
FastPlace: Efficient Analytical Placement using Cell
Shifting, Iterative Local Refinement and a Hybrid Net Model

Natarajan Viswanathan
nataraj@iastate.edu

Chris Chong-Nuen Chu
cnchu@iastate.edu

Department of Electrical and Computer Engineering
Iowa State University, Ames, IA 50011-3060

ABSTRACT
In this paper, we present FastPlace – a fast, iterative, flat
placement algorithm for large-scale standard cell designs.
FastPlace is based on the quadratic placement approach.
The quadratic approach formulates the wirelength minimiza-
tion problem as a convex quadratic program, which can be
solved efficiently by some analytical techniques. However it
suffers from some drawbacks. First, the resulting placement
has a lot of overlap among cells. Second, the resulting total
wirelength may be long as the quadratic wirelength objec-
tive is only an indirect measure of the linear wirelength.
Third, existing net models tend to create a lot of non-zero
entries in the connectivity matrix, which slows down the
quadratic program solver. To handle the above problems
we propose: (1) An efficient Cell Shifting technique to re-
move cell overlap from the quadratic program solution and
produce a global placement with even cell distribution. (2)
An Iterative Local Refinement technique, to reduce the wire-
length according to the half-perimeter measure. (3) A Hy-
brid Net Model which is a combination of the traditional
clique and star models. This net model greatly reduces the
number of non-zero entries in the connectivity matrix and
results in a significant speedup of the solver. Experimental
results show that FastPlace is on average 13.0 and 97.4 times
faster than Capo and Dragon respectively. Correspondingly,
the average wirelength is just 1.0% and 1.6% higher.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuits, Design Aids]:
Placement and routing

General Terms
Algorithms, Design

Keywords
Analytical Placement, Standard Cell Placement, Net Models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’04, April 18–21, 2004, Phoenix, Arizona, USA.
Copyright 2004 ACM 1-58113-817-2/04/0004 ...$5.00.

1. INTRODUCTION
Placement happens to be one of the most persistent chal-

lenges in present day Integrated Circuit design. Designs
in current deep sub-micron technology often contain over a
million placeable components, and are getting larger by the
day. Moreover, because of the dominance of interconnect
delay, placement has become a major contributor to timing
closure results [17]. It needs to be performed early in the
design flow. Hence, it becomes imperative to have an ultra-
fast placement tool to handle the ever increasing placement
problem size.

In recent years, many placement algorithms have been
proposed to handle the widely-used objective of wirelength
minimization. These algorithms apply various approaches
including analytical placement [6, 7, 10, 13, 16, 18], sim-
ulated annealing [15, 19], and partitioning/clustering [3, 4,
20]. Analytical placement is the most promising approach
for fast placement algorithm design. Analytical placement
algorithms commonly utilize a quadratic wirelength objec-
tive function. Although the quadratic objective is only an in-
direct measure of the wirelength, its main advantage is that
it can be minimized quite efficiently. As a result, analyti-
cal placement algorithms are relatively efficient in handling
large problems. They typically employ a flat methodology
so as to maintain a global view of the placement problem
[6, 7, 10, 13, 16, 18]. For simulated annealing and parti-
tioning/clustering based approaches, a hierarchical method-
ology is almost always employed to reduce the problem size
to speed up the resulting algorithms [3, 4, 15, 19, 20]. Note
that, when the placement problem is so large that a flat an-
alytical approach cannot handle it effectively, a hierarchical
analytical approach is beneficial. One of the methods to con-
vert to a hierarchical approach is by incorporating the fine
granularity clustering technique proposed by Hu et al. [11].
This technique essentially introduces a two-level hierarchy
to reduce the size of large-scale placement problems.

A major concern with the quadratic objective is that it
results in a placement with a large amount of overlap among
cells. Also, the quadratic objective by itself does not give the
best possible wirelength. To handle these problems, Klein-
hans et al. [13] use a placement-based bisection technique
to recursively divide the circuit and add linear constraints
to pull the cells in each partition to the center of the corre-
sponding region. The FM [8] min-cut algorithm is used to
improve the bisection and hence the wirelength. Vygen [18]
applies a position-based quadrisection technique instead. A
splitting-up technique to modify the netlist is also proposed
to ensure that the cells will stay in the assigned region. The

splitting-up technique also breaks down long nets and hence
makes the objective behave like a linear function to some
extent. Eisenmann et al. [6] introduce additional constant
forces to each cell based on cell distribution to pull cells
away from dense regions. Etawil et al. [7] add repelling
forces for cells sharing a net to maintain a target distance
between them and attractive forces by fixed dummy cells
to pull cells from dense to sparse regions. Hu et al. [10]
introduce the idea of fixed-point as a more general way to
add forces for cell spreading. The last three papers [6, 7,
10] mainly focus on cell spreading. They have not discussed
ways to improve the wirelength by a quadratic objective.

In this paper, we present a fast, iterative, flat placement
algorithm called FastPlace for large-scale standard cell de-
signs. The main contributions of our work are:

• An efficient Cell Shifting technique to remove cell over-
lap. The cell shifting technique roughly maintains the
order of the cells in both horizontal and vertical direc-
tions as we believe that the quadratic objective func-
tion can determine a proper cell ordering. Hence, a
high-quality global placement with even cell distribu-
tion can be produced in a short time.

• An Iterative Local Refinement technique to reduce the
wirelength according to the half-perimeter measure.
This technique, applied during the final iterations of
global placement, makes use of the wirelength and cell
distribution information provided by a coarse global
placement and hence is very effective.

• A Hybrid Net Model which is a combination of the tra-
ditional clique and star [14] net models. We prove the
equivalence of the Hybrid net model to the traditional
clique and star models. On average, the Hybrid Net
Model results in a 2.95 times reduction in the number
of non-zero entries in the connectivity matrix as com-
pared to the clique model. This results in a significant
speedup of the quadratic program solver.

The rest of the paper is organized as follows: Section 2
provides an overview of the algorithm. Section 3 describes
the Global Optimization step. Section 4 describes the Hy-
brid Net Model. Section 5 describes the Cell Shifting tech-
nique. Section 6 describes the Iterative Local Refinement
technique followed by Section 7 which describes the Detailed
Placement technique. Experimental results are presented in
Section 8 followed by Section 9 which gives the Conclusions.

2. OVERVIEW OF THE ALGORITHM
FastPlace essentially consists of three stages. The aim

of the first stage is to minimize the wirelength and spread
the cells over the placement region to obtain a coarse global
placement. It is composed of an iterative procedure in which
we alternate between Global Optimization and Cell Shifting.
Global Optimization involves minimizing the quadratic ob-
jective function. During Cell Shifting, the entire placement
region is divided into equal sized bins and the utilization of
each bin is determined. The standard cells are then shifted
around the placement region based on the bin in which they
lie and its current utilization. Finally, a spreading force is
added to all the cells to account for their movement during
shifting.

The second stage is to refine the global placement by inter-
leaving an Iterative Local Refinement technique with Global

Optimization and Cell Shifting. The Iterative Local Refine-
ment technique is employed to reduce the wirelength based
on the half-perimeter measure and to speed up the conver-
gence of the algorithm. This stage of global placement yields
a very well distributed placement solution with a very good
value for the total wirelength.

The third stage is that of Detailed Placement. This con-
sists of legalizing the current placement by assigning cells to
pre-defined rows in the placement region and removing any
overlap among them. It also consists of further reducing the
wirelength by a greedy heuristic.

The algorithm FASTPLACE is summarized in Figure 1
and the individual components of the flow are discussed in
more detail in Sections 3-7.

Algorithm FASTPLACE

Stage 1: Coarse Global Placement (CGP)
1. Repeat
2. Perform Global Optimization.
3. Perform Cell Shifting and Add Spreading Forces.
4. Until the placement is roughly even.

Stage 2: Wirelength Improved Global Placement
(WIGP)

1. Repeat
2. Perform Global Optimization.
3. Perform Iterative Local Refinement.
4. Perform Cell Shifting and Add Spreading Forces.
5. Until the placement is very even.

Stage 3: Detailed Placement (DP)
1. Repeat
2. Further reduce the wirelength using a greedy

heuristic.
3. Legalize the current placement solution.
4. Until no significant improvement in wirelength.

Figure 1: The FASTPLACE Algorithm.

3. GLOBAL OPTIMIZATION
This section describes the quadratic programming step

of global placement refered as Global Optimization, which
is the terminology used in [13]. The quadratic placement
approach uses springs to model the connectivity of the cir-
cuit. The total potential energy of the springs, which is a
quadratic function of their length, is minimized1 to produce
a placement solution. In order to model the circuit by a
spring system, each multi-pin net needs to be transformed
into a set of two-pin nets by a suitable net model. In the
following, we assume that this transformation has been ap-
plied. The net model used will be discussed in Section 4.

Let n be the number of movable cells in the circuit and
(xi, yi) the coordinates of the center of cell i. A place-
ment of the circuit is given by the two n-dimensional vectors
x = (x1, x2, .., xn) and y = (y1, y2, .., yn). Consider the net
between two movable cells i and j in the circuit. Let Wij be
its weight. Then the cost of the net between the cells is:

1

2
Wij [(xi − xj)

2 + (yi − yj)
2] (1)

1Equivalently, a force equilibrium state of the spring system
is found.

If a cell i is connected to a fixed cell f with coordinates
(xf , yf), the cost of the net is given by:

1

2
Wif [(xi − xf)2 + (yi − yf)2] (2)

Consequently, the objective function which sums up the cost
of all the nets can be written in matrix notation as [9]:

Φ(x, y) =
1

2
xT Qx + dT

x x +
1

2
yT Qy + dT

y y + constant (3)

where Q is an n× n symmetric positive definite matrix and
dx, dy are n-dimensional vectors. Since equation (3) is sep-
arable into Φ(x, y) = Φ(x)+Φ(y), only the the x-dimension
is considered for subsequent discussion, which is:

Φ(x) =
1

2
xT Qx + dT

x x + constant (4)

Let qij be the entry in row i and column j of matrix Q.
From expression (1), the cost in the x-direction between two
movable cells i and j is 1

2
Wij(x

2
i +x2

j −2xixj). The first and
second terms contribute Wij to qii and qjj respectively. The
third term contributes −Wij to qij and qji. From expression
(2), the cost in the x-direction between a movable cell i and
a fixed cell f is 1

2
Wif (x2

i + x2
f − 2xixf). The first term

contributes Wif to qii. The third term contributes −Wifxf

to the vector dx at row i and the second term contributes
to the constant part of equation (4). The objective function
(4) is minimized by solving the system of linear equations
represented by:

Qx + dx = 0. (5)

Equation (5) gives the solution to the unconstrained prob-
lem of minimizing the quadratic function in (4). In Fast-
Place, we solve such an unconstrained minimization prob-
lem throughout the placement process. We do not add any
constraint to the problem formulation. This is because the
spreading forces added during Cell Shifting are produced by
pseudo nets connecting the cells to the chip boundary. This
only introduces some terms in the form of expression (2)
and causes some changes to the diagonal of matrix Q and
the vector dx as described above.

4. HYBRID NET MODEL
To handle the large placement problem size, a fast and

accurate technique is needed to solve equation (5). Since
matrix Q is sparse, symmetric and positive definite, we
solve equation (5) by the pre-conditioned Conjugate Gra-
dient method with the Incomplete Cholesky Factorization
of matrix Q as the preconditioner [2, 12]. The runtime of
this method is directly proportional to the number of non-
zero entries in matrix Q. This in turn is equal to the number
of two-pin nets in the circuit. Hence, it becomes imperative
to choose a good net model so as to have minimal non-zero
entries in the matrix Q.

We propose a Hybrid Net Model which is a combination of
the clique model and the star model. We show experimen-
tally in Section 8 that the Hybrid Net Model reduces the
number of non-zero entries in the matrix Q by 2.95 times
over the traditional clique model. In the subsequent dis-
cussion, we give a brief overview of the clique and star net
models, and introduce the Hybrid Net Model. Then, we
prove the equivalence of the clique and star models, and
hence the consistency of the Hybrid Net Model.

4.1 Clique, Star and Hybrid Net Models
The clique model is the traditional model used in analyt-

ical placement algorithms. In the clique model, a k-pin net
is replaced by k(k− 1)/2 two-pin nets forming a clique. Let
W be the weight of the k-pin net. Some commonly used
values for the weight of the two-pin nets are W/(k−1) (e.g.,
[18]) and 2W/k (e.g., [6, 13]). The clique model for a 5-pin
net is illustrated in Figure 2(a).

5-Pin Net
(a) Clique Model (b) Star Model

Star Node

(x1,y1)
(x2,y2)

(x3,y3)

(x4,y4)
(x5,y5)

(xs,ys)
(x3,y3)

(x2,y2)
(x1,y1)

(x5,y5)
(x4,y4)

Figure 2: Net Models.

Recently, Mo et al. [14] utilized the star net model in a
macro-cell placer. In the star model, each net has a star
node to which all pins of the net are connected. Hence, a
k-pin net will yield k two-pin nets. The star model for a
5-pin net is illustrated in Figure 2(b). Mo et al. [14] point
out that the clique model generates on average 30% more
two-pin nets than the star model for the MCNC92 macro
block benchmarks, eventhough a star node is created in their
model even for two-pin nets. Vygen [18] also switches to a
star model for very large nets to reduce the number of terms
in the objective function, but has not shown the validity of
mixing the clique and star models in quadratic placement.
In addition, neither paper has discussed the method to set
the weight of the nets introduced by the star model.

In the following subsection we prove that for a k-pin net
of weight W , if we set the weight of the two-pin nets intro-
duced, to γW in the clique model and kγW in the star model
for any γ, the clique model is equivalent to the star model.
Therefore, the two models can be used interchangeably. We
propose a Hybrid Net Model which uses a clique model for
two-pin and three-pin nets, and a star model for nets with
four or more pins. We set γ to 1/(k − 1) in FastPlace as
it works better experimentally. By using the star model for
nets with four or more pins, we will generate much fewer
nets and consequently fewer non-zero entries in the matrix
Q, than the clique model. By using the clique model for
two-pin nets, we will not introduce one extra net and two
extra variables per two-pin net as in [14]. We choose to use
the clique model for three-pin nets because it is better than
the star model for the following reasons: First, if two cells
are connected by more than one two-pin or three-pin net in
the original netlist, the two-pin nets generated by the clique
model between the two cells can be combined and will only
introduce a single non-zero entry in the matrix Q. Second,
there is no need to introduce an extra pair of variables.

4.2 Equivalence of the Hybrid Net Model to
the Clique and Star Net Models

In this subsection, we show that the clique model is equiv-
alent to the star model in quadratic placement if net weights
are set appropriately. It follows that the clique, star and Hy-
brid net models are all equivalent.

Lemma 1. For any net in the star model, the star node
under force equilibrium is at the center of gravity of all pins
of the net.

Proof. Consider a k-pin net. Let xs be the x-coordinate
of the star node and let Ws be the weight of the two-pin
nets introduced. Then the total force on the star node by
all the pins is given by:

F =
k�

j=1

Ws(xj − xs).

Under force equilibrium, the total force F = 0. Therefore,

xs = � k

j=1
xj

k
. (6)

Hence the lemma follows.

Theorem 1. For a k-pin net, if the weight of the two-pin
nets introduced is set to Wc in the clique model and kWc in
the star model, the clique model is equivalent to the star
model in quadratic placement.

Proof. For the clique model, the total force on a pin i
by all the other pins is given by:

F clique
i = Wc

k�
j=1,j 6=i

(xj − xi) (7)

For the star model, all the pins of the net are connected to
the star node. The force on a pin i due to the star node is
given by:

F star
i = kWc (xs − xi)

= kWc

� � k

j=1
xj

k
− xi � by Lemma 1

= Wc

�
k�

j=1

xj − kxi �
= Wc

k�
j=1,j 6=i

(xj − xi)

= F clique
i

As the forces are the same in both models for all pins, the
lemma follows.

5. CELL SHIFTING
Global Optimization gives a placement which minimizes

the quadratic objective function. However, it does not con-
sider the overlap among cells. Therefore, the resulting place-
ment has a lot of cell overlap and is not distributed over the
placement area. Cell Shifting evens out the placement by
distributing the cells over the placement region while re-
taining their relative ordering obtained during the Global
Optimization step.

5.1 Calculation of Bin Utilization
Initially, the placement region is divided into equal sized

bins as shown in Figure 3. The area of each bin is such that
it can accommodate an average of 4 cells. Based on the
placement obtained from the Global Optimization step, the
utilization of each bin (Ui) is then computed. Ui is defined
as the total area of all cells inside bin i. In calculating Ui

Figure 3: Regular Bin Structure.

we sum the areas of all standard cells which are completely
covered by bin i and the overlap area between the bin and
the standard cell for cells which partially overlap with bin
i. The standard cells are then shifted around the placement
region based upon the bin in which they lie and its current
utilization.

5.2 Shifting of Cells
Let us consider the case where the cells are shifted in

the x-dimension. To shift cells in the x-dimension, we go
through every row of the regular bin structure and move
cells present in the row. Shifting of cells is a two step pro-
cess. First, based on the current utilization of all the bins
in a particular row an unequal bin structure reflecting the
current bin utilization is constructed. Second, every cell be-
longing to a particular bin in the regular bin structure is
then linearly mapped to the corresponding bin in the un-
equal bin structure. As a result of this mapping, cells in
bins with a high utilization will shift in a way so as to re-
duce its utilization and the overlap among themselves. For
shifting cells in the y-dimension we consider every column
of the regular bin structure, after all the rows have been
considered and follow the two steps mentioned above.

(b) Distribution
 After
 Spreading

Bin i

Bin i+1

OBiOBi - 1 OBi + 1

NBi

(a) Distribution
 Before
 Spreading Utilization

Figure 4: (a) Regular Bin Structure (b) Unequal
Bin Structure and Utilization after Shifting.

To illustrate the shifting in the x-direction, consider a
particular row in the regular bin structure (shaded row in
Figure 3). The utilization of all the bins in this row is given
in Figure 4(a). The unequal bin structure constructed from
the regular bin structure is illustrated in Figure 4(b). To get
the equation for the new bin structure, from Figure 4 let,

• OBi: x-coordinate of the boundary of bin i corre-
sponding to the regular bin structure

• NBi: x-coordinate of the boundary of bin i corre-
sponding to the unequal bin structure

Then,

NBi =
OBi−1(Ui+1 + δ) + OBi+1(Ui + δ)

Ui + Ui+1 + 2δ
(8)

The intuition behind the above formula is to construct the
new bin such that it averages the utilization of bin i and bin
i + 1. The reason for having the parameter δ is as follows:
Let, δ = 0 and Ui+1 = 0, then from equation (8) it can be
seen that, NBi = OBi+1 and NBi+1 = OBi. This results
in a cross-over of bin boundaries in the new bin structure
which results in improper mapping of the cells. To avoid
this cross-over we need the parameter δ which is set to a
value of 1.5.

For performing the linear mapping of cells, If,

• xj : x-coordinate of cell j in bin i before mapping (ob-
tained from the Global Optimization step)

• x′j : x-coordinate of cell j in bin i after mapping

Then,

xj − OBi−1

OBi − OBi−1

=
x′j − NBi−1

NBi − NBi−1

or,

x′j =
NBi(xj − OBi−1) + NBi−1(OBi − xj)

OBi − OBi−1

(9)

During the initial placement iterations, bins in the cen-
ter of the placement region have an extremely high bin uti-
lization value. Consequently, cells in such bins will have a
tendency to shift over large distances. This will perturb the
current placement solution by a large amount. This effect
will get added over iterations and result in a final placement
with a high value of the total wirelength.

Therefore, to control the actual distance moved by any cell
during shifting, we introduce two movement control parame-
ters, αx and αy (< 1) for the x and y dimensions. αx and αy

are increasing functions, inversely proportional to the maxi-
mum bin utilization and have a very small value during the
initial placement iterations. For the x-dimension, the actual
distance moved by cell j is αx | x′j − xj |. This is just a
fraction of the total distance to be moved by the cell.

This way, the cells are shifted over very small distances
during the initial placement iterations. During the later
placement iterations, the cells will be distributed quite evenly
and hence will not have a tendency to shift over large dis-
tances. Then, α can take a larger value to accelerate con-
vergence. The expressions for αx and αy are:

αy = 0.02 +
0.5

max(Ui)

αx = 0.02 + � 0.5

max(Ui) � � averageCellWidth

cellHeight �
5.3 Addition of Spreading Forces

After the cells have been shifted in the x and y dimen-
sions, additional forces need to be added to them so that
they do not collapse back to their previous positions dur-
ing the next Global Optimization step. This is achieved by

 Pseudo pin

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

Pseudo net

pFx

pFy

Original Position

Target Position
Resultant
Force

Figure 5: Pseudo Pin and Pseudo Net Addition.

connecting each cell to a corresponding pseudo pin added at
the boundary of the placement region. The pseudo pin and
pseudo net addition is illustrated in Figure 5.

Let (xj , yj) and (xf
j , yf

j) be the original and target posi-

tion of cell j before and after Cell Shifting. Since (xj , yj) is
the equilibrium position obtained by the Global Optimiza-
tion step, the total force acting on cell j in this position is
zero. When it is moved to the target position it will ex-
perience a force due to its connectivity with the other cells
or star nodes in the placement region. This force can also
be viewed as the force required to move the cell from the
original to the target position. The spreading force added
to the cell corresponds to this force experienced by it in its
target position. During each iteration of Global Placement,
the spreading forces are generated afresh based on the cell
positions obtained after the Cell Shifting step. They are not
accumulated over iterations. If,

• pFx: x-component of resultant force on cell j at its
target position due to cells/star nodes connected to it.

• pFy: y-component of the force

• pDx: x-component of the distance between the pseudo
pin and target position of cell j

• pDy: y-component of the distance

Then, the position of the pseudo pin can be determined by
the intersection of the resultant force vector with the chip
boundary. A pseudo net for cell j is one which connects the
cell from its target position to its pseudo pin. The spring

constant for the pseudo net is given by β =

√
pF2

x
+pF2

y√
pD2

x
+pD2

y

.

Since the pseudo pin is a fixed pin present at the boundary,
we know from expression (2) and the subsequent analysis in
Section 3, that only the diagonal of matrix Q and the dx

and dy vectors need to be updated for every cell. Hence, it
takes only a single pass of O(n) time, where n is the total
number of movable cells in the circuit, to regenerate the
connectivity matrix for the next Global Optimization step.
Thus we have incorporated an extremely fast Cell Shifting
technique to distribute the cells over the placement region.

6. ITERATIVE LOCAL REFINEMENT
As previously stated, the quadratic objective function on

its own does not yield the best possible result in terms of
wirelength as it is just an indirect measure of the linear

wirelength.To offset this disadvantage, we incorporate an
Iterative Local Refinement technique to further reduce the
wirelength.

The Iterative Local Refinement technique is interleaved
with the Cell Shifting and Global Optimization steps dur-
ing the WIGP stage. This technique acts on a coarse global
placement obtained from the previous stage and hence is
very effective in minimizing the wirelength. Unlike other
approaches, this technique uses the actual position of a cell
and the half-perimeter bounding rectangle measure of all
nets connected to the cell for moving it around the place-
ment region. The technique is based on a greedy heuristic
which mainly tries to minimize the wirelength while try-
ing to reduce the current maximum bin utilization so as to
speed-up the convergence of the algorithm.

6.1 Bin Structure
This technique also employs a regular bin structure to

estimate the current utilization of a placement region for
performing wirelength improvement. Cells are then moved
from source to target bins based upon the wirelength im-
provement and target bin utilization. During the first iter-
ation of the WIGP stage, the width and height of each bin
for the Refinement is set to 5 times that of the bin used dur-
ing Cell Shifting. Such large bins are constructed to enable
cell movement over large distances. This is to minimize the
wirelength of long nets which might span a large part of the
placement area. The width and height of the bins are grad-
ually brought down to the values used in the Cell Shifting
step over subsequent iterations of the WIGP stage.

6.2 Description of the Technique
Once the utilization of all the bins in the placement re-

gion has been determined, we traverse through all the cells in
the placement region and determine their respective source
bins. For every cell present in a bin we compute four scores
corresponding to the four possible cell movement directions.
For calculating the score, we assume that a cell is moving
from its current position in a source bin to the same po-
sition in a target bin which is adjacent to it. That is, we
move the cell by one bin width. Each score is a weighted
sum of two components: The first being the wirelength re-
duction for the move. The wirelength is computed as the
total half-perimeter of the bounding rectangle of all nets
connected to the cell. Hence it is much more accurate than
the quadratic objective function used in the Global Opti-
mization step. The second being a function of the utilization
of the source and target bins. Since the Local Refinement
technique is mainly used to reduce the wirelength, a higher
weight is used for the first component. If all the four scores
are negative, the cell will remain in the current bin. Oth-
erwise, it will move to the target bin with the highest score
for the move. During one iteration of the Local Refinement,
we traverse through all the bins in the placement region and
follow the above steps for cell movement. Subsequently, this
iteration is repeated until there is no significant improve-
ment in the wirelength.

The Iterative Local Refinement technique is then followed
by Cell Shifting in which we add the spreading forces as
described previously to reflect the current placement.

7. DETAILED PLACEMENT
The Detailed Placement stage legalizes the solution ob-

tained from global placement. It assigns all the standard

cells to pre-defined rows in the placement region. Within
each row, the cells are then assigned to legal positions. Once
the cells are assigned to the rows in the placement region,
any remaining overlap among them is removed. During le-
galization, the detailed placement also tries to further reduce
the wirelength by employing a technique similar to Iterative
Local Refinement. The difference is that during detailed
placement, the technique acts on cells which have been as-
signed to the actual rows present in the placement region.
Besides, it puts a higher weight on the utilization factor than
the wirelength factor because the emphasis is on removal of
overlap among cells to obtain a legalized placement.

8. EXPERIMENTAL RESULTS

Ckt #Nodes #Tnls #Nets #Pins #Rows

ibm01 12506 246 14111 50566 96
ibm02 19342 259 19584 81199 109
ibm03 22853 283 27401 93573 121
ibm04 27220 287 31970 105859 136
ibm05 28146 1201 28446 126308 139
ibm06 32332 166 34826 128182 126
ibm07 45639 287 48117 175639 166
ibm08 51023 286 50513 204890 170
ibm09 53110 285 60902 222088 183
ibm10 68685 744 75196 297567 234
ibm11 70152 406 81454 280786 208
ibm12 70439 637 77240 317760 242
ibm13 83709 490 99666 357075 224
ibm14 147088 517 152772 546816 305
ibm15 161187 383 186608 715823 303
ibm16 182980 504 190048 778823 347
ibm17 184752 743 189581 860036 379
ibm18 210341 272 201920 819697 361

Table 1: Placement Benchmark Statistics.

The benchmarks used in our experiments are derived from
the ISPD-02 suite downloaded from [1]. These benchmarks
consist of macro blocks and hence had to be modified to
be tested on FastPlace. The height of all the macro blocks
was brought down to the standard cell height. The aver-
age width of all the modules in the original benchmark was
computed and the width of all macros exceeding 4 times the
average width was assigned to a value of 4× average width.
All designs in the derived set have a whitespace of 10%.
The IBM-Place Benchmarks used in Dragon [19] cannot be
used because they do not have any connectivity informa-
tion between the movable cells and the fixed terminals on
the placement boundary. This information is essential for a
quadratic placement approach. Statistics for the placement
benchmarks are given in Table 1.

To determine the effect of the Hybrid net model on the
number of entries in matrix Q and on the runtime, we con-
sider two implementations of FastPlace in C. One incor-
porating the clique model and the other incorporating the
Hybrid net model. Table 2 gives the results for the two im-
plementations. It can be seen that on average, the Hybrid
model leads to 2.95X fewer non-zero entries in matrix Q as
compared to the clique model over the 18 benchmark cir-
cuits. Also, on average, the total runtime of the placer is
1.5X lesser for the Hybrid net model.

Table 3 gives a break-up of the total runtime of FastPlace
for all circuits. We incorporate the Hybrid net model in

#Non-zero Entries Ratio Runtime
Ckt (#Clique/ (Clique/

(Clique) (Hybrid) #Hybrid) Hybrid)

ibm01 109183 41164 2.65 1.5
ibm02 343409 70014 4.90 2.4
ibm03 206069 74680 2.76 1.4
ibm04 220423 84556 2.61 1.2
ibm05 349676 108282 3.23 1.3
ibm06 321308 106835 3.01 1.6
ibm07 373328 147009 2.54 1.3
ibm08 732550 173541 4.22 2.0
ibm09 478777 185102 2.59 1.4
ibm10 707969 251101 2.82 1.6
ibm11 508442 230865 2.20 1.2
ibm12 748371 270849 2.76 1.6
ibm13 744500 295048 2.52 1.5
ibm14 1125147 456474 2.46 1.3
ibm15 1751474 607289 2.88 1.4
ibm16 1923995 668491 2.88 1.3
ibm17 2235716 753507 2.97 1.4
ibm18 2221860 711702 3.12 1.4
Avg 2.95 1.5

Table 2: Clique net model vs Hybrid net model.

FastPlace to obtain these results. Columns 2-4 of Table 3
give the Global Optimization, Cell Shifting, Iterative Local
Refinement and Detailed Placement times respectively. It
can be seen that on average, Cell Shifting takes only 9.6 %
of the total runtime over the 18 benchmarks. This demon-
strates the efficiency of the Cell Shifting technique in dis-
tributing the cells over the placement region in a very short
time.

Global Cell Iterative Det. Total
Ckt Opt. Shifting Local Place Time

Rfnment
(sec) (sec) (sec) (sec)

ibm01 3.75 1.44 6.37 1.55 13s
ibm02 8.43 3.05 17.87 3.83 33s
ibm03 10.03 3.59 16.74 2.12 33s
ibm04 11.83 4.13 19.72 3.55 39s
ibm05 10.91 6.23 25.83 8.27 51s
ibm06 13.27 3.91 25.04 3.21 45s
ibm07 33.12 7.81 33.09 4.47 1m 19s
ibm08 32.19 8.94 44.47 7.31 1m 33s
ibm09 43.03 12.47 37.40 8.65 1m 42s
ibm10 57.91 12.38 62.03 12.35 2m 25s
ibm11 56.80 14.67 49.20 11.86 2m 13s
ibm12 59.78 12.43 59.71 10.55 2m 23
ibm13 81.31 17.30 63.98 11.80 2m 54s
ibm14 144.06 32.50 135.30 21.90 5m 34s
ibm15 230.72 43.32 214.36 36.06 8m 45s
ibm16 257.41 53.93 292.74 47.99 10m 52s
ibm17 251.69 39.24 348.08 51.37 11m 30s
ibm18 285.57 57.09 345.28 52.98 12m 21s

Table 3: Break-up of total runtime.

FastPlace is compared with two state-of-the-art academic
placers - Capo 8.8 [3] and Dragon 2.2.3 [19]. All experi-
ments are run on a Sun Sparc-2, 750 MHz machine. We

run MetaPl-Capo8.8 for Solaris, which incorporates Capo,
orientation optimizer and row ironing, in the default mode.
Dragon is run in the fixed die mode. The half-perimeter
wirelength and runtime results of Capo, Dragon and Fast-
Place are given in Table 4.

From column 10 of Table 4, it can be seen that on average,
FastPlace is 13.0 times faster than Capo over the 18 bench-
marks. The average wirelength of FastPlace, from column
5, is just 1.0% higher than Capo. From column 11 of Table
4, it can be seen that on average, FastPlace is 97.4 times
faster than Dragon. The average wirelength of FastPlace,
from column 6, is just 1.6% higher than Dragon.

To determine the scalability factor of FastPlace, we plot
the runtime versus the total number of pins, which is a good
measure of the circuit size, in logarithmic scale for all 18
benchmarks in Figure 6. The data points can be closely
approximated by a straight line with slope 1.370. Hence,
the runtime of FastPlace is roughly O(n1.370), where n is
the circuit size given by the number of pins.

Figure 6: Runtime of FastPlace verses number of
pins in circuits in logarithmic scale.

9. CONCLUSIONS
In this paper, we propose an efficient and scalable flat

placement algorithm FastPlace for large-scale standard cell
circuits. FastPlace is based on the analytical placement ap-
proach and utilizes the quadratic wirelength objective func-
tion. The current implementation handles the wirelength
minimization problem. It produces comparable placement
solutions to state-of-the-art academic placers, but in a sig-
nificantly lesser runtime. Such an ultra-fast placement tool
is very much needed for the timing convergence of the layout
phase of IC design.

The runtime of FastPlace can be further reduced by in-
corporating it into the FPI framework in [11] or a general
hierarchical framework, and by applying the algebraic multi-
grid method to solve the system of linear equations (5) [5].
The FastPlace algorithm can also be extended to consider
other placement objectives like mixed-mode placement, tim-
ing driven placement, routing congestion, variable whites-
pace allocation, etc. Future extensions to the algorithm
would be in dealing with the above objectives.

Half-Perimeter Wirelength Wirelength Ratio RunTime Speed-up
Ckt Capo Dragon FastPlace Capo Dragon FastPlace

(×1e6) (×1e6) (×1e6) FastPlace
Capo

FastPlace
Dragon

Capo

FastPlace

Dragon

FastPlace

ibm01 1.86 1.84 1.91 1.03 1.04 3m 59s 29m 6s 13s ×18.4 ×134.3
ibm02 4.06 3.98 4.02 0.99 1.01 7m 15s 31m 13s 33s ×13.2 ×56.8
ibm03 5.11 5.31 5.45 1.07 1.03 8m 23s 31m 49s 33s ×15.2 ×57.8
ibm04 6.39 6.22 6.63 1.04 1.07 10m 46s 1h 5m 39s ×16.6 ×100.0
ibm05 10.56 10.35 10.96 1.04 1.06 10m 44s 1h 48m 51s ×12.6 ×127.1
ibm06 5.50 5.45 5.55 1.01 1.02 12m 08s 1h 21m 45s ×16.2 ×108.0
ibm07 9.63 9.26 9.56 0.99 1.03 18m 32s 1h 47m 1m 19 s ×14.1 ×81.3
ibm08 10.26 9.66 10.01 0.98 1.04 19m 53s 4h 30m 1m 33s ×12.8 ×174.2
ibm09 10.56 11.03 11.26 1.07 1.02 22m 50s 3h 43m 1m 42s ×13.4 ×131.2
ibm10 19.70 19.46 19.31 0.98 0.99 29m 04s 3h 19m 2m 25s ×12.0 ×82.3
ibm11 15.73 15.36 16.03 1.02 1.04 31m 11s 2h 22m 2m 13s ×14.1 ×64.1
ibm12 25.83 24.74 25.04 0.97 1.01 30m 41s 3h 48m 2m 23 ×12.9 ×95.7
ibm13 18.73 19.32 19.46 1.04 1.01 39m 27s 3h 4m 2m 54s ×13.6 ×63.4
ibm14 36.69 35.77 36.09 0.98 1.01 1h 12m 7h 37m 5m 34s ×12.9 ×82.1
ibm15 43.85 43.39 45.21 1.03 1.04 1h 30m 10h 34m 8m 45s ×10.3 ×72.4
ibm16 49.63 49.54 48.43 0.97 0.98 1h 31m 12h 6m 10m 52s ×8.4 ×66.8
ibm17 69.07 73.45 68.09 0.99 0.93 1h 43m 26h 54m 11m 30s ×9.0 ×140.3
ibm18 47.46 48.59 46.89 0.99 0.96 1h 44m 23h 39m 12m 21s ×8.4 ×114.9

Average 1.010 1.016 ×13.0 ×97.4

Table 4: Comparsion of placement results with Capo 8.8 and Dragon 2.2.3.

10. REFERENCES
[1] http://vlsicad.eecs.umich.edu/BK/ISPD02bench/.
[2] R. Barrett, M. Berry, and et al. Templates for the

Solution of Linear Systems: Building Blocks for
Iterative Methods. SIAM, 1994.

[3] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can
recursive bisection produce routable placements. In
Proc. ACM/IEEE Design Automation Conf., pages
477–482, 2000.

[4] T. Chan, J. Cong, T. Kong, and J. Shinnerl.
Multilevel optimization for large-scale circuit
placement. In Proc. IEEE/ACM Intl. Conf. on
Computer-Aided Design, pages 171–176, 2000.

[5] H. Chen, C.-K. Cheng, N.-C. Chou, A. Kahng,
J. MacDonald, P. Suaris, B. Yao, and Z. Zhu. An
algebraic multigrid solver for analytical placement
with layout based clustering. In Proc. ACM/IEEE
Design Automation Conf., pages 794–799, 2003.

[6] H. Eisenmann and F. Johannes. Generic global
placement and floorplanning. In Proc. ACM/IEEE
Design Automation Conf., pages 269–274, 1998.

[7] H. Etawil, S. Arebi, and A. Vannelli.
Attractor-repeller approach for global placement. In
Proc. IEEE/ACM Intl. Conf. on Computer-Aided
Design, pages 20–24, 1999.

[8] C. M. Fiduccia and R. M. Mattheyses. A linear-time
heuristic for improving network partitions. In Proc.
ACM/IEEE Design Automation Conf., pages 175–181,
1982.

[9] K. M. Hall. An r-dimensional quadratic placement
algorithm. Management Science, 17:219–229, 1970.

[10] B. Hu and M. Marek-Sadowska. Far: Fixed-points
addition and relaxation based placement. In Proc.
Intl. Symp. on Physical Design, pages 161–166, 2002.

[11] B. Hu and M. Marek-Sadowska. Fine granularity
clustering for large scale placement problems. In Proc.
Intl. Symp. on Physical Design, pages 67–74, 2003.

[12] D. S. Kershaw. The incomplete cholesky-conjugate
gradient method for the iterative solution of systems
of linear equations. Journal of Computational Physics,
26:43–65, 1978.

[13] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich.
Gordian: VLSI placement by quadratic programming
and slicing optimization. IEEE Trans.
Computer-Aided Design, 10(3):356–365, 1991.

[14] F. Mo, A. Tabbara, and R. Brayton. A force-directed
macro-cell placer. In Proc. IEEE/ACM Intl. Conf. on
Computer-Aided Design, pages 177–180, 2000.

[15] C. Sechen and A. L. Sangiovanni-Vincentelli.
Timberwolf 3.2: A new standard cell placement and
global routing package. In Proc. ACM/IEEE Design
Automation Conf., pages 432–439, 1986.

[16] G. Sigl, K. Doll, and F. M. Johannes. Analytical
placement: A linear or a quadratic objective function.
In Proc. ACM/IEEE Design Automation Conf., pages
427–431, 1991.

[17] P. Villarrubia. Important placement considerations for
modern vlsi chips. In Proc. Intl. Symp. on Physical
Design, page 6, 2003.

[18] J. Vygen. Algorithms for large-scale flat placement. In
Proc. ACM/IEEE Design Automation Conf., pages
746–751, 1997.

[19] M. Wang, X. Yang, and M. Sarrafzadeh. Dragon2000:
Standard-cell placement tool for large industry
circuits. In Proc. IEEE/ACM Intl. Conf. on
Computer-Aided Design, pages 260–263, 2000.

[20] M. C. Yildiz and P. H. Madden. Global objectives for
standard cell placement. In Proc. 11th Great Lakes
Symposium on VLSI, pages 68–72, 2001.

