
FLUTE: Fast Lookup Table Based Wirelength Estimation Technique

Chris Chu
Electrical and Computer Engineering

Iowa State University
Ames, IA 50010

email: cnchu@iastate.edu

Abstract

Wirelength estimation is an important tool to guide the design op-
timization process in early design stages. In this paper, we present
a novel wirelength estimation technique called FLUTE. Our tech-
nique is based on pre-computed lookup table to make wirelength
estimation very fast and very accurate for low degree1 nets. We
show experimentally that for FLUTE, RMST, and HPWL, the aver-
age error in wirelength are 0.72%, 4.23%, and -8.71%, respectively,
and the normalized runtime are 1, 1.24, and 0.16, respectively.

1 Introduction
In the deep sub-micron / nanometer regime, interconnect issues like
delay and routability become the main concern in IC design. Thus,
design optimization even in the early design stages needs to be
guided by physical information of interconnects (wirelength, con-
gestion, etc.). This paper focuses on layout stages like floorplanning
and placement in which module (i.e., pin) locations are being fixed.
We can evaluate each tentative floorplan or placement solution by
performing real routing on it. However, it will be prohibitively ex-
pensive to incorporate routing within the optimization process of an
early stage. A more realistic approach is to apply some fast yet ac-
curate techniques to estimate the physical interconnect information.

A very popular technique is the half-perimeter wirelength
(HPWL) estimation which equals the half-perimeter of the bounding
rectangle of pins [1]. This technique is very efficient. It also pro-
vides exact wirelength for optimally routed two-pin nets and three-
pin nets. However, it can significantly underestimate wirelength for
higher-degree nets. Cheng [2] proposed a net weighting technique
to scale up the HPWL estimation. The net weights are degree-
dependent constants and are experimentally determined. However,
even for different nets with the same degree, the error in the HPWL
estimation can be very different. It is impossible to derive a single
net weight to accurately scale up the HPWL estimation for all nets.

Another commonly used technique to estimate the wirelength is
by rectilinear minimum spanning tree (RMST) [3,4]. This approach
can produce good wirelength estimation in reasonable runtime. The
best time complexity of RMST isO(n log n) [3]. However, a simple
O(n2) time implementation of Prim’s algorithm is usually used in
practice because the degreen are small for most nets [5].

We can also achieve accurate estimation by constructing rectilin-
ear Steiner minimal tree (RSMT) using either optimal algorithms
[6, 7] or near-optimal heuristics [8, 9]. But these algorithms are
computationally too expensive to use in practice. Recently, Chen
et al. [10] presented a very efficient RSMT heuristic called Re-
fined Single Trunk Tree (RST-T). This technique provides very good
wirelength estimation for low-degree nets (exact up to degree 5) but

1Thedegreeof a net is the number of pins in the net.

not for high-degree nets. For example, the average error is 12.46%
for nets with degree 16. Although most nets in a typical circuit have
a low degree, there are still a significant proportion of high-degree
nets. Moreover, those high-degree nets usually account for a signif-
icant proportion of the total wirelength. For the 18 IBM circuits in
the ISPD98 benchmark suite, 2.19% of all nets have a degree≥ 16
and those nets account for 8.32% of the total wirelength. Hence, the
RST-T technique will have limited accuracy in practice.

In this paper, we present a lookup table based routing estimation
technique called FLUTE. We show that the set of all degree-n nets
can be partitioned inton! groups according to the relative positions
of their pins. For each group, the wirelength of all possible routing
topologies can be written as a small number of linear combinations
of distances between adjacent pins. We call each linear combination
a potentially optimal wirelength vector (POWV). We store the few
POWVs for each group into a table. To find the optimal wirelength
of a net, we just need to compute the wirelengths corresponding to
the POWVs for the group the net belongs to, and then report the
one with minimum wirelength. This idea works well for low degree
nets. For high-degree nets, we proposed a net breaking technique to
reduce the net size until the table can be used. We show experimen-
tally that for FLUTE, RMST, and HPWL, the average wirelength
error are 0.72%, 4.23%, and -8.71%, respectively, and the normal-
ized runtime are 1, 1.24, and 0.16, respectively.

The remainder of the paper is organized as follows. In Section 2,
we present the lookup table idea for wirelength estimation of low-
degree nets. In Section 3, we describe the algorithm to generate
the POWVs. In Section 4, we derive a very efficient technique to
evaluate all the POWVs when estimating wirelength for a given net.
In Section 5, we present the net breaking technique for high-degree
nets. In Section 6, we show the experimental results.

2 Lookup Table for Low-Degree Nets
We define anetof degreen to be a set ofn pins such that the coor-
dinates of pini is (xi, yi) for 1 ≤ i ≤ n. Without loss of generality,
assumex1 ≤ x2 ≤ · · · ≤ xn. Let thevertical sequences1s2 . . . sn

be the list of indexes of all pins sorted in ascending order according
to they-coordinate.2 For example, for the net in Figure 1, its vertical
sequence is3142.

In this paper, we only consider routing along the Hanan grid3 as
Hanan [11] pointed out that an optimal RSMT can always be con-
structed based on the Hanan grid. Note that the length of a horizon-
tal (respectively, vertical) edge in the Hanan grid is equal to the dis-
tance between two adjacent vertical (respectively, horizontal) Hanan
grid lines. We denotehorizontal edge lengthashi = xi+1−xi and

2Ties can be broken arbitrarily.
3Given a net, the Hanan grid is formed by drawing a horizontal line and

a vertical line through each pin.

s = 24

Pin 1

Pin 2

y

x

Pin 4

Pin 3s = 31

2

3s = 4

s = 1

Figure 1:An illustration of the vertical sequence of a net.

vertical edge lengthasvi = ysi+1 − ysi for 1 ≤ i ≤ n. These
definitions are illustrated in Figure 2.

h1

v

v

2

1

v3

Vertical
edge

edge
Horizontal

h32h

Figure 2:An illustration of horizontal and vertical edge lengths.

Observation 1 The wirelength of any routing solution on the
Hanan grid can always be written as a linear combination of edge
lengths such that all coefficients are positive integers.

For example, for the net in Figure 1, the wirelength of the three
possible routing solutions shown in Figure 3 (a), (b), and (c) can be
written ash1+2h2+h3+v1+v2+2v3, h1+h2+h3+v1+2v2+3v3,
andh1 + 2h2 + h3 + v1 + v2 + v3, respectively. For simplicity,
we will express a wirelength as a vector of the coefficients, and call
it a wirelength vector. For the routings in Figure 3 (a), (b), and
(c), the wirelength vectors are(1, 2, 1, 1, 1, 2), (1, 1, 1, 1, 2, 3), and
(1, 2, 1, 1, 1, 1), respectively.

(a) (b) (c)

Figure 3:Three possible routings for the net in Figure 1.

In order to find the optimal wirelength for a given net, we can
enumerate all possible wirelength vectors. Note that although the
number of possible routing solutions is huge, the number of possi-
ble wirelength vectors is much less. More importantly, we observe
that we only need to consider a few wirelength vectors which have
the potential to produce the optimal wirelength. Most vectors are
redundant because they have a larger or equal value than another
vector in all coefficients. For example, we can ignore the wirelength
vector(1, 2, 1, 1, 1, 2) because the wirelength produced by the vec-
tor (1, 2, 1, 1, 1, 1) is alwaysv3 less. We called a vector that can
potentially produce the optimal wirelength (i.e., cannot be ignored)
a potentially optimal wirelength vector(POWV). This observation
is summarized below.

Observation 2 For every low-degree net, there is only a few poten-
tially optimal wirelength vectors (POWVs).

For example, for all degree-3 nets, the only optimal wirelength
vector is (1, 1, 1, 1), which corresponds to the HPWL. For the

net in Figure 1, the only two POWVs are(1, 2, 1, 1, 1, 1) and
(1, 1, 1, 1, 2, 1). Which one is optimal depends on which ofh2 and
v2 is smaller. All possible routing solutions corresponding to these
two wirelength vectors are given in Figure 4. Some statistics on the
number of POWVs will be given later in Table 1.

vector:

Wirelength

(1,2,1,1,1,1)

Wirelength

(1,1,1,1,2,1)
vector:

Figure 4: The potentially optimal routing solutions for the net in
Figure 1.

If we can pre-compute all the POWVs and store them in a lookup
table, the optimal wirelength will be easy to find. However, the
number of different nets is infinite as the pin coordinates can take
infinite different values. To handle this problem, we try to group to-
gether nets which can share the same set of POWVs. To see which
nets can be grouped together, we first introduce the following def-
inition. Two routing solutions for two different nets are said to be
topologically equivalentif they can be transformed to each other by
changing the edge lengths (or equivalently, the distance between ad-
jacent Hanan grid lines), with the restriction that their values remain
positive. This concept is illustrated in Figure 5.

Figure 5:Topologically equivalent routing solutions for two differ-
ent nets.

Observation 3 The wirelengths of topologically equivalent routing
solutions can be expressed by the same wirelength vector.

For example, the wirelength of the two solutions in Figure 5 can
both be represented by(1, 2, 1, 1, 1, 2), although the values ofhi’s
andvi’s are different for the two nets.

Lemma 1 If two nets have the same vertical sequence, then every
routing solution of one net is topologically equivalent to a routing
solution of the other net.

Proof: Suppose we shift the grid lines of the two Hanan grids for
two nets so that they become identical. Since they have the same
vertical sequence, the pins of the two nets are in the same locations
in the Hanan grid. So every routing solution of one net will also be
a routing solution of the other. 2

Based on Observation 3 and Lemma 1, nets with the same vertical
sequence can be grouped together to share the set of POWVs. Since
the vertical sequence of a degree-n net is a permutation of12 . . . n,
there should ben! groups. This observation is summarized below.

Observation 4 The set of all degree-n nets can be divided inton!
groups according to the vertical sequence such that all nets in each
group share the same set of POWVs.

Our wirelength estimation technique pre-computes a lookup table
to store the set of POWVs associated with each group for low degree
nets. To compute the optimal wirelength for a given net, we can find
out the vertical sequence of the net and then obtain the vectors for
the corresponding group from the table. Each vector generates a
wirelength by summing up the product of the entries of the vector
with hi’s andvi’s. The minimum value over all vectors will give the
optimal wirelength.

In fact, our approach can provide other information in addition to
the wirelength estimation. The table contains more detailed infor-
mation on the utilization of different regions of the Hanan grid. That
information can be used for better congestion estimation. Moreover,
for each POWV in each group, one or more of the routing topologies
can be stored. Then routing solutions can also be generated.

3 Generation of Wirelength Vectors
In this Section, we discuss the generation of the sets of POWVs. For
each small net degree and for each group (i.e., vertical sequence),
we need to generate all possible routing topologies, find the corre-
sponding wirelength vectors, and prune away the redundant ones.
The set of remaining vectors are the POWVs for the group. A trivial
approach to generate all possible routing topologies is to enumerate
all possible combinations of using and not using each edge in the
Hanan grid and check if the resulting sub-graph is a Steiner tree cov-
ering all the pins. However, this approach is extremely expensive.
Even for degree 5, we need to enumerate a Hanan grid consisting of
40 edges for each of the 120 groups.

We propose a much more efficient algorithm based on aboundary
compactiontechnique. For a given group, the boundary compaction
technique reduces the grid size by compacting any one of the four
boundaries, i.e., shifting all pins on a boundary to the grid line adja-
cent to that boundary. The set of routing topologies of the original
problem can be generated by expanding the routing topologies of the
reduced grid back to the original grid. Figure 6 uses the compaction
of left boundary as an example to illustrate the idea.

Left
Boundary
Compaction

Left
Boundary
Expansion

One possible
routing
topology

Figure 6:An illustration of left boundary compaction.

We can route a net by performing boundary compaction and ex-
pansion recursively. By compacting the four boundaries in differ-
ent order, a set of different routing topologies can be generated.
Since we are performing the routing in a restricted way, it is possible
that some routing topologies and hence some wirelength vectors are
missed. The following lemma suggests that nothing will be missed
if a boundary with only one pin is compacted.

Lemma 2 Given a grid G with some pins at grid nodes. Let G’ be
a reduced grid from G by compacting a boundary with only one pin.

Every POWV of G can be obtained by adding an entry of value 1
corresponding to the compacted edge to some POWV of G’.
Proof: Assume without loss of generality that the left boundary
with one pin P is compacted. So the first entry in POWVs of G cor-
responds to the compacted edge. We show that any POWVV of
G must be in the form(1, V ′) whereV ′ is a POWV of G’. Con-
sider any routing topology associated withV . If there are multiple
branches from P to other pins (as in Figure 7(a)), another routing
topology with a single branch can be constructed (as in Figure 7(b)).
The POWV of this topology is better thanV in the first entry and is
at least as good in all other entries, contrary to the fact thatV is po-
tentially optimal. Hence, there should only be a single branch from
P, which implies the first entry ofV should be 1. Moreover, if the
branch does not go horizontally from P (as shown in Figure 7(c)),
it can be “flipped” (as in Figure 7(d)) to obtain a topology with the
same wirelength vector asV . By shifting P along the horizontal
branch until the next Hanan grid line, the grid becomes G’. Hence
the remaining entries ofV should form a POWV of G’. 2

P P

(c) (d)

P P

(a) (b)

Figure 7:Illustration for proof of Lemma 2.

Our algorithm is given in Figure 8. Instead of first enumerating
all routing topologies and then producing the wirelength vectors,
we generate wirelength vectors directly, which is much easier and
much more efficient. We also incorporate the pruning of redundant
wirelength vectors into the algorithm to prune as early as possible,
which further improves the efficiency of the algorithm.

Algorithm Gen-WVs(G)
Input: G is a grid with some pins at grid nodes
Output: A set of WVs for G
begin
1. If G is simple enough,
2. generate and return the set of POWVs for G
3. else if any boundaryb contains only one pin,
4. return Expand-b(Gen-WVs(Compact-b(G)))

else
5. S={Some extra WVs for routing topologies

not considered by boundary compaction}
6. return Prune(S∪ Expand-left(Gen-WVs(Compact-left(G)))

∪ Expand-right(Gen-WVs(Compact-right(G)))
∪ Expand-top(Gen-WVs(Compact-top(G)))
∪ Expand-bot(Gen-WVs(Compact-bot(G))))

end

Figure 8:The wirelength vector generation algorithm.

In Step 1–2, we directly generate the POWVs when G consists of

Degree # of groups # of POWVs in a group
n n! Min. Ave. Max.

2 2 1 1 1
3 6 1 1 1
4 24 1 1.667 2
5 120 1 2.467 3
6 720 1 4.433 8
7 5040 1 7.932 15
8 40320 1 15.803 34

Table 1:Number of POWVs in a group for nets of a given degree.

a single (horizontal or vertical) grid line or is a2×2 grid. Step 3–4 is
based on Lemma 2. Since one recursive call is made instead of four
and this case occurs frequently for low degree nets, the runtime of
the algorithm can be dramatically reduced. Step 5 is to include some
extra wirelength vectors missed by boundary compaction to ensure
that POWVs are generated. We prove in the following theorem that
Step 5 is not needed for nets with degree 6 or less.

Theorem 1 The algorithm Gen-WVs() enumerates all POWVs for
nets with degree 6 or less, even if no extra wirelength vector is in-
cluded in Step 5.

Proof sketch: We can always apply Lemma 2 to reduce the grid
until all boundaries contain at least two pins. If the net has only
six pins or less, it implies at least two of the pins are at the grid
corners. Some detailed case analysis can show that all POWVs will
be generated by the algorithm. 2

If we ignore Step 5 for nets with degree 7 or more, the wirelength
is not always optimal. We notice that for those non-optimal degree-
7 nets, there is always a stage during recursive compaction such that
all 7 pins are on the boundary of the grid. In that case, the opti-
mal wirelength may be produced by performing the routing along
the grid boundary. The boundary compaction technique may (or
may not) miss such a topology and the associated wirelength vector.
This problem also occurs for nets with degree 8 or more. Hence, in
Step 5 of algorithm Gen-WVs(), if there aren (≥ 7) pins on bound-
aries and no pin inside,n wirelength vectors will be included in S.
Each vector corresponds to a ring topology that surrounds the grid
with part of the ring between one of then pairs of adjacent pins
removed. Although we do not have a formal proof that after intro-
ducing the near-ring topology, the set of WVs generated includes
all POWVs for 7-pin nets, we have experimentally verified that the
FLUTE wirelength is always exact for 3 million randomly generated
7-pin nets. So it is very likely that FLUTE is also exact for degree
7. At least, it can be considered to be exact in practice. The near-
ring topology in Step 5 also helps to reduce the estimation error for
nets with degree 8 or more but is not enough to ensure that the WVs
generated are POWVs. In the following, for the sake of simplicity,
we will refer to the WVs generated by Gen-WVs() as POWVs, al-
though we lack a formal proof for degree 7 and we know it is not
the case for degree 8 or more.

The number of POWVs generated by the algorithm Gen-WVs()
is listed in Table 1. Note that the numbers in this table may not be
accurate forn = 7 (although very unlikely) andn = 8.

4 Minimum Wirelength Computation
To compute the minimum wirelength of a given net, we need
to consider the corresponding set of POWVs. A straightforward
approach is to evaluate the POWVs independently. For each

Average # of ADD/SUB
Degree per group per POWV

n Independent MST Independent MST

2 0 0 0 0
3 0 0 0 0
4 1.333 1.333 0.8 0.8
5 4.267 4.267 1.73 1.73
6 14.222 10.333 3.208 2.331
7 39.651 20.025 4.999 2.525
8 114.687 41.521 7.257 2.627

Table 2:Average number of addition/subtraction required.

POWV (α1, α2, . . . , αn, β1, β2, . . . , βn), we compute the expres-
sionWL =

∑n

i=1
αihi +

∑n

i=1
βivi. Since entries in POWVs are

typically small integers, and addition is computationally much less
expensive than multiplication, it is more efficient to add the edge
length several times instead of using multiplication. In addition,
each of the edge length should be used at least once. So it is better
to evaluate the expression asWL = HPWL+

∑n

i=1
(αi−1)hi +∑n

i=1
(βi − 1)vi. Then we have2n less terms to add.

However, we observe that most POWVs shared by a group of
nets are very similar to one another. Many are differed in only one
or two entries. Hence, some POWVs can be efficiently evaluated by
adding or subtracting some terms from some other previously com-
puted POWVs. By exploring the dependency among the POWVs,
the evaluation of all POWVs for a net can be made more efficient
than the independent approach.

The problem of determining the best dependency among POWVs
for a given group can be transformed into a minimum spanning tree
problem. Consider a group associated with a set ofk POWVs. We
construct a complete graph withk+1 nodes.k of these nodes corre-
spond to thek POWVs in the set and one more node corresponds to
the wirelength vector(1, . . . , 1, 1, . . . , 1) (i.e., HPWL). The weight
of each edge is set to the 1-norm of the difference of the two cor-
responding wirelength vectors. In other words, the edge weight is
equal to the number of addition/subtraction required to convert from
the wirelength of one vector to that of the other. Given a minimum
spanning tree of the graph, we can evaluate the POWVs in an order
defined by a breath-first traversal of the tree starting from the node
corresponding to the HPWL. The total edge weight of the minimum
spanning tree gives the number of addition/subtraction required to
compute allk POWVs.

The average number of addition/subtraction required for the inde-
pendent approach and the MST-based approach are listed in Table 2.
Columns two and three give the average number per group, which is
proportional to the average runtime to evaluate a net. It is clear that
the MST-based approach can significantly speed up the evaluation
of high-degree nets. The last two columns give the average number
per POWV, which is proportional to the average runtime to compute
a POWV. It shows that for the independent approach, a lot more en-
tries need to be added for POWVs of high degree nets, while for
the MST-based approach, the number of entries to be add/subtract
increases slowly with net degree.

5 Algorithm for High-Degree Nets
For high-degree nets, the CPU time to generate the POWVs will be
significant and the memory requirement for the table will be huge.
So the table lookup approach is practical only for low-degree nets.

In FLUTE, we have a user-defined parameterD. A lookup table
is constructed up to degreeD. Nets with degree higher thanD are

broken into several sub-nets with degree ranging from 2 toD to
which the table lookup estimation can be applied. To break a net,
we first select a breaking direction (either horizontal or vertical) and
a pin. We then separate the other pins into two sub-nets according
to the pin coordinate and the breaking direction. The selected pin is
included in both sub-nets as well. For example, in Figure 9(a), pin 3
is selected to break a 7-pin net horizontally. Then two sub-nets are
routed independently. If the degree of a sub-net is still greater than
D, we can apply this idea recursively.

(a) (b) (c)

Figure 9:An illustration of net breaking.

However, Figure 9(b) demonstrates that there may be some re-
dundant wires in the resulting routing solution. Note that for the
same example, if we break it horizontally at pin 4 as shown in Fig-
ure 9(c), the solution will be optimal. So we need to try both di-
rections and selecting different pins. If we really make recursive
calls to evaluate each of these possibilities, the runtime will be sig-
nificantly increased. In our implementation, we use the HPWL to
predict the wirelength of each possibilities. Then only one pin in
each direction is selected to really break the net. The better of the
two wirelengths will be returned.

6 Experimental Results
We compare the following five techniques: the exact RSMT soft-
ware GeoSteiner 3.1 [12], the near-optimal Batched Iterated 1-
Steiner (BI1S) heuristic for RSMT [8], HPWL, an efficientO(n2)
implementation of Prim’s algorithm for RMST [5], and FLUTE
with D=7. HPWL and FLUTE are implemented by us in C. All
the other three programs are downloaded from the GSRC Book-
shelf [13]. The 18 IBM circuits in the ISPD98 benchmark suite
are used. Some information of the benchmark circuits are given in
Table 3. There are totally 1.57 million nets. The placement is gen-
erated by FastPlace [14]. All experiments are carried out on a 750
MHz Sun Sparc-2 machine.

The wirelength estimation comparison is shown in Table 4.
GeoSteiner provides the exact wirelength for all nets. As the ta-
ble shows, FLUTE can consistently produce accurate wirelength
estimation for all circuits. The average error over all nets is only
0.72%. RMST produces acceptable accuracy but is far less accurate
than FLUTE. The average error of RMST over all nets is 4.23%.
HPWL underestimates the wirelength significantly. The average er-
ror of HPWL over all nets is -8.71%. BI1S is the most accurate.

The breakdown of the wirelength estimation for nets with differ-
ent degree is shown in Table 5. A summary of all 18 circuits is given.
Columns 2 and 3 provide a breakdown on the number of nets and
the wirelength. Notice that although most nets are of degree two or
three, there are still a substantial proportion of high degree nets and
the contribution of high degree nets to the wirelength is very signifi-
cant. For example, nets with degree 8 or higher account for 11.91%
of all nets and contribute 35.27% of total wirelength. Columns 4 to
7 report the percentage error in wirelength. As the table shows, all
four techniques have more error for nets with higher degree. In par-
ticular, the HPWL underestimates the wirelength significantly for

Circuit # of nets Ave. degree

ibm01 14111 3.58
ibm02 19584 4.15
ibm03 27401 3.41
ibm04 31970 3.31
ibm05 28446 4.44
ibm06 34826 3.68
ibm07 48117 3.65
ibm08 50513 4.06
ibm09 60902 3.65
ibm10 75196 3.96
ibm11 81454 3.45
ibm12 77240 4.11
ibm13 99666 3.58
ibm14 152772 3.58
ibm15 186608 3.84
ibm16 190048 4.10
ibm17 189581 4.54
ibm18 201920 4.06

All 1570355 3.92

Table 3:Benchmark information.

Wirelength error
Circuit BI1S HPWL RMST FLUTE

ibm01 0.10% -8.86% 4.09% 0.70%
ibm02 0.12% -12.56% 5.85% 1.02%
ibm03 0.10% -8.65% 4.64% 0.64%
ibm04 0.06% -6.30% 4.05% 0.40%
ibm05 0.11% -11.22% 4.49% 1.17%
ibm06 0.14% -12.98% 5.96% 0.94%
ibm07 0.09% -8.29% 4.72% 0.49%
ibm08 0.12% -12.45% 4.78% 1.38%
ibm09 0.07% -7.97% 4.33% 0.58%
ibm10 0.08% -7.85% 4.11% 0.60%
ibm11 0.06% -6.16% 4.02% 0.37%
ibm12 0.07% -7.61% 3.78% 0.59%
ibm13 0.11% -9.24% 4.78% 0.71%
ibm14 0.07% -6.98% 3.91% 0.48%
ibm15 0.08% -8.06% 4.20% 0.65%
ibm16 0.09% -9.26% 4.23% 0.77%
ibm17 0.08% -8.15% 3.90% 0.66%
ibm18 0.10% -10.65% 4.43% 1.07%

All 0.09% -8.71% 4.23% 0.72%

Table 4:Percentage error in wirelength estimation.

Net breakdown Wirelength error
Degree # WL BI1S HPWL RMST FLUTE

2 54.92% 27.98% 0.00% 0.00% 0.00% 0.00%
3 14.40% 10.26% 0.00% 0.00% 2.50% 0.00%
4 7.68% 7.84% 0.00% -2.20% 3.89% 0.00%
5 5.61% 8.18% 0.05% -4.74% 4.74% 0.00%
6 3.20% 5.65% 0.07% -7.02% 5.40% 0.00%
7 2.28% 4.82% 0.09% -9.06% 5.91% 0.00%

8-13 8.40% 22.71% 0.17% -16.28% 7.13% 1.29%
≥14 3.51% 12.56% 0.28% -28.83% 8.56% 3.41%

Table 5:Breakdown of the wirelength estimation according to de-
gree for nets of all 18 circuits.

Runtime (s)
Circuit GeoS BI1S HPWL RMST FLUTE

ibm01 473.33 72.48 0.00 0.03 0.02
ibm02 907.86 108.93 0.01 0.06 0.05
ibm03 856.83 140.00 0.00 0.05 0.03
ibm04 970.42 162.15 0.01 0.06 0.03
ibm05 1194.88 146.23 0.01 0.08 0.07
ibm06 1264.44 176.88 0.01 0.06 0.05
ibm07 1683.45 244.50 0.01 0.09 0.07
ibm08 1922.16 266.02 0.02 0.14 0.13
ibm09 2039.19 308.61 0.01 0.12 0.08
ibm10 3097.52 383.44 0.02 0.16 0.13
ibm11 2778.43 411.29 0.02 0.14 0.09
ibm12 3152.42 394.68 0.02 0.18 0.14
ibm13 3364.12 504.71 0.02 0.19 0.13
ibm14 5558.21 775.54 0.04 0.29 0.21
ibm15 7053.64 949.99 0.05 0.40 0.32
ibm16 7934.45 968.36 0.06 0.43 0.37
ibm17 8629.35 973.79 0.07 0.50 0.45
ibm18 7816.41 1036.36 0.07 0.49 0.43

All 21678 2866 0.16 1.24 1

Table 6:Runtime comparison. The overall runtimes in the last row
are normalized with respect to FLUTE runtime.

high degree nets. Note that if we scale the wirelength by the net
weights4 in [2], we will significantly overestimate the wirelength.
FLUTE is exact for nets up to degree 7, while BI1S is exact only up
to degree 4. For higher degree nets, FLUTE is still very accurate.
The net breaking step is the cause of the error of FLUTE. For higher
net degree, the net breaking step will be applied more times. So the
wirelength error will also be higher.

The runtime comparison is listed in Table 6. GeoSteiner and BI1S
are both very expensive and not suitable for routing estimation in
early design stages. On the other hand, HPWL, RMST and FLUTE
are all very fast. In particular, RMST is 24% slower than FLUTE
and HPWL is 6.22 times faster than FLUTE. The time to generate
the table up toD = 7 is 50.5 seconds and it only needs to be done
once.

We have also performed the experiments whenD is set to 8. The
error in wirelength estimation over all 18 circuits is 0.59%. Only
0.064% of all degree-8 nets in 18 circuits are non-optimal. The
wirelength estimation runtime is 1.25 times slower than that ofD =
7 (i.e., comparable to RMST runtime). The time to generate the
table up toD = 8 is 54.5 minutes.

4According to [2], the net weights for nets with degree 3 to 8 are 1, 1.08,
1.15, 1.22, 1.28, and 1.34, respectively.

7 Conclusion and Discussion
In this paper, we introduced a fast and accurate lookup table based
wirelength estimation technique called FLUTE. The table stores the
set of POWVs associated with each vertical sequence for low degree
nets. We proposed an algorithm based on boundary compaction to
generate the sets of POWVs. We designed a MST-based approach
to determine the most efficient way to evaluate each set of POWVs.
We presented a net breaking technique to divide a high degree net
into low degree nets so that the table lookup estimation can be used.
The experimental results showed that FLUTE is significantly more
accurate than RMST and HPWL. It produces optimal wirelength for
all nets with degree 7 or less. It is also faster than RMST.

References

[1] M. Sarrafzadeh and C. K. Wong.An Introduction to VLSI
Physical Design. McGraw-Hill, 1996.

[2] Chih-Liang Eric Cheng. RISA: Accurate and efficient place-
ment routability modeling. InProc. IEEE/ACM Intl. Conf. on
Computer-Aided Design, pages 690–695, 1994.

[3] L. J. Guibas and J. Stolfi. On computing all northeast nearest
neighbors in the L1 metric.Information Processing Letters,
17:219–223, 1983.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction
to Algorithms. MIT Press, 1990.

[5] Andrew B. Kahng and Ion Mandoiu. RMST-Pack: Rectilin-
ear minimum spanning tree algorithms.http://vlsicad.
ucsd.edu/GSRC/bookshelf/Slots/RSMT/RMST/ .

[6] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner tree
problem.Annals of Discrete Mathematics, 1992. Elsevier Sci-
ence Publishers.

[7] D. M. Warme, P. Winter, and M. Zachariasen. Exact algo-
rithms for plane Steiner tree problems: A computational study.
In D.Z. Du, J.M. Smith, and J.H. Rubinstein, editors,Advances
in Steiner Trees, pages 81–116. Kluwer Academic Publishers,
2000.

[8] J. Griffith, G. Robins, J. S. Salowe, and T. Zhang. Closing
the gap: Near-optimal Steiner trees in polynomial time.IEEE
Trans. Computer-Aided Design, 13(11):1351–1365, Novem-
ber 1994.

[9] Hai Zhou. Efficient steiner tree construction based on span-
ning graphs. InProc. Intl. Symp. on Physical Design, pages
152–157, 2003.

[10] H. Chen, C. Qiao, F. Zhou, and C.-K. Cheng. Refined single
trunk tree: A rectilinear Steiner tree generator for interconnect
prediction. InProc. ACM Intl. Workshop on System Level In-
terconnect Prediction, pages 85–89, 2002.

[11] M. Hanan. On Steiner’s problem with rectilinear distance.
SIAM Journal of Applied Mathematics, 14:255–265, 1966.

[12] GeoSteiner – software for computing Steiner trees.http:
//www.diku.dk/geosteiner/ .

[13] A. E. Caldwell, A. B. Kahng, and I. L. Markov.
VLSI CAD Bookshelf. http://www.gigascale.org/
bookshelf/ .

[14] Natarajan Viswanathan and Chris Chu. FastPlace: Efficient
analytical placement using cell shifting, iterative local refine-
ment and a hybrid net model. InProc. Intl. Symp. on Physical
Design, pages 26–33, 2004.

