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ABSTRACT

In this paper� we consider the thermal placement problem
for gate arrays� We introduce a new combinatorial optimiza�
tion problem MSP 	Matrix Synthesis Problem
 to model the
thermal placement problem� Given a list ofmn non�negative
real numbers and an integer t� MSP constructs a m� n ma�
trix out of the given numbers such that the maximum sum
among all t�t sub�matrices is minimized� We show that MSP
is NP�complete and present several provably good approxi�
mation algorithms for the problem� We also demonstrate
that our thermal placement strategy is �exible enough to al�
low simultaneous consideration of other objectives such as
wiring�

�� INTRODUCTION

High performance circuits consume a considerable amount of
power due to increases of frequency� bandwidth� and system
integration� For examples� the two recent high�performance
chips� Alpha ���� and PowerPC ���� consume �� W and ��
W� respectively� on � cm� dies� It can be extrapolated that a
�� cm� next�generation microprocessor� clocked at ��� MHz
would consume ��� W ���� Consumed power is converted
directly into dissipated heat� In the past decade� heat pro�
duced by a chip has increased from ��� to �� W�cm� due to
the continuous increase of the clock frequency and the total
number of transistors ���� Higher temperature not only af�
fects circuit performance directly by slowing down the tran�
sistors on CMOS chips but also decreases their reliability�
A circuit with considerable power consumption requires ex�
tra expensive cost to remove heat at the packaging level� and
therefore the reduction of power dissipation is required at the
chip design stages� 	See ��� for a survey of current research
e�orts in power minimization in IC design�
 Even when the
total power consumption of a chip is constrained� an un�
evenly distributed heat dissipation by the gates in the chip
may produce hot spots which can lead to reliability problems�
It is also desirable to have an even temperature distribution
for the temperature�sensitive circuit 	whose characteristic�
such as the gain factor� �� of a CMOS or bipolar circuit�
a�ects its output
� Therefore� during physical design of a
VLSI chip� it is important to place the gates such that heat
dissipation by the gates are evenly distributed�

�This work was partially supported by a grant from the Avant�
Corporation�

The thermal placement problem has been studied in the
past for placing chips during the packaging stage 	for PCBs
and MCMs
 ��� � ��� However� since thermal placement of
gates within a single chip was not of major concern in the
past� existing placement algorithms ��� only focus on mini�
mizing area and delay but do not consider heat dissipation�
One exception is ��� but it only addresses thermal issues dur�
ing IC �oorplanning� In this paper� we consider the ther�
mal placement problem for gate arrays� We introduce a new
combinatorial optimization problem MSP 	Matrix Synthesis
Problem
 to model the thermal placement problem�

Basically� MSP is to synthesize a matrix out of a given list
of numbers such that no sub�matrix of a particular size has a
large sum� In this paper� sub�matrix means those consisting
of consecutive rows and columns� For any matrix M � let
St	M
 be the set of all t � t sub�matrices of M � Let �	M

be the sum of all entries in M � Let �t	M
 � max

S�St�M�
�	S
�

MSP can be de�ned formally as follows�

MATRIX SYNTHESIS PROBLEM �MSP�
INSTANCE� Integers t� m� n� and a list of mn non�
negative real numbers x�� x�� � � � � xmn���
QUESTION� Synthesize a m � n matrix M out of
x�� � � � � xmn�� such that �t	M
 is minimized�

See Figure � for an example�
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Figure �� An example of MSP with m � �� n � � and t � ��
The problem is to synthesize a � � � matrix out of �� numbers
���������	�
�
�
��������� and to minimize the maximum sum over
all ��� submatrices� �a� is a bad solution �maximum sum is ����
�b� is an optimal solution �maximumsum is �
�� The submatrices
with maximum sum are shaded�

It is not di�cult to see that MSP models the thermal place�
ment problem for gate arrays� We represent the amount of
heat generated by each gate by a non�negative real number�
	If we have less gates than the number of array slots� we can
add some zeros�
 A sub�matrix in St	M
 corresponds to a
region of size t � t on the chip� The sub�matrix with the
largest sum corresponds to the hottest region on the chip�
So MSP is equivalent to �nding a placement of the gates
such that the temperature of the hottest region is the lowest
among all possible placements�



The parameter t is to model how good the heat transfer
is� If the heat transfer is poor such that the e�ect of a gate is
mostly on neighbor gates� then MSP with t � � probably is
a good model to use� On the other hand� if the heat transfer
is good� we may want to consider larger regions and hence a
larger t�
A summary of the remainder of this paper is given below�

In Section �� we show that MSP with any �xed t � � is
NP�complete� 	MSP with t � � is trivially in P�
 Then in
Section �� we give a simple algorithm 	called A�
 that ap�
proximates MSP to within a factor of � for every t � �� In
Section � we give a modi�ed version of A� 	called A�
� For
t � �� A� approximates MSP to within a factor of ���� If a
simple condition on the input is satis�ed� A� approximates
MSP to within a factor of ��� for every t � �� A� and A�
output a placement which is good for a particular t only� In
Section �� we give a recursive algorithm 	called A�
 which
outputs a single placement such that besides approximating
MSP with parameter t� it also approximates MSP with pa�
rameter t� to within a factor of at most � for all t� � t� In
Section �� some experimental results are given� Firstly� note
that the approximation factors shown in Sections ��  and �
are worst�case bounds only and we show that the algorithms
work much better in practice� Secondly� we consider thermal
placement and optimization of other objectives at the same
time� It is because when we place gates into a chip� we may
have other concerns besides heat consideration� We show
that the placements by A� and A� are so �exible that the
�exibility can be used in optimizing other objectives simul�
taneously� We demonstrate the idea by considering thermal
distribution and wiring at the same time� In Section �� we
conclude by discussing some directions for future work�

�� NP�COMPLETENESS

MSP with t � � is very easy since every placement is optimal�
However� we will show that MSP with every �xed t � � is
NP�complete� In order to prove this result� we need the
following de�nitions�

DECISION VERSION OF MSP
INSTANCE� A positive real bound B� integers t�
m� n� and a list of mn non�negative real numbers
x�� x�� � � � � xmn���
QUESTION� Is it possible to synthesize am�n matrix
M out of x�� x�� � � � � xmn�� such that �t	M
 � B�

��PARTITION
INSTANCE� A positive real bound B� and a multi�set
X of �q positive real numbers such that

P
x�X x � qB

and �x � X�B� � x � B���
QUESTION� Can X be partitioned into q multi�sets
X�� � � � �Xq�� such that for � � r � q � ��

P
x�Xr

x �

B�

Note that ��PARTITION is NP�complete ����

Theorem � For every �xed t � �� MSP is NP�complete�
Proof outline	 Let t be any �xed integer greater than or
equal to �� Given an instance of ��PARTITION� we can
reduce it to an instance of MSP with that particular value
of t� The bound B for the MSP is the same as the B for
the ��PARTITION problem� We set m � t and n � tq�
The mn non�negative real numbers are those in X together
with mn � �q zeros� We can show that the instance of ��
PARTITION returns �YES� if and only if the instance of
MSP returns �YES�� The details are omitted here� �

�� A SIMPLE APPROX� ALGORITHM

In this paper� we assume that the indices of matrices start
at �� Let Sijt 	M
 be the t � t sub�matrix in St	M
 at the
intersection of rows i� � � � � i�t�� and columns j� � � � � j�t���

Let bSt	M
 be the set of all t � t sub�matrices Sijt 	M
 such
that i � j � � 	mod t
�
From now on� we assume for simplicity thatm � n � tq for

some integer q� In other words� we are placing t�q� numbers

into a tq � tq matrix� Note that in this case bSt	M
 is a
set of q� non�overlapping sub�matrices that covers the whole
matrix M � We can obtain similar results if m �� n� or m or
n is not a multiple of t� Without loss of generality� we also
assume that x� � x� � � � � � xn����
The algorithm A� below approximates MSP to within a

factor of �� The basic idea of the algorithm is to distribute
the numbers evenly among the matrix� We divide the num�
bers into t � t groups according to their magnitudes� We
observe that it is possible to have a placement with the prop�
erty that every t� t sub�matrix contains exactly one number
from each group�

ALGORITHM A�

�� For � � k � t� � �� let group Gk contains the
numbers xkq� � � � � � xkq��q����

�� For � � k � t���� for all i � bk�tc 	mod t
 and for
all j � 	k mod t
 	mod t
� label mi�j 	entry 	i� j

of matrix M
 as Lk �

�� For � � k � t� � �� place each number in group
Gk arbitrarily into a distinct position ofM labeled
with Lk�

For example� let t � �� m � n � �� xi � ���i for � � i � ���
In other words� we are placing the numbers ��� �� � � � � � into
a � � � matrix� Then G� contains ��� � � � � ��� G� contains
��� � � � � ��� G� contains ��� � � � � �� and G� contains �� � � � � ��
The labeling is as shown in Figure �� A possible placement
is in Figure �� Note that those numbers from group G� are
evenly distributed in the matrix� This is also true for all
other groups�
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Figure �� Labeling of algorithmA� with t � � and n � 	� Note
that there is exactly one of each of L� �L�� L� and L� inside every
�� � submatrix�

Let OPTt be the optimal placement for MSP with param�
eter t� Before proving the approximation factor for A�� we
�rst give two lower bounds on �t	OPTt
�
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Figure �� A possible placement by algorithm A� for the num
bers �
���� � � � � �� The entries with label L� �i�e� numbers from
group G�� are shaded�

Lemma � For every t � �� � � k � t� � �� �t	OPTt
 �
	k � �
xkq� �

Proof	 x�� � � � � xkq� are kq� � � numbers at least as large

as xkq� � Consider the q� sub�matrices in bSt	OPTt
� By
pigeonhole principle� there must be a sub�matrix containing
at least k � � numbers larger than or equal to xkq� � So
�t	OPTt
 � 	k� �
xkq� � �

Lemma � For every t � �� �t	OPTt
 � �
q�

Pn���

i��
xi�

Proof	

�t	OPTt
 �
�

q�

X
S�bSt�OPTt�

�	S
 	�


�
�

q�

n���X
i��

xi 	�


Line 	�
 follows from the fact that �t	OPTt
 � �	S
 for any

S � bSt	OPTt
 and jbSt	OPTt
j � q�� Line 	�
 follows from

the fact that bSt	M
 is a set of non�overlapping sub�matrices
that covers the whole matrix M � �

Theorem � For every t � �� �t	A�
 � � 	 �t	OPTt
�
Proof	

�t	A�
 � x� � xq� � 	 	 	� x�t����q� 	�


� x� �
�

q�

q���X
i��

xi � 	 	 	�
�

q�

�t����q���X
i��t����q�

xi 	


� x� �
�

q�

n���X
i��

xi

� � 	 �t	OPTt
 	�


By the way we place the numbers� each t � t sub�matrix
contains exactly one number from each group Gk � Note
that x � xkq� for every number x in Gk� So for any
S � St	A�
� �	S
 � x� � xq� � 	 	 	 � x�t����q� � Line 	�

immediately follows� Line 	
 follows from the fact that
xkq� � xkq��r for � � r � q� as the numbers are sorted
in decreasing order� Line 	�
 follows from Lemma � with
k � � and Lemma �� �


� A BETTER APPROX� ALGORITHM

In step � of algorithm A�� the placement of numbers from
group Gk into entries marked with label Lk is done arbitrar�
ily� The algorithm A� given below makes use of this �exibil�
ity on placement to improve the approximation factor�

ALGORITHM A�

�� For � � k � t� � �� let group Gk contains the
numbers xkq� � � � � � xkq��q����

�� For � � k � t���� for all i � bk�tc 	mod t
 and for
all j � 	k mod t
 	mod t
� label mij 	entry 	i� j
 of
matrix M
 as Lk�

�� Place each number of group G� into a distinct posi�
tion of M labeled with L� 	i�e� into mij s�t� i and
j are multiple of t
 such that mut�vt � mut�t�vt

and mut�vt � mut�vt�t for all u� v�

� For � � r � q� � �� let Sr � bSt	M
 be the sub�
matrix where xr is placed at step �� For � � k �
t�� �� place xkq��q����r � Gk into the entry with
label Lk in Sr �

One way to do step � is to place xr into mut�vt where u �
br�qc� v � 	r mod q
� Figure  illustrates this step�
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Figure 
� A possible implementation for step 
 of algorithmA�
with n � 	 and t � �� The entries with label L� are shaded�

The algorithm matches larger numbers from group G�

with smaller numbers from other groups� So it prevents all
the largest numbers of the groups from being placed into
the same t� t sub�matrix� Intuitively� one might think that
it would be better to match larger numbers from half of
the groups with smaller numbers from the other half of the
groups� However� the worst�case bound is better for our al�
gorithm�

Theorem � For every t � �� if xq��� � 	x�� then �t	A�
 �
max	���� �� 	
 	 �t	OPTt
�

Proof outline	 By the way we place the numbers in
step � and step � we can show that �	Sijt 	A�

 �

�	Sdi�tet�dj�tet
t 	A�

 for any i� j� In other words� the sum

of every sub�matrix is dominated by the sum of some sub�

matrix in bSt	A�
� Hence we can focus on those sub�matrices

in bSt	A�
� By a similar 	but much more complicated
 proof

as in Theorem �� we can prove that for any S � bSt	A�
�
�	S
 � max	���� � � 	
 	 �t	OPTt
 using the fact that x�s
are sorted in decreasing order� xq��� � 	x�� Lemma �



with k � � and k � �� and Lemma �� So �t	A�
 �
max	���� �� 	
 	 �t	OPTt
� �

Note that Theorem � gives a bound worse than ��� only
when 	 is small 	less than ���
� In this case� the input should
contain a few large numbers and a lot small numbers�

For the case t � �� we can prove a bound that holds for any
input� But we need to use another lower bound of �t	OPTt
�

Lemma � For all t � � and for all r s�t� � � r � n� � ��
�t	OPTt
 � xr � xn����r�

Proof	 x�� � � � � xr are r� � numbers larger than or equal to

xr� Consider the q
� sub�matrices in bSt	OPTt
� If any two of

these numbers are in the same sub�matrix� then the lemma
is obviously true� Consider the case when they are in r � �

di�erent sub�matrices in bSt	OPTt
� Since there are at most
r numbers less than xn����r � at least one of these r�� sub�
matrices must contain some number larger than or equal to
xn����r � Hence� the result follows� �

Theorem 
 For t � �� ��	A�
 � 	
� 	 ��	OPT�
�

Proof outline	 As in Theorem �� we will focus on those sub�

matrix in bS�	A�
� By a similar 	but much more complicated


proof as in Theorem �� we can prove for any S � bS�	A�
�
�	S
 � 	

� 	 ��	OPT�
� using the fact that x�s are sorted in
decreasing order� Lemma � with k � � and k � �� Lemma �
and Lemma �� So for t � �� ��	A�
 � 	

� 	 ��	OPT�
� �

�� A RECURSIVE APPROX� ALGORITHM

For the thermal placement problem� if the heat transfer is
good� it is reasonable to consider larger regions and hence to
use a larger t� Smaller regions will become less important as
heat generated will be dissipated to other parts of the chip
easily� Even if a lot of heat is generated in a small region�
if its surrounding region does not generate much heat� the
heat will spread out quickly to a larger region� However� it
does not mean that the heat consideration of smaller regions
is totally unimportant� One may still want to have some
bounds on the amount of heat generated by smaller regions�

In the previous two sections� we present two algorithms
A� and A� that give placements which are good for a partic�
ular t� If we consider a parameter t� � t� those placements
generated with parameter t do not give you much guarantee
on the approximation factor� For example� if we run A� with
t � � the numbers from G�� G�� G
 and G	 will be placed
next to each other� As the numbers from these  groups are
relatively large� if we run A� with t � � ��	A�
 may be
large�
It can be easily seen that the problem with the previ�

ous two algorithms is that there is no intention to distribute
the numbers from di�erent groups evenly inside a t� t sub�
matrix� If we do the labeling carefully� we should be able to
obtain better bounds for smaller sub�matrices� In this sec�
tion� we give an algorithm A� which outputs a single place�
ment such that besides approximating MSP with parameter
t to within a factor �� it also approximates MSP with pa�
rameter t� to within a factor of at most � for all t� � t� when
t is a power of ��

The idea is to do the labeling by A� with t � � recur�
sively� For a �q � �q matrix labeled by A� with t � �� if we
consider the q� q matrix formed by removing all the entries
other than those marked with L�� and apply A� with t � �
again to place the q� numbers of G� into it� then we know
that the largest numbers of G� will not be placed adjacent

to each other in the original matrix� We can continue the
idea recursively until the groups we are considering are small
enough� Then we can apply the same procedure to G�� G�

and G�� The algorithm is given below�

ALGORITHM A�

�� Divide the input numbers into  groups G��G��G�

and G� and label the matrix by L�� L�� L� and L�

as in step � and � of algorithm A� with t � ��

�� Recursively place the numbers in G� into the sub�
matrix formed by entries marked with L� until the
size of each group is n��t�� In that case� we do
the placement arbitrarily instead of doing it recur�
sively�

�� Apply the same procedure to G��G� and G��

Note that we assume t is a power of � in algorithm A�� If t
is not a power of �� we can use the smallest power of � bigger
than t as the parameter for A� instead�
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Figure �� The labeling of A� with t � � and n � �� �a� is the
labels for the �rst level of recursion� Those entries labeled with
L� at this step are shaded� �b� is the labels for the second level
of recursive� The labels for the �rst level are written at lower left
corners�



An example of the labeling is shown in Figure �� Basically�
as in A� with t � � we are dividing the input numbers into
�� groups 	 groups in the �rst level of recursion and then
�� groups in the second level
 such that there is exactly one
number from each group in every  �  sub�matrix� So the
sum of every  �  sub�matrix will not di�er by too much�
However� because of the way we do the labeling� numbers
from di�erent groups are evenly distributed inside every �
sub�matrix� So we can obtain some bounds for ��� and ���
sub�matrices too�

Theorem � Suppose t is a power of �� For any t� such that
� � t� � t� let p be the integer such that �p�� � t� � �p�
Then �t�	A�
 � 	� � 	�p�n
� � 	�p�t�
�
 	 �t� 	OPTt�
�

Proof outline	 Let r be the integer such that t � �r�
Note that for any S � St� 	A�
� �	S
 � x� � x��r��pq� �
x����r��pq� � 	 	 	 � x���p�����r��pq� � Using the fact that x�s
are sorted in decreasing order� Lemma � with k � � and
Lemma �� we can prove that �	S
 � 	��	�p�n
��	�p�t�
�
 	
�t�	OPTt� 
 and hence the Theorem follows� �

Note that if t� is a power of �� the approximation factor is
at most �� Otherwise� the approximation factor is at most
	� � 	�p��p��
�
 � ��

�� EXPERIMENTAL RESULTS

The approximation factor bounds for the algorithms shown
in the previous three sections are all worst�case bounds only�
We show here that these algorithms perform much better in
practice�
As we do not have any actual thermal information for cir�

cuits� we generate thermal information uniformly at random�
�� sets of data of size ��� � ��� are generated� In Table ��
the average approximation factors over the �� data are shown
when algorithms A� and A� with various values of t are used
to place them into a ������� matrix� For algorithm A�� the
placement of numbers inside a group is done randomly� We
also include the results of random placements for compari�
son� If the placement of gates is independent of the amount
of heat generated by the gates� then the resulting placement
should be similar to a random placement in terms of heat
distribution�

Avg� Approx� Factor
t A� A� Random
� ����� ����� �����
� ����� ����� ����
 ����� ���� ����
� ����� ����� ����

Average ����� ����� �����

Table �� Average Approximation factors for A� and A��

As shown in the table� the approximation factors of our
algorithms are very close to optimal in practice� They also
perform much better than random placements� Note that as
we do not know the optimal value �t	OPTt
� we only use
the maximum of the lower bounds in Lemma �� Lemma ��
and Lemma � as an approximation of it� The approximation
factors should be even better if optimal values are used�

In Table �� the average approximation factors over the
same sets of data for algorithm A� are shown� We use t � �
here and the approximation factors for t� � � are also shown�
The worst�case bounds proved in Theorem � and the results
of random placements are included for comparison�
As shown in Table �� the algorithm gives pretty good ap�

proximation factors simultaneously for all t�� It performs

Worstcase Bound Avg� Approx� Factor
t� for A� A� with t � � Random
� ����� ���� �����
� ����� ����� ����
 ����� ����� ����
� ����� ����� ����
� ����� ���� �����
� ����� ����� ���
� ����� ����� �����

Average ���� ����� �����

Table �� The worstcase bounds ��� ��p�n�� � ��p�t��� where
p � dlog� t

�e� and the average values of the approximation factors
of algorithm A� with t � � for di�erent t��

much better in practice than the upper bounds suggest� It
also performs much better than random placements� Again�
we can only use the lower bounds in Lemma �� Lemma ��
and Lemma � to approximate the optimal values�
Figure � and Figure � show the heat distribution of a ran�

dom placement and a placement by A� with t �  respec�
tively� The brightness at each point is proportional to the
total amount of heat generated by a surrounding region of
size  � � As we can see� there are many hot spots in the
random placement� On the contrary� the heat is very evenly
distributed in the placement by A��

Figure �� Heat distribution of a random placement� There are
many hot spots �white spots� in this placement�

When we place gates into a chip� we usually have to op�
timize other objectives at the same time� For algorithms
A� and A�� there is large �exibility to do the placement be�
cause the algorithms only require a number to be place in
any of those entries with a particular label� Moreover the
entries with that particular label are plenty and are evenly
distributed on the matrix�
We observe that such �exibility can be used to simultane�

ously optimize other objectives� We demonstrate the idea by
considering heat distribution and wiring at the same time�
A set of MCNC benchmark circuits was used� Since ther�
mal data of these circuits were not available� we generated
a number uniformly at random for each gate representing
the amount of heat dissipated by the gate� We �rst obtain
a thermally good placement by our thermal placement al�
gorithm A� with t � �� Then we try to improve the total
wiring length by simulated annealing� However� we only al�



Circuit Wiring Heat
name size n Traditional Our Alg� inc� Traditional Our Alg� dec�
s���� ���� �� ����� ����� ��� ����� ���� ���
s��� �� �� ����� ���� ��� ����� ����� ���
s����� ���� � ���� ���� ��� ���� ���� ����
s����� ����� ��� ������ ������ ��� ����� ����� ����
s���� ����� �� ������ ������ ��� ���� ����� ����
s���� ���� ��� ��� ���� ��� ����� ��� ���

Average ��� ����

Table �� Comparison of traditional placement based on the wiring objective only and our approach of placement which considers
both heat distribution and wiring�

Figure � Heat distribution of a placement by A�� There is
no hot spot �white spot� in this placement� The heat is evenly
distributed�

low the exchange of two entries such that the di�erences in
row indices and in column indices are both multiples of t� So
as far as heat is concerned� the placement after the simulated
annealing is as good as the one before� As for comparison�
we also consider traditional placement based on the wiring
objective only� That is� in our experiment� we apply sim�
ulated annealing to a random initial placement� using total
wire length as the objective� and without imposing any re�
strictions on the gate locations as was done in the other case�
It corresponds to the case when heat is not taken into con�
sideration� Table � are the results of the experiment�

As expected� our algorithm is not as good as usual simu�
lated annealing in terms of total wire length� However� the
increase is very insigni�cant� On the other hand� our algo�
rithm performs much better in distributing the heat�

� CONCLUDING REMARKS

We have introduced a new combinatorial problem MSP 	Ma�
trix Synthesis Problem
 to model the thermal placement
problem� We show that MSP is NP�complete and we give
several provably good approximation algorithms for it� The
algorithms are fast� �exibility and good both theoretically
and practically in providing an approximate solution�

A direction of future work is to design algorithms with
provably better approximation factors for MSP� As we
pointed out at Section �� one may want to have bounds on
several values of t simultaneously� The worst�case bounds
given by A� sometimes can be as large as �� It is good
to have algorithms with better worst�case bounds� We can

also generalize MSP by considering a weighted average of the
approximation factors for di�erent values of t� This model
gives more guarantee than MSP and it may be easier to work
with than the model of providing several bounds simultane�
ously� However� we have no idea how the weights should
look like� It is worthwhile to investigate what the weights
should be and to design approximation algorithms according
to the weight distribution� Another direction is to obtain a
simple model which gives the temperature for each point on
the chip� In fact� the temperature distribution for a given
placement can be found by numerically solving di�erential
equations but such calculations are too expensive to be used
by a placement algorithm�
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