
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