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ABSTRACT
Coupling-noise reduction has emerged as a critical design
problem with VLSI feature sizes shrinking rapidly and with
the use of more aggressive and less noise-immune circuits.
Since coupling-noise on a net depends on driving gate-sizes
of the net itself and all nets coupled to it, gate-sizing emerges
as an effective approach to coupling-noise reduction. It is an
attractive approach since re-routing is not required. In this
paper, we propose an iterative gate-sizing algorithm to de-
termine optimal gate-sizes for coupling-noise reduction. We
consider gate-sizing as a fixpoint computation on a complete
lattice and the beauty of the iterative gate-sizing algorithm
lies in its ability to guarantee the optimal solution, provided
it exists. The effectiveness of the algorithm is validated ex-
perimentally by simulations on multiple large circuits.

Categories and Subject Descriptors
J.6 [Computer Aided Engineering]: Computer-aided
design (CAD); I.6.5 [Simulation and Modeling]: Model
Development; G.2.m [Discrete Mathematics]: Miscella-
neous

General Terms
Algorithms

Keywords
Coupling-Noise, Gate-Sizing, Lattice Theory, Fixpoint

1. INTRODUCTION
With the progress of deep sub-micron technologies, shrink-

ing geometries have led to a reduction in self-capacitance of
wires. Meanwhile coupling capacitances have increased as
wires have a larger aspect ratio and are brought closer to-
gether. For present day processes, the coupling capacitance
can be as high as the sum of the area capacitance and the
fringing capacitance, and trends indicate that the role of
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coupling capacitance will be even more dominant in the fu-
ture as feature-sizes shrink [1]. This makes coupling-noise a
major problem in IC design.
The coupling-noise induced on a net is dependent on the

size of its driving-gate and the driving-gate size of each net
coupled to it. The noise can be reduced if the size of its
driving-gate is increased, or if driving-gate sizes of the cou-
pling nets are decreased. However, when the driving-gate
of a net is sized up, it may increase the noise it induces on
other nets as an aggressor. On the other hand, when the
driving gate-size of an aggressor is reduced, coupling-noise
on itself may increase. Since coupling is symmetric on the
coupled nets, it is artificial to classify them into aggressors
or victims. A net could be an aggressor and a victim at the
same time. Though it is plausible to classify a net either as
an aggressor or a victim based on the strength of the noise
on itself and other coupled nets, with changing driving-gate
size, the role of a net may change. Therefore, the classifica-
tion of nets into an aggressor group or a victim group and
the use of attacking edges in the noise graph in the approach
by Becer et al. [2] impose limitations.
Crosstalk aware static timing analysis has been used by

Xiao et al. [9] in a gate-sizing method for elimination of
crosstalk induced timing violation. Another gate-sizing al-
gorithm for crosstalk-noise optimization has been proposed
by Hashimoto et al. [7], but is limited by the fact that it
only incorporates sizing down the aggressor gates. The al-
gorithm proposed by Becer et al. [2] does not guarantee an
optimal solution either. We propose an iterative gate-sizing
algorithm to reduce coupling-noise, which is guaranteed to
converge to the optimal solution, if it exists. We have con-
sidered gate sizing as a fixpoint computation [10] and the
beauty of the approach lies in its ability to guarantee the
optimal solution, provided it exists. In our approach, we
formulate the optimal gate-sizing problem for coupling-noise
reduction, and translate the problem into a fixpoint compu-
tation problem. A Gate-Sizing transformation is formulated,
the solutions to which are mapped onto a complete lattice.
We use an iterative algorithm to obtain the optimal solution.
The effectiveness of the algorithm is validated by simulations
on multiple large circuits.

2. PROBLEM FORMULATION

2.1 Coupling Graph
We use a coupling-graph to model a circuit and to repre-

sent coupling information. The coupling-graph is an undi-
rected graph, and may contain cycles. Nodes in the graph
represent nets of the circuit, and edges between any two
nodes represent coupling between the nets corresponding to
the nodes in the coupling-graph. An edge in the coupling-
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graph is called a coupling-edge and indicates significant cou-
pling capacitance between the two nets it connects. In the
extreme case an edge may be introduced between two nets
if they have any coupling.

(b)
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D

Net − C Net − D

Coupling Capacitance

Coupling Capacitance

Net − A

Net − B

Coupling Capacitance

Coupling Capacitance

Figure 1: (a) A sample circuit with 4 nets and cou-
pling capacitances between them. (b) The corre-
sponding Coupling-Graph.

Figure 1(a) shows a circuit with nets having coupling
capacitances between them. Figure 1(b) shows the corre-
sponding coupling-graph where the nodes represent the nets,
and coupling-edges are introduced between coupled nets.
We use this coupling-graph model in our approach to de-
termine optimal gate-sizes for coupling-noise minimization.

2.2 Problem definition
For all mathematical relations and expressions in the pa-

per, we use the syntax of single notation quantification, sim-
ilar to the one used by Gries and Schneider [6]. The general
form of a quantification over a binary operator � is exempli-
fied by

(�x : R : P )

where variable x is called the bound variable or dummy of
the quantification, R is a boolean expression called the range
of the quantification such that values assumed by x satisfy
R, and P is an expression which is called the body of the
quantification. The above expression denotes the applica-
tion of the operator � to the values of P for all x for which
range R is true. For example, we would represent

Pn
i=1 xi

as (+i : 1 ≤ i ≤ n : xi).
Given the size of the gates in a circuit, the noise induced

on each net can be calculated using a noise-model. It is not
necessary that the noise-model be an analytical one. Based
on the coupling-graph model as introduced above, the noise
N(i) on a given net i can be represented as

N(i)
�
= fi(s(i), s(i1), . . . , s(ik))

where s(i) represents the driving-gate size of net i. Nets
i1, . . . , ik are the nets that couple to net i and s(i1), . . . , s(ik)
represent their driving-gate sizes respectively.
We define TS as the weighted-sum of all the gate-sizes in

a circuit, for some given weight vector W consisting of non
negative weights w(i), such that W = (i : 0 ≤ i < n : w(i)).
Formally, this can be expressed as

TS
�
=

n−1X

i=0

{w(i) · s(i)} = ( +i : 0 ≤ i < n : w(i) · s(i) )

Gate-sizes can be represented as a gate-size vector S as
following

S
�
= (i : 0 ≤ i < n : s(i))

The objective of the gate-sizing problem is to find the
gate-size vector S which yields minimal weighted-sum TS

under constraints that the noise N(i) on every net i is at
most U(i) and l(i) ≤ s(i) ≤ u(i). Here U(i) represents
the maximum noise net i can tolerate, while l(i) and u(i)
represent minimum and maximum driving gate-sizes of that
net given by physical and timing constraints. The optimal
gate-sizing problem can thus be expressed as finding S =
(i : 0 ≤ i < n : s(i)) such that

min (+i : 0 ≤ i < n : w(i) · s(i))
s.t.

( ∀i : 0 ≤ i < n : (U(i) ≥ N(i)) ∧ (l(i) ≤ s(i) ≤ u(i)) )

Formally this can be expressed as

( min S : (∀i : 0 ≤ i < n : U(i) ≥ N(i)) (1)

∧ (∀i : 0 ≤ i < n : l(i) ≤ s(i) ≤ u(i)) : TS )

Physically it translates to determining a gate-size vector
S which minimizes the total weighted sum of the gate-sizes.
If we consider TS as an area component, the gate-sizing
problem can be translated to finding the minimum area of
the gates such that there is no coupling-noise in the cir-
cuit. Similarly, total power consumption can be expressed
as TP =

Pn−1
i=0 {p(i) · s(i)} for some non-negative constants

p(0), p(1), . . . , p(n−1). The gate-sizing problem thus attains
to find a gate-vector which minimizes area and power, while
ensuring that coupling-noise on every net in the circuit is
at most equal to the maximal noise it can tolerate, and all
gate-sizes are within their respective size constraints.

3. GATE SIZING AS A FIXPOINT
COMPUTATION

3.1 Obtaining a fixpoint of the Gate Sizing
Transformation

Irrespective of the noise model being used, for any net
i, the noise function fi(s(i), s(i1), s(i2), . . . , s(ik)) must be
monotonically non-increasing on s(i) and monotonically non-
decreasing on s(ij) for any 1 ≤ j ≤ k. Formally, it means
the following

s(i) < s′(i) (2)

⇒ fi(s(i), s(i1), . . . , s(ik)) ≥ fi(s
′(i), s(i1), . . . , s(ik))

s(ij) < s′(ij) (3)

⇒ fi(s(i), . . . , s(ij), . . . , s(ik)) ≤ fi(s(i), . . . , s
′(ij), . . . , s(ik))

Based on the monotonicity property, we define gi to be a
function that gives the minimal driving gate-size of a net
satisfying noise and size constraints, under given driving
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gate-sizes of coupled nets.

gi(s(i1), s(i2), . . . , s(ik))
�
= (4)

(min x : (fi(x, s(i1), . . . , s(ik)) ≤ U(i)) ∧ (l(i) ≤ x ≤ u(i)) : x)

A system of equations is thus formed when gate-sizes for
all nets are combined:

( ∀i : 0 ≤ i < n : s(i) = gi(s(i1), s(i2), . . . , s(ik)) )

If the gate sizes are represented as a vector S = (i : 0 ≤ i <
n : s(i)), and G = (i : 0 ≤ i < n : gi) is used to represent the
vector transformation, the above equation can be written as:

S = G(S) (5)

A solution to Equation (5) is a gate-size vector S, which is
called a fixpoint of G. It is shown in the following theorem
that Equation (5) is a necessary condition for the solution
to the optimal gate-sizing problem.

Theorem 1. The solution to (1) lies within the solution
space of Equation (5)

Proof. We shall establish by contradiction that the solu-
tion to the optimal gate-sizing problem (1) is also a fixpoint
of G. Let S′ be the solution to (1) and not be a fixpoint of
G, that is S′ 
= G(S′). We apply the transformation G on
S′ such that:

S′′ = G(S′)

Transformation G on a vector S1 which satisfies the upper
noise-bound constraint (∀i : 0 ≤ i < n : N(i) ≤ U(i)) and
size-bound constraint (∀i : 0 ≤ i < n : l(i) ≤ s(i) ≤ u(i)),
will yield a vector S2 such that S2 ≤ S1, that is (∀i : 0 ≤
i < n : s2(i) ≤ s1(i)). This can be seen from its definition in
Equation (4), which ensures that a gate is never over-sized.
Since S′ is the solution to the gate-sizing problem, it satisfies
the upper noise-bound and size-constraints. Thus S′′ ≤ S′.
If S′′ is less than S′, then TS′′ < TS′ , which cannot be

true since the solution to the gate-sizing problem S′ yields
the minimal TS. This implies S

′′ = S′ or that S′ = G(S′),
which is a contradiction.

We thus establish that a solution to the optimal gate-
sizing problem is also a fixpoint of G. However, the converse
is not true, that is, an arbitrary fixpoint of G may not be a
minimal solution to (1). In other words, a gate-size vector
which satisfies (5) can be a solution to (1) if and only if it
yields the minimal weighted gate-size sum among all other
fixpoints of G. We thus need to study the fixpoint of G
which is a solution to the gate-sizing problem and also the
way to find it.
A partial order is defined as follows. Given a set f , a

binary relation R ⊆ f × f is called a partial order if it
satisfies the following three conditions:

• reflexive: xRx

• antisymmetric: xRy ∧ yRx→ x = y

• transitive: xRy ∧ yRz → xRz

Consider two gate-size vectors X and Y . We define a
partial order over the solutions space to the Equation (5) as
follows.

Definition 1. We say that X = (i : 0 ≤ i < n : x(i)) ≤
(i : 0 ≤ i < n : y(i)) = Y if and only if (∀i : 0 ≤ i < n :
x(i) ≤ y(i)).

Theorem 2. For any S1 ≤ S2, we have G(S1) ≤ G(S2).

Proof. For two gate-size vectors S1 = (i : 0 ≤ i < n :
s1(i)) and S2 = (i : 0 ≤ i < n : s2(i)), given S1 ≤ S2, from
Definition (1) we can state that

(∀i : 0 ≤ i < n : s1(i) ≤ s2(i)) (6)

We prove the above theorem using contradiction. IfG(S1 
≤
G(S2) we must have

(∃j : 0 ≤ j < n : (7)

gj(s1(j1), s1(j2), . . . , s1(jk)) > gj(s2(j1), s2(j2), . . . , s2(jk)))

If we denote

m
�
= gj(s1(j1), s1(j2), . . . , s1(jk))

n
�
= gj(s2(j1), s2(j2), . . . , s2(jk))

The above inequality (7) can now be expressed as

m > n (8)

Let us now consider the following definitions

N1
�
= fj(n, s1(j1), s1(j2), . . . , s1(jk))

N2
�
= fj(n, s2(j1), s2(j2), . . . , s2(jk))

Given the monotonicity property of the noise function fj

from Relation (3), and that S1 ≤ S2 from Relation(6), we
must have

N1 ≤ N2 (9)

From the definition of n and definition of gi in (4)

n = gj(s2(j1), s2(j2), . . . , s2(jk))

⇒ fj(n, s2(j1), s2(j2), . . .) ≤ U(j)

⇒ N2 ≤ U(j)

Combining Relation (9) and the one obtained above

(N1 ≤ N2) ∧ (N2 ≤ U(j)

⇒ N1 ≤ U(j)

⇒ fj(n, s1(j1), s1(j2), . . .) ≤ U(j)

However, from the definition of m and gi

m = gj(s1(j1), s1(j2), . . . , s1(jk))

⇒ m = min {x : (fj(x, s(j1), s(j2), . . .) ≤ U(j)}
⇒ ( ∀k : fj(k, s(j1), s(j2), . . .) ≤ U(j) : m ≤ k )

⇒ m ≤ n

This contradicts (8). G is thus shown to be a monotonic
and a convergent transformation, such that G(S1) ≤ G(S2)
for S1 ≤ S2.

Theorem(2) shows that G is a monotonic transformation
with respect to the partial order ≤ defined on the gate-size
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vectors. According to lattice theory [5], a partially ordered
set forms a complete lattice if it has a least upper bound
and a greatest lower bound on any subset of its elements.
We define our greatest lower bound by the point where all
gate-sizes are equal to their individual lower bounds given
by physical and timing constraints. For our partial ordered
set to be a complete lattice, we need to define a virtual upper
bound on the elements. We define our virtual upper bound
as the point which is reached when any gate-size in the gate-
size vector exceeds its upper bound given by physical and
timing constraints. It is a virtual point as it is actually a
mapping of all points in the partial ordered set with at least
one upper size-bound violation. This makes the family of
gate-size vectors with the ≤ relation a complete lattice.
Given a subset A of elements in a complete lattice L,

we use
W
A and

V
A to represent the least upper bound and

the greatest lower bound of elements in A, respectively. The
existence of a fixpoint in our system is guaranteed by the
following theorem due to Knaster and Tarski [5].

Theorem 3 (Knaster-Tarski). Let L be a complete
lattice and G : L → L an order-preserving map. Then

_
{x ∈ L : x ≤ G(x)} ∈ fix(G),

where fix(G) is the set of fixpoints of G.

The above theorem is however, not used to compute a
fixpoint since it is not feasible to compute the set {x ∈ L :
x ≤ G(x)}. Furthermore, we do not know whether such
fixpoint is also a smallest solution to the gate-sizing prob-
lem. People usually use the iterative method (also called
successive approximation) to find a fixpoint. That is, they
first select an initial solution X0 and iteratively compute
X1 = G(X0),X2 = G(X1), . . . in the hope of finding an Xn

such that Xn = G(Xn). But the hope can not be fulfilled
by starting from any initial point. Fortunately the bottom
and the top elements are good candidates for that.
Following a tradition in lattice theory, we use ⊥ to repre-

sent the bottom element of our complete lattice. We have
⊥ = {l(i1), l(i2), . . . , l(in)}, where l(i) denotes the minimum
gate-size for the driving gate of net i as defined earlier. Since
⊥ ≤ G(⊥), based on the monotonicity of G, we have an as-
cending chain ⊥ ≤ G(⊥) ≤ G2(⊥) ≤ · · · . If the chain
has only finite elements, which is true on any finite solution
space, the process will finally reach a fixpoint. Actually, the
only property we use of ⊥ is ⊥ ≤ G(⊥). Therefore, any
solution X0 such that X0 ≤ G(X0) can be used as an ini-
tial solution to reach a fixpoint. We need to find the least
fixpoint, and this can be done by starting with ⊥ element.
The solution obtained will be the optimal one if the least
fixpoint reached is indeed a lower bound on all fixpoints of
G.

Theorem 4. If fix(G) = {Sf1 , Sf2 , . . . , Sfl
} denote the

set of fixpoints of G, then there exists a lower bound fixpoint
SfL ∈ fix(G) called the least fixpoint, such that (∀j : 0 ≤
j ≤ l : SfL ≤ Sfj ).

Proof. We define the least fixpoint as:

SfL

�
= (i : 0 ≤ i < n : sfL(i)), sfL(i) = min(sf1(i), . . . sfl

(i))

Gate-size vector SfL is thus the lower bound on all the fix-
points, but we need to show that SfL ∈ fix(G) to prove our
claim. From the monotonicity properties of the noise func-
tions in Relations (4) and (9), we know that sizing down

driver gate-sizes of nets coupled to a net reduces coupling-
noise on that net. However, the driving gate-size of a net k
in consideration could have been sized down, and we need to
ensure that the noise on the net is still under its upper noise
bound. From the definition of SfL , there must exist a fix-
point Sfj with the same driving gate-size for net k, such that
sfL(k) = sfj (k) and (∀i : 0 ≤ i < n, i 
= k : sfj (i) ≥ sfL(i)).
Since Sfj is a fixpoint, the upper noise-bound condition is
satisfied. Thus, given the monotonicity properties of noise
functions, SfL must also satisfy the upper noise-bound con-
dition. Additionally since it is the lower bound on all the
fixpoints, transformation G on SfL will yield SfL . It is thus
a fixpoint of G, and is called the least fixpoint.

Corollary 4.1. The fixpoint reached starting from the ⊥
element of the lattice is the least fixpoint and is the optimal
solution to the gate-sizing problem, provided the fixpoint 
=
�, which implies no solution.

The least fixpoint reached is the lower bound on the gate-
size vectors that are fixpoints of G, and thus for positive
weights w(i) will yield the minimal TS. It is thus the solution
to the gate-sizing problem as defined in (1). Notice that the
least fixpoint does not depend on the given weight vector
W = (i : 0 ≤ i < n : w(i)). This means that the solution is
the optimal solution for all non-negative weights.

Corollary 4.2. The solution to the gate-sizing problem
found above is also a solution to the following problem:

( min S : (∀i : 0 ≤ i < n : U(i) ≥ N(i)) ∧
(∀i : 0 ≤ i < n : l(i) ≤ s(i) ≤ u(i)) : S = (i : 0 ≤ i < n : s(i)) )

This means that the solution to the gate-sizing problem
is a gate-size vector S, which gives the smallest possible size
of individual gates in the circuit, such that coupling-noise
on every net is at most equal to the maximal noise it can
tolerate, under given gate-size constraints.

3.2 Scheme of Chaotic Iterations
Before we design a good iterative order for updates, we

need to establish its theoretical validity. The scheme of
chaotic iteration [4] ensures that the process will always con-
verge to the same fixpoint, irrespective of the order being
used. Transformation G is composed of a set of partial trans-
formations g1, g2, . . . , gn. In each step, one or more partial
transformations are applied to update gate-size information
on some points. Gate-sizes on all other points are kept the
same. We will use GA to represent such a partial trans-
formation done in one step, where A represents the points
where gate-sizes are updated.

Lemma 1. If X ≤ G(X), then X ≤ GA(X) ≤ G(X); if
X ≥ G(X), then X ≥ GA(X) ≥ G(X).

The above lemma states that no matter what evaluation
order is used, the generated sequence is monotonic in the
same direction and it will not over-shoot the fixpoint gen-
erated by G. Furthermore, if the evaluation order is fair,
that is, a partial transformation will always be applied if
its inputs and outputs are not consistent, then the chaotic
iteration will always reach the same fixpoint as G.

4. ITERATIVE SIZING ALGORITHM
We propose the following iterative algorithm. Layout ex-

traction is performed on a given circuit and is used to con-
struct the corresponding coupling-graph. We set the driver-
size of each net corresponding to the nodes in the coupling-
graph to its respective lower size-bound initially, that is
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Circuit # of # of # of Initial # of Final Violations Noise Reduction Run Times(s)
nets edges Violations List Tr. Queue Tr. List Tr. Queue Tr. List Tr. Queue Tr.

circuit 1 20K 60K 28 0 0 100% 100% 0.47 0.11
circuit 2 32K 100K 57 0 0 100% 100% 0.50 0.19
circuit 3 40K 130K 87 0 0 100% 100% 0.50 0.30
circuit 4 166K 450K 579 7 7 98% 98% 2.66 1.09

Table 1: Noise Reduction Results. U1(i) = Upper Noise Bound for net i

(∀i : 0 ≤ i < n : s(i) = l(i)). Iteratively we perform updates
until noise violations are eliminated from every node, or it
is found that gate-sizing cannot remove all violations. In
the latter case, no solution is declared. For the updates, the
noise on a node i is calculated based on the noise-model used.
Nodes that have a direct edge to node i induce coupling-
noise on node i and are used to determine the value of N(i).
If the noise N(i) exceeds U(i), the driver-gate is sized up
such that N(i) equals U(i). No update is performed if the
calculated noise is less that U(i). If the sizing up violates
constraints, no solution for complete noise-elimination is de-
clared. We may optionally continue iterations to determine
the most number of violations that could be eliminated. The
pseudo-code of the proposed algorithm is shown in Figure 2.

• Algorithm: Post-route optimal driver-sizing

• Input: Layout extraction results

• Output: Optimal gate-sizes, if solution exists

• begin

1. construct coupling-graph G based on layout ex-
traction

2. initialize all driver-sizes to their minimum (∀i :
0 ≤ i < n : s(i) = l(i))

3. while (Noise constraint not met for all nodes ∧
each gate-size ≤ its upper bound (∀i : s(i) ≤
u(i))

4. for each node i in G with noise violation

5. s(i) = gi(s(i1), s(i2), . . . , s(ik))

• end

Figure 2: Post-route optimal driver-sizing algorithm

The algorithm is independent of the weights w(i) in the
gate-sizing problem for non-negative weights. As mentioned
above, the order of the iterations may only alter the rate of
convergence, but we are certain to reach the optimal solution
in any case, provided it exists. We present two possible
iterative schemes for node updates below:

4.1 List Traversal
We maintain a list of all nodes and perform updates on

the nodes along the list. The iteration restarts when the end
of the list is reached and is started all over again. If no up-
dates were found necessary during the entire list traversal,
future iterations are stopped and the solution is presented.
At any moment if a driver size exceeds given constraints, it-
eration is stopped and no solution for the circuit is declared.
Optionally that node is ignored in future iterations and the
algorithm tries to eliminate noise violations on other nodes.

In either case, no solution to complete coupling-noise elimi-
nation by gate-sizing is declared.

4.2 Queue Traversal
This scheme involves using a queue which is filled with

nodes having initial noise violations. As a node i is popped
from the queue, its driver is sized up to eliminate its noise
violation. All nodes having an edge from node i are pushed
in the queue, if they have noise violations and are not already
in the queue. Iteration stops either when the queue is empty
and we have a solution, or when a driver size exceeds the
given constraint and no solution is concluded. As in List
Traversal, we may optionally go ahead and try removing
other violations.

5. RESULTS
We present results of our algorithm on four circuits, namely

circuit 1, circuit 2, circuit 3, and circuit 4 respectively. Due
to unavailability of benchmarks used by Becer et al. [2], the
circuits were randomly generated with realistic parameters
in a 0.18µm technology. We have used the 2π model [3] as
the noise-model for our simulations. For the test circuits,
the driver resistance Rd is from 20 to 2000Ω, loading ca-
pacitance Cl is from 4 to 50fF, and the slew is from 10 to
300ps. Typically gate-sizes were bounded in each direction
by a factor of at most 2.

Circuit # of # of Initial # of Final Noise
nets Violations Violations Reduction

circuit 1 20K 277 11 96%
circuit 2 32K 524 19 96%
circuit 3 40K 1425 63 95%
circuit 4 166K 1356 30 97%

Table 2: Noise Reduction Results, using QT with

tighter Upper Noise Bound U2 : Avg U1(i)
U2(i)

≈ 1.3

Circuit # of # of Initial # of Final Noise
nets Violations Violations Reduction

circuit 1 20K 755 54 92%
circuit 2 32K 1447 90 93%
circuit 3 40K 3332 316 90%
circuit 4 166K 4040 244 93%

Table 3: Noise Reduction Results, using QT with

tighter Upper Noise Bound U3 : Avg U1(i)
U3(i)

≈ 1.6

In Table (1) we present the results of our simulation us-
ing both the List Traversal (LT) and the Queue Traversal
(QT) techniques. The upper noise bound U1(i) on the nets
were set to simulate initial number of violations like the
ones used in the benchmarks from [2]. We show the # of
nets, the # of edges in the coupling-graph formed, the total
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Circuit # of # of Initial # of Final Noise
nets Violations Violations Reduction

circuit 1 20K 1975 291 85%
circuit 2 32K 3558 571 83%
circuit 3 40K 7324 1599 78%
circuit 4 166K 11374 1380 87%

Table 4: Noise Reduction Results, using QT with

tighter Upper Noise Bound U4 : Avg U1(i)
U4(i)

≈ 2.0

Circuit # of # of Initial # of Final Noise
nets Violations Violations Reduction

circuit 1 20K 4560 1397 69%
circuit 2 32K 7947 2597 67%
circuit 3 40K 14256 5898 58%
circuit 4 166K 29776 7571 74%

Table 5: Noise Reduction Results, using QT with

tighter Upper Noise Bound U5 : Avg U1(i)
U5(i)

≈ 2.7

number of violations before and after the optimization, %
of Noise Reduction and run times. It is to be noted that
the Initial Number of Violations in the tables refer to the
violations existing in the original circuit and not the number
of violations after all gate-sizes have been set to their lower
bound. Table (2) to Table (6) show results of similar sim-
ulations using the Queue Traversal, but with progressively
tightened upper noise-bound constraints. It is observed that
the number of failing nets increase as the upper-noise bound
is constrained progressively. The Noise Reduction % shown
in the tables do not reflect the maximal noise reduction,
since the algorithm simply neglects the node and continues.
In this case, it reports No Solution to noise elimination by
driver-sizing, and just reports the percent of reduction when
it exits, which is not necessarily the maximal. The % thus
reflects the worst case reduction using the algorithm.
Figure 3 shows coupling-graphs before and after the algo-

rithm is run on a tiny test circuit. Here two directed edges
in either direction between two nodes represent an undi-
rected edge. The coupling-graph has been generated using
XVCG [8] which has been integrated with the simulation
environment. The simulations have been run on a Pentium
2.4GHz Xeon processor server, having 1GB RAM and run-
ning RedHat Linux 8.0.

6. FUTURE WORK
In this paper, we presented a method to achieve the op-

timal solution to the gate-sizing problem. However if the
optimal solution does not exist, the present algorithm does
not return the least number of violations, since the Scheme
of Chaotic iterations assumes that the optimal solution ex-
ists. We plan to extend this work to determine the minimal
number of violations that exist, if there is no optimal solu-
tion to the initial problem.
Currently we have considered gate-sizes to be bound by

timing and physical constraints. This may lead to an worst
case prediction. We consider working on the problem with
path-delays as constraints in the future, so that individual
gate-sizes are bound only by physical constraints.
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Circuit # of # of Initial # of Final Noise
nets Violations Violations Reduction

circuit 1 20K 9330 5158 44%
circuit 2 32K 15538 8974 42%
circuit 3 40K 24020 15781 34%
circuit 4 166K 66334 33623 49%

Table 6: Noise Reduction Results, using QT with

tighter Upper Noise Bound U6 : Avg U1(i)
U6(i)

≈ 4.0

Figure 3: Coupling graph of a circuit generated by
XVCG
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