
An Efficient Analytical Placement Algorithm for Mixed-Mode
Designs in the presence of Placement Blockages

Natarajan Viswanathan, Min Pan and Chris Chu
Department of Electrical and Computer Engineering, Iowa State University

Ames, IA 50011-3060, USA
email: {nataraj,panmin,cnchu}@iastate.edu

Presenter: Natarajan Viswanathan

Abstract— This paper presents FastPlace 2.0, an efficient analyt-
ical placement algorithm to handle the mixed-mode placement
problem. The main contributions of this paper are: (1) Extensions
to the global placement framework of the standard-cell placer -
FastPlace [1] to handle mixed-mode designs. (2) An efficient and
optimal minimum perturbation legalization algorithm, applied
after global placement, to resolve overlaps among the macros.
(3) An efficient legalization scheme to legalize the standard cells
among the segments created after fixing the movable macros. On
the ISPD 02 Mixed-Size placement benchmarks [2], the algorithm
is 16.8X and 7.8X faster than academic placers Capo 9.1 and
Fengshui 5.0 respectively. Correspondingly, it results in 11% and
2% better wirelength over the respective placers.

I. INTRODUCTION

As the time to market for designs is constantly shrinking, there
has been a steady increase in the re-use of pre-designed or
generated macro blocks like IP cores, embedded memories,
analog blocks etc. Designs today often contain a combination
of a large number of macro blocks and millions of standard
cells. This design style, known as mixed-mode design or
mixed-size design complicates the placement step and imposes
a lot of difficulty on placement tools due to the varied sizes
of the placeable components. With an ever-increasing trend
toward mixed-mode design, it is necessary to have efficient
techniques that can simultaneously handle this combination of
placeable objects.
Over the last few years, the mixed-mode placement problem
has generated a lot of interest. Placement algorithms handling
this problem employ various approaches including partitioning
[3]–[5], clustering and simulated annealing [6] and analytical
placement [7]–[13]. Analytical placement techniques based
on the force-directed method are promising for handling
the mixed-mode placement problem. This is because force-
directed methods can seamlessly handle the varied sizes of
placeable objects without employing additional techniques like
partitioning or clustering [7], [12]. Also, they can be very
efficient and scalable to handle large-scale problems [1].
In this paper we extend the efficient analytical placer -
FastPlace [1] to handle mixed-mode designs. The main con-
tributions of our work are:

• Extensions to the Cell Shifting technique of FastPlace to
handle mixed-mode designs.

• An efficient and optimal minimum perturbation legalization
algorithm to resolve overlaps among the macros created
during global placement. This problem is solved by using

a floorplanning approach. Based on the global placement
solution, we use a sequence pair to represent the relative
positions of the macros. We subsequently prove that for
a given sequence pair our algorithm is optimal and will
result in a non-overlapping placement of the macros with
minimum movement from their global placement positions.

• An efficient legalization scheme that legalizes the standard
cells among the placeable segments created after fixing the
movable macros.

The rest of this paper is organized as follows: Section II
outlines the mixed-mode placement flow and describes the
extensions to the global placement framework of [1] to handle
mixed-mode designs. Section III describes the legalization
scheme for macros and standard cells. Section IV describes
the detailed placement technique. Finally, experimental results
are provided in Section V.

II. MIXED-MODE PLACEMENT

Our mixed-mode placement flow is summarized in Figure 1.
For the global placement stage, we employ the same top-level
flow as [1]. During legalization, we first remove the overlaps
among the macros and assign them to legal positions in the
core region. Once legalized, the macro positions are fixed
and they behave as placement obstacles for all subsequent
steps. These placement obstacles fragment the rows in the core
region into placeable segments. In the next step of legalization
we move the standard cells among the placeable segments
to satisfy their respective capacities. Finally, we legalize the
standard cells within the segments. Following legalization we
perform detailed placement on the standard cells to further
reduce the wirelength of the placement.

A. Cell Shifting for Mixed-Mode Placement

As described in [1], during Cell Shifting, the core region is
binned and the utilization of each bin is computed. The cells
are then spread out based on their respective bins and its
current utilization. This is done by attempting to even out the
utilization of adjacent bins. For standard-cells, the width of a
bin in the regular bin structure is greater than the average cell
width. Hence, the movement of any cell has an influence on
the utilization of only the adjacent bins. On the other hand,
the movement of a macro will influence the utilization of all
the bins spanned by it. Therefore, a larger region proportional

Algorithm Mixed-Mode Placement
Stage 1: Global Placement

Step 1: Coarse Global Placement
Repeat

1. Solve the quadratic program
2. Perform Cell Shifting on standard cells and

macro blocks and Add Spreading Forces
Until the placement is roughly even

Step 2: Wirelength Improved Global Placement
Repeat

1. Solve the quadratic program
2. Perform Iterative Local Refinement on

standard cells and macro blocks
3. Perform Cell Shifting on standard cells and

macro blocks and Add Spreading Forces
Until the placement is very even

Stage 2: Legalization
1. Legalize Macro Blocks

2. Fix Macros and move standard cells among
placeable segments to satisfy segment capacity

3. Legalize standard cells within segments

Stage 3: Detailed Placement

Fig. 1. The Mixed-Mode placement flow.

to the area of the macro needs to be considered for shifting
the macro.
Shifting of the macros follows the same two-step process as
the standard cells. We first construct an unequal bin structure
from the regular bin structure. The macros are then linearly
mapped from the regular bin structure to the unequal bin
structure. The only difference between Cell Shifting for the
macros and the cells is the construction of the unequal bin
structure. Figure 2 illustrates the construction of the unequal
bin structure for horizontal shifting. From Figure 2(a), for the
regular bin structure, let,

• N : Total number of bins spanned by the macro.
• x span: Total number of columns spanned by the macro.
• OBL: x-coordinate of the left boundary of the leftmost bin

spanned by the macro.
• OBR: x-coordinate of the right boundary of the rightmost

bin spanned by the macro.
• UC : Sum of the utilizations of all the bins spanned by the

macro (hatched lines to the bottom right).
• UL: Sum of the utilizations of N bins to the left of the

macro. (hatched lines to the bottom left)
• UR: Sum of the utilizations of N bins to the right of macro.

(hatched lines to the bottom left)

From Figure 2(b), for the unequal bin structure, let,

• NBL: x-coordinate of the left boundary of the leftmost bin
spanned by the macro.

• NBR: x-coordinate of the right boundary of the rightmost
bin spanned by the macro.

Then,

NBL =
OBL−x span(UC + δ) + OBR(UL + δ)

UL + UC + 2δ
and,

NBR =
OBL(UR + δ) + OBR+x span(UC + δ)

UR + UC + 2δ
As in [1], the parameter δ is set to a value of 1.5 to prevent
cross-over of bin boundaries in the unequal bin structure. For
performing the linear mapping, if

• x: x-coordinate of the macro before mapping.

OBL –
x_span

OBR OBL

NBL NBR

UL UR UC

x_span Macro Block

OBR +
x_span

(a)

(b)

Fig. 2. (a) Regular bin structure (b) Unequal bin structure for macro block
cell shifting.

• x′: x-coordinate of the macro after mapping.

Then,

x′ =
NBR(x − OBL) + NBL(OBR − x)

OBR − OBL
Once the macro is moved, we add the spreading force to
the macro and update the connectivity matrix for the next
quadratic programming step in the same fashion as [1].

III. LEGALIZATION

A key issue with analytical placement techniques is that they
have overlaps among the cells or macros that need to be
resolved. We divide our legalization stage into two steps. First,
we ignore all the standard cells and resolve overlaps among
the macros and assign them to legal positions. In the next step,
we fix the macros and legalize the standard cells. These steps
are described in more detail in the following sub-sections.

A. Macro Block Legalization

We want to maintain the macro positions in the global place-
ment solution as much as possible during legalization. The
original position of a macro, determined by global placement,
is called its target position. The macro block legalization
problem is to minimize the total perturbation of all macros
from their target positions such that there are no overlaps
among them.
This problem is solved by using a fixed-outline floorplanning
approach. We use the sequence pair (SP) [14] to represent the
floorplan and enforce the non-overlapping constraints among
the macros. The aim of the floorplanning algorithm is to
obtain a SP such that the corresponding placement will cause
minimum perturbation of the macros and place them in legal
positions within the core region. Hence, the cost function is
defined as a weighted sum of the total perturbation and a
penalty for being out of bound. We use simulated annealing
to search for a SP with low cost.
If (p, q) represents the SP. Then, the initial sequence for p/q is
generated by sorting the macros in ascending order according
to the Manhattan distance from the upper left / lower left
corner to their target positions. This SP closely corresponds
to the original placement and is usually quite good. Hence,

a low-temperature annealing is sufficient to generate a good
result. Besides, we restrict each annealing move to randomly
exchange two adjacent macros in one of the two sequences so
as to not disturb the current solution significantly.
We formally describe the problem of finding a minimum
perturbation placement for a given SP below. Since the hori-
zontal and vertical non-overlapping constraints can be handled
independently and the horizontal and vertical problems are
similar, we only discuss the horizontal problem.

Minimum Perturbation Floorplan Realization
(MPFR) Problem:

Given: n macros with target coordinates x∗

i for
i = 1, . . . , n, and a sequence pair (p, q).

Determine: Legalized coordinates xi s.t.
∑

|xi − x∗

i | is
minimized.

We now present an O(n2) optimal algorithm called Itera-
tive Clustering Algorithm to solve the Minimum Perturbation
Floorplan Realization Problem. The basic idea of the algorithm
is that if we know which macros should be abutted with each
other to form a cluster in the optimal solution, then the position
of the cluster is easy to find. To determine which macros
should be grouped in the same cluster, we always shift all
clusters to their optimal positions. In doing so if there are
any overlaps among some clusters, then we know that these
clusters should be merged to form larger clusters. The pseudo-
code of the algorithm is given below:

Iterative Clustering Algorithm:
1. Find the immediate left and right neighbours

of all macros
2. for i = 1 to n
3. Place macro pi in its target position
4. Let C be a new cluster consisting of pi

5. while C overlaps with other clusters do
6. Merge C with the closest cluster on its left
7. Let C be the new cluster formed
8. Shift C to its optimal position
9. if macro m in C is at its target position do
10. Detach m from C if necessary

and goto step 8
11. endwhile
12. endfor

In step 1, immediate neighbours of macros are those that can
potentially abut. They are associated with the non-transistive
edges in the constraint graph. The immediate neighbours of all
macros can be found in O(n2) time. In steps 3-4, the macros
are placed one at a time from left to right (i.e., according to
the sequence p). Then the clustering is updated according to
steps 5-11. The condition in step 5 and the closest cluster in
step 6 can be determined by considering the constraints of the
immediate left neighbours of modules in C. The shifting in
step 8 is easy according to the following lemma.
Lemma 1: For a cluster C, its position is optimal if the
number of macros perturbed to the left from their target

positions is equal to the number perturbed to the right.
Note that since we add macros from left to right, macros will
always be added to the right of a stationary cluster. So the
clusters will always shift left. Therefore, it is very easy to
find the correct shift amount of the newly formed clusters.
After shifting a cluster, a macro m may potentially reach its
target position and should be detached from the cluster if it
does not have other macros in the same cluster on its right.
This condition can be checked by looking at the immediate
right neighbours of m.
Although the while loop in steps 5-11 looks complicated, we
can show with careful implementation and analysis that the
runtime complexity of the Iterative Clustering Algorithm is
O(n2). Figures 3 and 4 show the placement of the macros
before and after legalization for the circuit ibm01. It can be
observed that the macros have moved by a very small amount
from their original positions obtained after global placement.

B. Standard Cell Legalization

Once the overlaps among the macros have been resolved, we
fix their positions for all subsequent steps and treat them
as placement blockages. We then divide each row in the
core region into placeable segments based on the overlap of
the blockages with the row. A placeable segment is defined
as the maximal part of a row that is not covered by a
placement blockage. We then move the standard cells among
the segments to satisfy their respective capacities. Finally, we
legalize the standard cells within the segments.
For moving a cell, we compute 8 scores based on moving it to
its nearest 8 neighboring segments. For calculating the score,
we assume that the cell is moving from its current position in
a source segment to the nearest possible position in the target
segment. Each score is a weighted sum of two components:
The first being the half-perimeter wirelength reduction for the
move. The second being a function of the utilization of the
source and target segments. Since the legalization technique
is mainly used to bring all the segments within capacity, a
higher weight is assigned to the second component. If all
the scores are negative, the cell will remain in the current
segment. Otherwise, it will move to the target segment with the
highest score for the move. During one iteration, we traverse
through all the segments in the placement region and follow
the above steps for cell movement. Subsequently, this iteration
is repeated until all the segments are within their respective
capacities. We then assign the cells to legal positions within
each segment.

Fig. 3. Circuit ibm01 before legalization of movable macros.

Fig. 4. Circuit ibm01 after legalization of movable macros.

IV. DETAILED PLACEMENT

The aim of the detailed placement stage is to further reduced
the wirelength of the placement. We adopt the detailed place-
ment algorithm described in [15] for the same. The detailed
placement algorithm is based on four key techniques: global
swap, vertical swap, local re-ordering and single-segment
clustering. All the techniques act only on the standard cells
and do not modify the positions of the macro blocks.
Briefly, the global swap uses the median idea of [16] to swap
the standard cells for wirelength reduction. This technique
operates on the entire placement region. The vertical swap is
similar to the global swap but it only considers cells in adjacent
rows for swapping. The local re-ordering technique picks a
subset of cells within a segment and tries out all possible left-
right orderings of the cells to pick the one giving the best
possible wirelength. Finally, retaining the order determined
by local re-ordering, an optimal single-segment clustering
algorithm is used to cluster the cells within a segment for
further wirelength reduction.

TABLE I

PLACEMENT BENCHMARK STATISTICS.

Circuit #Cells #Macros #Pads #Nets %Cell %Macro
Area Area

ibm04 26925 295 287 31970 38.03 41.98
ibm05 28146 0 1201 28446 80.01 0.00
ibm06 32154 178 166 34826 34.60 45.41
ibm10 67899 786 744 75196 20.34 59.66
ibm11 69779 373 406 81454 42.36 37.63
ibm12 69788 651 637 77240 28.35 51.65
ibm16 182522 458 504 190048 42.11 37.89
ibm17 183992 760 743 189581 62.80 17.20
ibm18 210056 285 272 201920 71.31 8.69

V. EXPERIMENTAL RESULTS

Our algorithm was tested on the ISPD02 IBM-MS Mixed-
size Placement Benchmarks [2], [3], [17]. These designs are
relatively large and contain many macro blocks and standard
cells. All macro blocks are assumed to be hard blocks with
fixed aspect ratios. Each design contains around 20% of
whitespace. The circuit characteristics listed in Table I include
the number of cells, macros, pads, nets and the area occupied
by the cells and macro blocks as a percentage of the total
placement area.
In Table II, we compare our placer with Capo 9.1 and Fengshui
5.0, which are updated versions of the tools published in [5]
and [4] respectively. Both placers are run in their default mode.
All the runtimes are on an Intel Xeon, 3.06GHz CPU. From
Table II, we are on average, 11% and 2% better in terms
of wirelength over Capo 9.1 and Fengshui 5.0 respectively.
Correspondingly, we are 16.8X and 7.8X faster.

TABLE II

COMPARISON OF OUR PLACEMENT RESULTS WITH CAPO 9.1 (CP) AND

FENGSHUI 5.0 (FS). (* AVERAGE IS OVER ALL 18 CIRCUITS OF THE

BENCHMARK SUITE)

HPWL RunTime
Ckt Our CP

Our

F S

Our
Our CP CP

Our
FS F S

Our

(sec) (sec) (sec)
ibm04 8.18 1.11 1.04 38 771 20.29 323 8.50
ibm05 10.24 1.00 0.96 35 684 19.54 372 10.63
ibm06 6.01 1.25 1.14 37 809 21.86 437 11.81
ibm10 31.78 1.17 1.10 180 2666 14.81 1085 6.03
ibm11 20.84 1.05 0.94 129 2172 16.84 891 6.91
ibm12 34.79 1.15 1.04 181 3413 18.86 1011 5.59
ibm16 58.95 1.20 1.02 422 7211 17.09 3626 8.59
ibm17 70.14 1.08 0.99 680 6782 9.97 3935 5.79
ibm18 46.08 1.03 0.96 770 5163 6.71 3471 4.51

Average* 1.11 1.02 16.83 7.83

REFERENCES

[1] N. Viswanathan and C. C.-N. Chu, “FastPlace: Efficient analytical
placement using cell shifting, iterative local refinement and a hybrid
net model,” in Proc. Intl. Symp. on Physical Design, 2004, pp. 26–33.

[2] S. N. Adya and I. L. Markov. ISPD02 IBM-MS Mixed-size
Placement Benchmarks. [Online]. Available: http://vlsicad.eecs.umich.
edu/BK/ISPD02bench/

[3] ——, “Consistent placement of macro-blocks using floorplanning and
standard-cell placement,” in Proc. Intl. Symp. on Physical Design, 2002,
pp. 12–17.

[4] A. Khatkhate, C. Li, A. R. Agnihotri, M. C. Yildiz, S. Ono, C.-K. Koh,
and P. H. Madden, “Recursive bisection based mixed block placement,”
in Proc. Intl. Symp. on Physical Design, 2004, pp. 84–89.

[5] S. N. Adya, S. Chaturvedi, J. A. Roy, D. Papa, and I. L. Markov,
“Unification of partitioning, floorplanning and placement,” in Proc.
IEEE/ACM Intl. Conf. on Computer-Aided Design, 2004, pp. 550–557.

[6] C. C. Chang, J. Cong, and X. Yuan, “Multi-level placement for large-
scale mixed-size IC designs,” in Proc. Asia and South Pacific Design
Automation Conf., 2003, pp. 325–330.

[7] H. Eisenmann and F. Johannes, “Generic global placement and floorplan-
ning,” in Proc. ACM/IEEE Design Automation Conf., 1998, pp. 269–274.

[8] H. Yu, X. Hong, and Y. Cai, “MMP: A novel placement algorithm for
combined macro block and standard cell layout design,” in Proc. Asia
and South Pacific Design Automation Conf., 2000, pp. 271–276.

[9] A. B. Kahng and Q. Wang, “An analytical placer for mixed-size
placement and timing-driven placement,” in Proc. IEEE/ACM Intl. Conf.
on Computer-Aided Design, 2004, pp. 565–572.

[10] K. Vorwerk, A. Kennings, and A. Vannelli, “Engineering details of
a stable force-directed placer,” in Proc. IEEE/ACM Intl. Conf. on
Computer-Aided Design, 2004, pp. 573–580.

[11] K. Vorwerk and A. Kennings, “An improved multi-level framework for
force-directed placement,” in Proc. Conf. on Design Automation and
Test in Europe, 2005, pp. 902–907.

[12] B. Yao, H. Chen, C.-K. Cheng, N.-C. Chou, L.-T. Liu, and P. Suaris,
“Unified quadratic programming approach for mixed mode placement,”
in Proc. Intl. Symp. on Physical Design, 2005, pp. 193–199.

[13] U. Brenner and M. Struzyna, “Faster and better global placement by a
new transportation algorithm,” in Proc. ACM/IEEE Design Automation
Conf., 2005, pp. 591–596.

[14] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module
placement based on rectangle-packing by the sequence pair,” IEEE
Trans. Computer-Aided Design, vol. 15, no. 12, pp. 1518–1524, Dec.
1996.

[15] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed
placement algorithm,” in Proc. IEEE/ACM Intl. Conf. on Computer-
Aided Design, To Appear, 2005.

[16] S. Goto, “An efficient algorithm for the two-dimensional placement
problem in electrical circuit layout,” IEEE Trans. Circuits and Systems,
vol. CAS-28, no. 1, pp. 12–18, 1981.

[17] S. N. Adya and I. L. Markov, “Combinatorial techniques for mixed-
size placement,” ACM Trans. Design Automation of Electronics Systems,
vol. 10, no. 1, pp. 58–90, Jan. 2005.

