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Abstract— In this paper, we propose a fast algorithm to construct a
performance driven routing tree with simultaneous buffer insertion and
wire sizing in the presence of wire and buffer obstacles. Recently several
algorithms [1, 2, 3, 4] have been published addressing the routing tree
construction problem. But all these algorithms are slow and not scal-
able. In this paper we propose an algorithm which is fast and scalable
with problem size. The main idea of our approach is to specify some
important high-level features of the whole routing tree so that it can be
broken down into several components. We apply stochastic search to
find the best specification. Since we need very few high-level features,
the size of stochastic search space is small which can be searched in very
less time. The solutions for the components are either pre-generated and
stored in lookup tables, or generated by extremely fast algorithms when-
ever needed. Since it is efficient to obtain solutions for components, it is
also efficient to construct and evaluate the whole routing tree for each
specification. Experimental results show that, for trees of moderate size,
our algorithm is at least several hundred times faster than the recently
proposed algorithms [3, 4]. Experimental results also show that the trees
generated by our algorithm have almost same delay and resource con-
sumption as the trees generated by SP-Tree.

1. INTRODUCTION
As VLSI technology enters deep submicron era, interconnect de-

lay becomes a dominant factor in determining circuit performance.
Interconnect optimization techniques like buffer insertion and wire
sizing have been shown to be effective in reducing interconnect de-
lay [5]. In modern VLSI design, it is very common to consider buffer
insertion and wiring sizing during performance-driven routing. For
the routing of two-terminal nets and when there is no restriction on
buffer positions in the routing area, the route with optimal delay can
be constructed by inserting buffers and sizing wires of the shortest
path from source to sink. In other words, routing and interconnect
optimization can be performed sequentially. However, for multi-
terminal nets or when there are macro blocks where wires can be
passed but buffers cannot be placed, the optimal routing tree can only
be found if routing, buffer insertion and wire sizing are considered
simultaneously [4, 6].

Many algorithms have been proposed in the past few years to con-
struct routing trees with buffer insertion and wire sizing in the pres-
ence of routing and buffer obstacles. The approaches used can be
classified as either sequential or simultaneous approaches. In se-
quential approach, the routing tree is constructed followed by buffer
insertion and wire sizing. In simultaneous approach, routing tree is
constructed by simultaneously considering routing, buffer insertion
and wire sizing. The algorithm proposed in [7] follows the sequential
approach. Moreover, it does not consider wire obstacles, buffer ob-
stacles and wire sizing. In [8], as part of sequential approach, Hu et
al. extended van Ginneken’s algorithm to solve the problem of buffer

insertion on a given routing tree, considering buffer blockages.
Several algorithms have been proposed based on the simultaneous

approach. Topology search based algorithms given in [1, 2, 3] limit
the routing topology space to certain topologies and search exhaus-
tively for the best solution in that limited space. The final routing tree
obtained from these algorithms depends on the criteria used to limit
the topology space and the initial routing topology given to these al-
gorithms. In order to obtain a better solution, a larger topology space
needs to be considered and the exhaustive search usually takes a sig-
nificant amount of time. All these algorithms are not scalable and
they cannot handle wiresizing. For two-terminal nets, Zhou et al. [9]
presented a dynamic programming algorithm for simultaneous rout-
ing with buffer insertion, considering both buffer and wire obstacles.
Lai and Wong [10] formulated the simultaneous routing with buffer
insertion and wire sizing in the presence of buffer and wire obsta-
cles as a graph-theoretic shortest path problem. However, these two
algorithms cannot be easily extended to handle multi-terminal nets.

Recently, Tang et al. [4] presented an algorithm graph-RTBW for
multi-terminal nets that considers buffer insertion, wire sizing, and
buffer and wire obstacles simultaneously. In their approach, the rout-
ing problem is converted into a collection of graph problems. One
graph is constructed for each subset of sinks. In the graph, one ver-
tex represents the subset, and other vertices represent possible buffer
choices at different buffer locations. The shortest path from the sub-
set vertex to every other vertex � in the graph corresponds to the op-
timal subtree with appropriate buffer insertion and wire sizing con-
necting � and the subset of sinks. Dynamic programming is used to
construct routing solutions for larger subset of sinks based on solu-
tions for smaller subsets of sinks. Finally, the routing solution for all
sinks is obtained. They use Rubinstein delay model [11] for intercon-
nect delay calculation. As they consider all the subsets of sinks, the
runtime is exponential to the number of sinks. Hence the algorithm
is very slow.

In this paper, we present a very fast and scalable algorithm named
Fast-RTBW for solving this problem. The main idea of our approach
is to specify some important high-level features of the whole rout-
ing tree so that it can be broken down into several components. We
apply stochastic search to find the best specification. Since we need
very few high-level features, the size of stochastic search space is
small. As size of the solution space is small, the time required to
search for high level specifications of the routing tree is very less.
The solutions for the components are either pre-generated and stored
in lookup tables, or generated by extremely fast algorithms when-
ever needed. Since it is efficient to obtain solutions for components,
it is also efficient to construct and evaluate the whole routing tree for
each specification. Experimental results show that, for trees of mod-
erate size, our algorithm is at least several hundred times faster than
the recently proposed algorithms [3, 4], without much difference in
delay and resource consumption.

Our approach has the following advantages over previous approaches:

1. Our approach is much faster and scalable. We apply stochas-



tic search on a small search space. The evaluation of a spe-
cific routing tree is also fast, because lookup tables and fast
algorithms are used to find component solutions. Runtime
of our algorithm decreases as number of blockages in the de-
sign increases, because we have to search less number of posi-
tions for buffers. The graph-RTBW algorithm uses exhaustive
search by trying all combinations of subset of sinks, buffer po-
sitions and buffer sizes. As a result, the algorithm is very slow.
Topology search based approaches try to reduce the runtime
by limiting the search space to certain topologies. But these
algorithms cannot handle wire sizing and are not scalable with
problem size. These algorithms becomes slower as the number
of blockages increases in the design.

2. We do not have restriction on the fanout of buffers. The graph-
RTBW algorithm theoretically can handle general fanout. How-
ever, the expensive term in the time complexity of the algo-
rithm is

���������	��
���	��������������

, where

�
is the bound on fanout,�

is the number of sinks,


is number of buffer types,
�

is
number of possible buffer locations. So, in practice, the al-
gorithm can only handle a fanout of � . The example given
in Figure 1 demonstrates the disadvantage of having a restric-
tion on fanout. Figure 1 (a) shows routing tree obtained by
graph-RTBW for

��� � and Figure 1(b) shows routing tree
obtained by our algorithm. The delay of routing tree shown
in Figure 1(b) is 37.7% better than the delay of routing tree
shown in Figure 1(a). Also, we observe that routing resources
are wasted in the first case.

(a) (b)
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Figure 1: (a) Routing solution by graph-RTBW. (b) Routing so-
lution by our algorithm

3. We use Elmore delay model [12] for calculating the delay of
interconnects. It gives better estimation of delay when com-
pared to Rubinstein delay model used in [4]. By using Elmore
delay model, we can minimize the delay of critical path of
multi-terminal net, which is not feasible by using Rubinstein
model.

The rest of the paper is organized as follows: Section 2 presents the
problem formulation. Section 3 explains the notation and the pro-
posed algorithm in detail. Section 4 presents the complexity analysis
of our algorithm. Experimental results are given in Section 5.

2. PROBLEM FORMULATION
The goal of the algorithm is to construct a routing tree with buffer

insertion and wire sizing in the presence of wire and buffer obstacles,
such that the maximum delay from source to sinks is minimized.
We use � -type ��� model for wires and switch-level ��� model for
buffers. We use Elmore delay model to calculate the interconnect
delay. The problem formulation given below is the same as in [4].

Problem: Given a routing grid graph � ���! #"�$%

, a buffer li-

brary


, a wire library & , a source node ')(  and
�

sink nodes� � "*��+,".-/-.-."*� � (  of net. Find a buffered routing tree 0 rooted at '
and leafed at

��1*"�23�4�5"�-.-.-/" �
, such that the maximum delay from '

to sink
��1

is minimized. For each node � (�0 "765� �

 ( 98;:=<?> where65�

�

3�@<

indicates no buffer is inserted at � and
65�

�

	A�@<

requires
� to be a buffer node. For each segment BC()0 , D � B 
 (E& -

3. THE FAST-RTBW ALGORITHM
In our approach, we divide routing tree into several components.

Component solutions can be either pre-computed and stored in lookup
tables or computed by fast algorithms whenever needed. Based on
these lookup tables and fast algorithms, we search for the optimal
routing tree using stochastic search technique. We use simulated
annealing for searching in our implementation. The following sub-
sections define notation we use in this paper and explain the details
of our approach.

3.1 Notation
We use same notation given in [4] for the following terms:

F & : Library of different wire types.

F  : Library of different buffer types.

F  : All nodes present in grid graph � .

F � =
: ' >�89:=� 1HG 2I�J�5".-/-.-." � >K8�:

buffer nodes
>
: Set contain-

ing source, sink and buffer nodes. Buffer nodes are the nodes
where buffers can be placed. Clearly, in the presence of obsta-
cles, number of elements in

�
is less than number of elements

in
 

, which is set of all nodes in grid graph.

F Wire Path: A path connecting two nodes in
�

by properly
sized wires but no buffers between.

F Buffered Path: A path connecting two nodes in
�

with buffers
inserted between them.

We introduce the following new terms:

F Leaf Buffer Path: A buffered path connecting a buffer node
directly to a sink without any wire branch in between. Leaf
buffer path can be of zero length. A sink will be a leaf buffer
path with zero length, if there is no buffer driving it directly
without any wire branch in between.

F Branch: Branch is a tree component connecting three or more
nodes in

�
, without any internal buffers. Every branch con-

tains a driver buffer which is driving the branch and several
receiver buffers which are connected to driver. Number of re-
ceivers in branch is called degree of branch denoted by

�
. In

[4], branch is referred as Buffer Combination.

F Stem Buffered Branch: A branch which can have buffers on
stem. Every branch can be considered as stem buffered branch
with no buffers on stem.

F Component Driver: Buffer driving a stem buffered branch or
a leaf buffer path is called component driver.

Figure 2 shows, the notations that we use in this paper. In the figure,
the source is called the component driver, because we assume that the
driver resistance of the source equals one of the resistance of buffers
in buffer library


and the load capacitance of the sinks equals one of

the capacitance of buffers in


. If not, we can always add additional
buffer types with source resistance and sink capacitance in


and

letting the buffer type to be used only at source and sinks.
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Figure 2: Illustration of Notations

3.2 Decomposition of Routing Tree
If source and sinks are also considered as buffers present in buffer

library


, from Figure 3, it is clear that every routing tree contains
only two components:

1. Stem buffered branch

2. Leaf buffer path

If we know, the arrival time at each receiver, the locations of the
receivers and the location of driver of a stem buffered branch, we
can find the optimal sizes for the buffers. The routing for that stem
buffered branch with proper wire sizing can also be found. For any
buffered path, if we know the location of the driver and receiver
buffers, we can find the optimal buffered path connecting them. We
use lookup tables to calculate the delay of these two tree compo-
nents. By dividing the routing tree into stem buffered branches and
leaf buffer paths, we can pre-compute the solutions of components
of the routing tree and tabulate them. We can use these lookup tables
to construct the routing tree in very less time.

Leaf Buffer Path

Stem Bufered Branch

Figure 3: Routing Tree Decomposition

3.3 Component Construction
In this section, we explain how the solutions of components are

pre-computed. As explained in the previous section, every routing
tree consists of only stem buffered branch and leaf buffer path. Leaf
buffer path is nothing but buffered path between a node in

�
and

a sink. Stem buffered branch consists of two parts, one is branch
and the other is buffered path between component driver and branch
driver. Hence if we have pre-computed delays of buffered paths and
branches, we can calculate the delays of components. We construct
the delay lookup tables as explained below,

3.3.1 Buffered Path Delay Table (BPDT)
Buffered Path Delay Table contains the delay of optimal buffered

path between two nodes in
�

. If we know the sizes of buffers at
buffer nodes and locations of those buffers, we can find the delay of
the optimal buffered path between those two buffer nodes by looking���� 0 ��6 � "�6.+�" B � " B +�
 , where

6 � and
6�+

are buffer sizes, and B � and
B + are buffer locations.

To construct buffered path delay table, we construct the following
tables:

1. Shortest Wire Path Length Table( �K& ��� 0 ): This contains
the shortest wire path length between two nodes in the rout-
ing grid. We can represent this table in a functional form
as �#& ��� 0 � B � " B +�
 , where B � and B + are the locations of two
nodes. We use Lee’s maze routing algorithm to construct the
table. This length is nothing but distance between two nodes,
if we route them avoiding only wire obstacles.

2. Shortest Buffered Path Length Table ( � ���� 0 ): This con-
tains the shortest buffered path length between two nodes in
routing grid. We can represent this table in a functional form
as � ���� 0 � B � " B + 
 , where B � and B + are the locations of two
nodes. We use Lee’s maze routing algorithm to construct this
table. This length is nothing but, distance between two nodes,
if we route them avoiding both buffer and wire obstacles.

3. Wire Path Delay Table( & ��� 0 ): This table contains the opti-
mal wire path delay with wiresizing given the driver, load and
length of the path. We can represent this table in functional
form as & ��� 0 ��6 � "�6�+,"�� 
 , where

6 � and
6.+

are buffer sizes
placed at source and sink, respectively, and

�
is the length

of the wire path length between these two nodes. If the lo-
cations of two nodes B � and B + are given, we can get

�
from

�#& ��� 0 � B � " B + 
 . We use dynamic programming technique to
construct & ��� 0 .

4. Buffered Wire Segment Delay Table (
 &�� � 0 ): This table

contains the optimal delay of a wire segment, after placing
buffers on it. Assuming a buffer of size

6 � is driving a buffer
of size

6�+
through a wire segment of length

�
, this table can

be represented in functional form as
 &�� � 0 ��6 � "*6�+,"	� 
 . We

use dynamic programming technique to construct this table.

Using the tables above and the pruning technique given below, we
can construct

���� 0 in a very short time. In our pruning technique,
we are separating the pair of nodes whose shortest wire path does
not overlap with buffer blockages from all the other pairs. For those
pairs, we need not consider the buffer blockages while doing buffer
insertion. Hence we can find buffer insertion solution in

��� � + 

time. The table

 &�� � 0 contains the buffer insertion and wire siz-
ing solution avoiding buffer blockages. Now for the pairs of nodes
whose shortest wire path overlaps with buffer blockages, we have to
consider buffer blockages while doing buffer insertion. We speed up
the buffer insertion by limiting the number of buffers we insert based
on the maximum length of wire path between any two pair of nodes.
The construction of

���� 0 is summarized in the algorithm below.
It inserts up to three buffers on a wire path. If Step 3 is executed one
more time, it inserts up to seven buffers.

Step 1: // Initialization
�������������������������������! "
�#%$!����&���������'��$!
(�()!���&���������*�+�',.-/�10�2�3
Step 2: // For inserting one buffer
for each 4 253

if(
$6#7�()!�������8����9:��;<$!#7�()!���&��9=�����*�?>@$!
(�()!���&���������*�

)
(������&� � ��� � ��� � ��� � �6 BA�CEDF�&
(������&� � ��� � ��� � ��� � �G�
#7����H��� � ��� � ��$6#7�()!����� � ��� � ���+�$!
��()I���&���������J�! K$6#7�()!�������8����9:�8;L$!#M�()I���&��9=�������

Step 3: // For inserting three buffers
for each 4 253

if(
$6
(�()I�H����������9:�8;<$!
(�()!������9N�������?>@$!
(�()!���&���������J�

)
(������&� � ��� � ��� � ��� � �6 BA�CEDF�&
(������&� � ��� � ��� � ��� � �G�#7����H�����������'��$6#7�()!�������O�����J���+�
$!
��()I���&���������J�! K$6
(�()!�������/����9:�8;L$!
(�()!���&��9N�����*�



3.3.2 Branch Delay Table (
�� 0 )

Branch Delay Table contains the optimal delay of wire sized Steiner
tree connecting three nodes in

�
. If we know the buffer sizes and

the locations of three nodes in
�

, we can find the optimal delay by�� 0 ��6 � "�6.+,"�6��,"�� " B � " B +.
 where
6 � ,

6�+
and

6��
are buffer sizes of the

three buffers and
�
, B � " B + are stem and branch lengths . These are

shown in Figure 4. We use dynamic programming approach to con-
struct this table. This table will give the delay of a branch only when
the degree

�
of the branch is two. For the cases of

��� � , we can use
any fast Steiner tree construction algorithm to get the solution.

e

l1                                         l2

Figure 4: Branch

3.3.3 Stem Buffered Branch Construction
Assume that we know the positions and sizes of component drivers

and receivers, delays of subtrees at the receivers. To make use of
buffered path delay table and branch delay table/fast Steiner tree con-
struction algorithm, for constructing optimal stem buffered branch
connecting driver to receivers, the position and size of branch driver
should be available. In our approach, for optimal branch driver posi-
tion, we try all the locations present in the small grid space � which
covers bounding box of the component driver and receivers of stem
buffered branch. We place the branch driver at particular node in �
and try all the buffer sizes available in buffer library. We size and po-
sition the branch driver such that, the maximum Elmore delay at the
receivers is minimized. For leaf buffer path, if we know the position
and size of component driver, we can get the optimal routing using
buffered path delay table.

3.4 Routing Tree Construction
In this section and the following section we explain how to size

and position the component drivers and compute the delays of sub-
trees at each component driver. As we mentioned before, we can
use any stochastic search algorithm to search for the routing tree. In
our implementation, we use simulated annealing as search algorithm.
We fix the positions of component drivers in simulated annealing.
Assume that the positions of component drivers of all components
present in routing tree are known. To fix the sizes of buffers, we
use bottom-up dynamic program approach. We start from leaf buffer
paths. For a leaf buffer path, we know the position of component
driver. For the size, we try all the buffer sizes present in


for that

component driver of leaf buffer path. As a result, we have


dif-
ferent routing solutions for that leaf buffer path. For stem buffered
branch, solutions for the subtrees at each of the receivers must have
been calculated already. So subtree at each receiver of stem buffered
branch has


different solutions corresponding to


different sizes

for that receiver. Similar to leaf buffer path case, we try all the buffer
sizes present in library for component driver, and get


solutions for

stem buffered branch, each corresponding to


different sizes of that
component driver. We can observe that at any component driver in
routing tree, we have only


different solutions for the subtree driven

by that component driver. Finally at the source, each receiver of the
stem buffered branch driven by source have


different solutions for

their respective subtrees. Hence we have
	���

different solutions at
the source, where

�	�
is the degree of stem buffered branch driven by

source. Among these, final routing tree solution is the one which
gives minimum of maximum Elmore delay at each receiver.

3.5 Routing Tree Perturbation
In simulated annealing we fix the positions of component drivers

present in routing tree. We defined moves to perturb the routing tree.
Some of the moves defined are applicable only to binary trees. To use
same moves for non binary trees, we transform non binary trees into
binary trees by adding some dummy nodes to it. Final solution from
our algorithm is independent of binary tree representation. Figure 5
shows an example of this transformations. While transforming to
binary tree, we avoid redundant binary trees for same non binary
tree, by putting a restriction that only the right child of any node can
be dummy node. We defined moves to make a node to dummy node
and also a dummy node to real node. We explain all these moves in
the following subsections. In simulated annealing, we apply these
moves randomly.

Dummy Node

Figure 5: Transformation of Non binary tree to Binary Tree

1. Move 1 – Component Driver Position Change:
In simulated annealing, we change the positions of component
drivers of stem buffered branch and leaf buffer path. For com-
ponent driver of stem buffered branch, we randomly select one
buffer node among 8 adjacent nodes and change the position
of the component driver to that position. For component driver
of leaf buffer path, we make a greedy move. We visit all the
buffer nodes among 8 adjacent nodes of component driver and
change its position to a node, where the sum of leaf buffer path
delay and wire path delay from its parent is minimum.

2. Move 2 – Swapping of Sinks:
This is a topology changing move. In this move, we select
component drivers of two leaf buffer paths (which can be sinks
them selves when the length of leaf buffer path is zero) driven
by two different parents and swap their parents.

3. Move 3 – Rotation:
This is also a topology changing move. In this move, we have
two types of rotations [13], one is left rotation and other is right
rotation. Figure 6 shows these two operations. Using these op-
erations we can get all binary trees that can be constructed with
the given terminals. So we visit all the routing topologies in
simulated annealing. When we are making right or left rota-
tions, if a node is violating the restriction that, only right child
of a parent node can be dummy, we change that dummy node
to real node and then make the rotation. We explain how to
make a dummy node to real node in the next move.

Right Rotate(T, y)

Left Rotate(T, )x

x

x

y

y

a

a

b

c

cb

Figure 6: Rotation Operations



4. Move 4 – Conversion between Dummy and Real Nodes:
In this move, we select a buffer node randomly from set

�
and

make that node dummy if it is a real node, make node real if
it is dummy. When we make node dummy, we set a bit which
indicates that the node is dummy. When we make a dummy
node to real, we need to give that buffer a size and location.
We give the size of buffer as minimum size that is available in

and for location we search the unblocked nodes near its left
child ( which cannot be a dummy node) and assign its location
to that node.

4. COMPLEXITY ANALYSIS

4.1 Time Complexity
For a given routing grid graph � �! #"�$%
 , the time complexity for

lookup table construction is calculated below:

1. Shortest Wire Path Length Table and Shortest Buffered Path
Length Table: We use Lee’s algorithm to construct these ta-
bles. Runtime to construct these tables is

���! + 

.

2. Wire Path Delay Table: We use dynamic programming tech-
nique to do wire sizing. In our approach, we do wire sizing
only if the path length between two nodes is less than critical
length [14]. Critical length is defined as the minimum wire
length beyond which buffer insertion will help to reduce the
interconnect delay. If path length exceeds the critical length,
we connect those two nodes by thickest wire available in li-
brary & . Let

�
be the critical length between two nodes for

which wire sizing is needed, then runtime to construct this ta-
ble is

���  + � + 

.

3. Buffered Path Delay Table: The runtime for constructing this
table without pruning is

��� � �  � 

. Because of pruning tech-

nique that we are using to construct this table, the runtime re-
quired is very less. Let 0�� be the runtime required to build this
table.

4. Branch Delay Table: We use dynamic programming technique
to construct this table. Similar to Wire Path, when the branch
length or stem length of a branch is greater than critical length,
we use thickest wire present in the library to connect the driver
to the receivers of branch. We are constructing this table only
for branches with degree two. Runtime required to construct
this table is given as

���1� �  � 

,
�

is the critical length. For
branches with degree more than two, we can use any fast Steiner
tree construction algorithm. But for simplicity, we assume that
the receivers are directly connected to the driver without any
Steiner point. We calculate delay for these branches by look-
ing Wire Path Delay Table, without any extra runtime.

Total runtime of our algorithm is
���! + �  + � + � 0�� �@�

�  � �
� � 
 where M is the number of iterations in simulated annealing
and � is the time to compute delay of the routing tree in each it-
eration. We are doing buffer sizing in each iteration of Simulated
Annealing, by using dynamic programming technique. Runtime for
each iteration of simulated annealing, � is

��� �C0
+
�  ���C� � 
 , where

�
is maximum degree of a branch in routing tree, � is the number of
stem buffered branches present in routing tree, � is the grid space
we search for branch driver location of each stem buffered branch,
0 � is the time to look up buffered path delay table or branch de-
lay table. Usually 0 � and � are small numbers and � is also small
number when compared to

�
. From above expression it is clear

that, our algorithm is very fast when compared to graph-RTBW.
By neglecting non-dominant terms we can express our runtime as��� 0 � � � � � 0

+
�  ���C� � 
�
 .

4.2 Memory Complexity
The memory space required for the lookup tables is

���! + �I + � + �
 � � � 


. The space required to store binary tree can be given by

���  � � ��� �=
�
 , where
�

is the number of sinks. Hence total memory
required can be given by

���! + �  + � + �  � � � � )� � ��� ��
�

.

4.3 Size of Solution Space
From [15], we know that the tight bound on the number of bi-

nary trees with
�

leaves is � � �	�
+�
� �������
��� � � 


. As we have to search for
� ��� � buffer locations, we have

��� + �	� ���
options for different buffer

locations. In our approach we make some nodes dummy to con-
sider routing trees with fanout more than � . When we are making
a node dummy, we avoid the redundant trees by making a node

dummy if and only if it is a right child. So we have � �
����

 �

dif-
ferent topologies. Hence the total solution space can be given by��� �	� + 
� ���������� � � � � + �	� ��� � �

����

 � 

.

5. EXPERIMENTAL RESULTS
We implemented Fast-RTBW in C language and tested it on a

Sun Ultra-2 750MHz machine with 8GB memory. We tested graph-
RTBW and SP-Tree also on the same machine. The results reported
are obtained by testing three programs on same specified machine.For
graph-RTBW, we calculated the Elmore delay for all the trees gen-
erated and reported these delay values to maintain the consistency
with delay models of other two algorithms. We used same technol-
ogy parameters given in [4]. Our grid is of size

���! ���	"#" +
with

horizontal and vertical grid lines spaced at 0.5mm distance from each
other.

Table 1 shows the comparison between our algorithm, graph-RTBW
and SP-Tree with single buffer and wire type. In Table-1, we used4� �

and & �4�
, because SP-Tree cannot handle wiresizing and

graph-RTBW is implemented only for one buffer type. In our exper-
iments, we run simulated annealing for 10 times and take the best
result. All the testcases are randomly generated. As the grid for each
testcase is same, the runtime for lookup table construction is same
for all the testcases. We can observe that, the time taken for sim-
ulated annealing is very less, because of the small solution space.
Hence, once the grid is fixed we can construct lookup tables once
and use same set of lookup tables to route all the nets present in
the grid.For small testcases, we are much faster than graph-RTBWS,
but slower than SP-Tree. For, moderate size testcases, we are sev-
eral hundred times faster than both the algorithms.Total CPU Time
for our algorithm includes time for constructing lookup tables and
running simulated annealing 10 times. As graph-RTBW minimizes
only maximum delay, we have implemented our algorithm to opti-
mize the maximum delay.But, in practice we can optimize minimum
slack instead of maximum delay.

In Table 2, we compare our algorithm with SP-Tree for more than
one buffer type. Even though we are slow for small test cases, we
are very fast for moderate and large testcases. We can easily observe
that our algorithm is scalable with problem size.

Table 3:
J�J�," & �%$ "� B'&	( �*),+ � ' � �5�," �.- 20/	� ���1 ���	"#" +

DATA graph-RTBW [4] FAST-RTBW
name delay CPU delay CPU(s)

(ps) (s) (ps) LUT SA-1 Total
NET4 918 171.23 918 22.5 1.91 41.6
NET5 851 310 851 22.5 2.61 48.6
NET6 1055 681 1061 22.5 3.314 55.64
NET8 1166 4971 1172 22.5 4.15 63.95
NET13 *

� ��<
hrs 1057 22.5 7.81 100.55

NET15 *
� ��<

hrs 885 22.5 8.9 111.51
NET18 *

� ��<
hrs 1061 22.5 11 132.35

NET21 *
� ��<

hrs 1049 22.5 13.6 158.2
NET23 *

� ��<
hrs 1092 22.5 15.91 181.59

NET25 *
� ��<

hrs 1041 22.5 17.9 201.49

In Table 3, we compare our algorithm with graph-RTBW for more
than one wire type. We handle wiresizing without any increase in



Table 1:
 �J�," & � �5"  B'&	( �*)*+ � ' � �5�," �.- 20/ �J���1 ���	"#" +

DATA graph-RTBW [4] SP-TREE [3] FAST-RTBW
name delay CPU WL buf delay CPU WL buf delay CPU(s) WL buf

(ps) (s) (mm) (ps) (s) (mm) (ps) LUT SA-1 Total (mm)
NET4 1008 170 44.5 13 1009 2 43 9 1008 22.5 1.31 40.63 43 11
NET5 937 305.56 47 14 937 7.1 45 10 937 22.5 3.04 52.94 45 11
NET6 1157 663.06 72.5 22 1166 17 53.5 14 1179 22.5 4.04 62.9 54.5 16
NET8 1281 4895 76 26 1285 91 70.5 16 1288 22.5 3.04 52.94 70 19

NET13 *
� ��<

hrs * * 1136 1387 79 18 1149 22.5 6.06 83.16 77 20
NET15 *

� ��<
hrs * * 941 7287 81.5 24 958 22.5 8.01 102.64 83 22

NET18 *
� ��<

hrs * * 1047.7 16729 120.5 33 1071 22.5 9.79 120.35 124 35
NET21 *

� ��<
hrs * * *

� ��<
hrs * * 1081 22.5 11.6 138.24 122 38

NET23 *
� ��<

hrs * * *
� ��<

hrs * * 1057 22.5 13.3 155.4 130 34
NET25 *

� ��<
hrs * * *

� ��<
hrs * * 1079 22.5 14.8 170 142 40

Table 2:
 � � " & � �5"  B'&	( �*)*+ � ' � �5�," �.- 20/ �J���1 ���	"#" +

DATA SP-Tree [3] FAST-RTBW
name delay CPU wl buf delay CPU(s) wl buf

(ps) (s) (mm) (ps) LUT SA-1 TOTAL (mm)
NET4 848 9.3 44.5 12 851 145 3.924 184.24 43 13
NET5 787 33 45.5 12 790 145 8.025 225.25 45 13
NET6 977 71 52 17 987 145 14.8 293.06 52 20
NET8 1074 455 69 16 1091 145 24.37 388.71 72 24

NET13 954 5983 79.5 23 973 145 57.63 721.3 80 21
NET15 790 29000 85 28 804 145 66.37 808.72 87 20
NET18 *

� �.<
hrs * * 939 145 88.5 1030.45 129 37

NET21 *
� �.<

hrs * * 962 145 122.24 1367.4 144 36
NET23 *

� �.<
hrs * * 924 145 134.3 1487.77 138.5 37

NET25 *
� �.<

hrs * * 935 145 152.4 1668.5 152.5 43

runtime. But, from Table 1, we can conclude that compared to graph-
RTBW, we are always much better in resource consumption. When
wiresizing is considered, our algorithm is several hundred times faster
than graph-RTBWS. As we do not have any code or testcases that
are used in hierarchical graph-RTBWS, we cannot compare our al-
gorithm with hierarchical approach. But we can also apply our algo-
rithm hierarchically.

6. CONCLUSIONS
We have presented a fast and efficient algorithm to construct rout-

ing tree with simultaneous buffer insertion and wire sizing. While
constructing routing tree, we consider both buffer and wire obstacles
present. Compared to topology search approaches and graph-RTBW,
our algorithm is several hundreds times faster for moderate and large
testcases. Our algorithm is scalable with problem size. We handle
wire sizing without any increase in runtime.
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