Automatic Cell Layout in the 7nm Era

Pascal Cremer

Stefan Hougardy

Jan Schneider Jannik Silvanus

Research Institute for Discrete Mathematics, University of Bonn, Germany
{cremer, hougardy, silvanus}@or.uni-bonn.de, schneider.jan@gmail.com

ABSTRACT

Multi patterning technology used in 7nm technology and be-
yond imposes more and more complex design rules on the
layout of cells. The often non local nature of these new
design rules is a great challenge not only for human de-
signers but also for existing algorithms. We present a new
flow for the automatic cell layout that is able to deal with
these challenges by globally optimizing several design ob-
jectives simultaneously. Our transistor placement algorithm
not only minimizes the total cell area but simultaneously
optimizes the routability of the cell and finds a best folding
of the transistors. Our routing engine computes a detailed
routing of all nets simultaneously. In a first step it com-
putes an electrically correct routing using a mixed integer
programming formulation. To improve yield and optimize
DFM, additional constraints are added to this model.

We present experimental results on current 7nm designs.
Our approach allows to compute optimized layouts within a
few minutes, even for large complex cells. Our algorithms
are currently used for the design of 7Tnm cells at a leading
chip manufacturer where they improved manufacturability
and led to reduced turnaround times.

1. INTRODUCTION

So far an experienced designer is able to craft cell lay-
outs which are of higher quality than automatically gener-
ated layouts. However, with each new technology the need
for high quality automatic cell layout generators increases.
This is due to the fact that design rules and DFM (design
for manufacturability) requirements become more and more
complex and the number of different cells used in modern
designs is growing steadily. Moreover, the manual layout of
a complex cell can take several days making this process a
severe bottleneck in turnaround time.

In this paper, we present a new flow for the automatic
generation of cell layouts, both for placement and routing.
Our approach provides solutions that are optimal in terms of
area consumption and routability. In practice it also reduces

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ISPD 17, March 19-22, 2017, Portland, OR, USA
© 2017 ACM. ISBN 978-1-4503-4696-2/17/03. .. $15.00
DOL: http://dx.doi.org/10.1145/3036669.3036672

99

Figure 1: Schematic view of a Tnm layout showing a
single finFET and some wiring. Fins (yellow), MO,
and M2 are horizontal while PC, TS, and M1 are
vertical layers. The diffusion area is denoted by RX.
The via layers are CA, V0, and V1.

the need for manual interaction significantly. We consider
many complex design rules and DFM requirements already
during the placement and the routing phase. This is a crucial
requirement for the current 7nm technology and beyond as
design rule cleanness and DFM requirements can no longer
be achieved by local post-processing operations alone.

In 7nm all layers are uni-directional (see Figure 1). PC
and TS are used to contact gates and source/drain contacts
of the inFETs. A finFET can have more than one gate. We
refer to the number of gates as the number of fingers of the
transistor. A transistor is called folded if it has more than
one finger. Three additional wiring layers M0, M1, and M2
are available that alternately have horizontal and vertical
orientation. As M2 is also used for inter cell connections,
it should be used for internal cell wiring only if necessary.
The wiring layers are connected by via layers CA, V0, and
V1, where CA connects both PC and TS with M0, VO con-
nects MO with M1, and V1 connects M1 with M2. Different
multiple patterning techniques are applied for these layers.
SAQP (self aligned quadruple patterning) is used for the
fins, SADP (self aligned double patterning) for the metal
layers, and up to LELELELE (four times litho-edge) for the
via layers [19].

The cell layout problem can be described as follows. As
input an image of the cell is given, i.e. an area with prede-
fined horizontal power tracks at the top and bottom of the
cell, equidistant vertical tracks for PC, TS, and M1, fin po-
sitions, and (not necessarily equidistant) horizontal tracks
for MO and M2. The finFETs, partitioned into p-FETs and

T
R i B

a) Placement — containing power bus
green), fins (gray), PC (blue), TS
brown), FET boundaries (purple)

(b) Electrically correct routing, vio-
lating some DFM rules.

(¢) Routing with optimal manufac-
turability and wire length.

Figure 2: Example results after placement and both routing phases. The green shapes on the top and bottom

represent the power tracks of a circuit row.

n-FETs, have to be placed in two rows in between the power
tracks (see Figure 2(a)). The electrical connectivity of the
FETs and their size is described in a netlist. The task is to
decide how many fingers a FET should use and to assign a
location to each FET. Both choices are subject to the design
rules and DFM constraints. Here, the width of the image
is the most important optimization criterion as this deter-
mines the area of the cell on the chip. Given a placement of
FETs, the goal in routing is to find an embedding of recti-
linear Steiner trees which realizes the given netlist. This has
to be done meeting the design rules and DFM constraints,
as well. As overall goal in routing, we minimize weighted
net length, with the topmost available layer M2 being more
expensive than other layers. Other objectives (e.g. pin ac-
cess [18], number of vias, or electromigration reliability [19,
12]) can easily be included as well.

A crucial point to obtain high quality cell layouts is for
the placement algorithm to have a very good estimate of
where and how much free area is needed in the routing step.
If the placement is too pessimistic this will result in a waste
of space, whereas a too optimistic placement is not routable.
We have designed an objective function for the placement
step that very accurately estimates the quality of a place-
ment with respect to later routability (see Section 2.1). In
many cases we can prove that our placement solution is op-
timal with respect to our objective function.

Simple sequential rip-up and reroute approaches turned
out to fail for most of our placements. Instead we use an
approach that allows to route all nets simultaneously and
consider many design rules and DFM constraints already
while building up the nets. The latter is required because
only few design rule violations can be fixed after routing
due to the limited space of our compact placements. We
also have successfully extended our approach to multi-bit
cells (see Section 2.5).

In Section 2, we discuss the placement algorithm, followed
by the routing solution in Section 3. Section 4 reports the
results of our implementation on cells at the 7nm technology
node.

1.1 Related Work

Most previous work on cell layout only focuses on subprob-
lems or restricted versions of the general cell layout problem
and is not directly applicable to 7Tnm layouts. Moreover, de-
sign rules and DFM requirements are more restrictive in 7nm

100

than in previous 14nm/15nm [9] and 10nm finFET technol-
ogy nodes.

Many different approaches have been suggested for the
transistor placement problem. In [2, 8] combinatorial al-
gorithms are presented that optimize the cell area, but as-
sume a given transistor folding. [4] use an integer program-
ming approach that optimizes cell area and includes tran-
sistor folding but assumes the possibility to pair n-FETs
and p-FETs. In [14] a branch-and-bound approach is used
for transistor placement that allows to optimize additional
objectives, but transistor folding is not considered.

The placement algorithm has to consider the complicated
dependencies between positions of n-FETs and p-FETs that
arise due to the design rules of the SADP cut mask for
the PC layer. Several approaches to handle SADP in au-
tomated design have been suggested [17, 19]. Our approach
differs in that we allow variable gate widths during cut mask
generation and guarantee to find valid solutions (if exis-
tent) in polynomial runtime. To the best of our knowledge,
our placement algorithm is the first to guarantee a legal
SADP layer decomposition without wasting cell area (see
Section 2.6).

For intra cell routing many different approaches are known.
Traditional channel routing [15] and simple rip-up and re-
route strategies [10] fail in recent technologies. More suc-
cessful are SAT-based [13] and the closely related integer-
programming based [18] approaches. In these approaches a
set of candidate solutions is generated for each net. A SAT-
formulation or an integer linear program is used to select
one realization for each net so that all design rules are met.

Our routing approach is also based on an integer program-
ming formulation. However, we do not need to pre-compute
candidate solutions for each net but instead generate all pos-
sible routings for all nets simultaneously while packing them.
Using this approach we do not have to restrict the candidate
solutions in advance (e.g. by restricting them to lie within
some bounding box around the terminals) but are able to
consider all possible routings. While this makes the search
space much larger, our well chosen integer programming for-
mulation turns out to be quickly solvable by standard MIP
solvers. Typically, cells with up to 15 FETSs are solved within
a few minutes.

2. PLACEMENT

The input of the cell placement problem is a set F of
FETs, a set NV of nets and a large number of technology-

specific constraints. A FET is characterized by a tuple
(W7 N97 NS7 Nd; Ns, t), where

e W € N is the total width of the gate measured in the
number of fins it intersects,

e Ny, N,, and N4 are the nets connected to gate, source,
and drain, respectively,

e t € {n-FET,p-FET} is the FET’s type.

We allow FETs to be folded, i.e. realized with different
numbers of fingers. Therefore, solving the placement prob-
lem does not only include the assignment of locations to
each transistor but also deciding how many fingers should
be used. The total width W of a FET can be distributed to a
number of fingers. Using only one finger, the FET is realized
with one gate, intersecting W fins. Using a larger number of
fingers, the FET is realized with several gates, located next
to each other, which in total intersect W fins. If, for exam-
ple, the width of a FET is 6 (measured in fins) it can be
realized with 1, 2, 3, and 6 fingers, each covering 6, 3, 2, and
1 fin respectively. Additionally, the user can allow rounding,
which means that the same FET can also be realized with 4
and 5 fingers, covering 2 and 1 fins respectively. Note that
in this case the width of the implemented FET is only ap-
proximately the specified width. Depending on the used cell
image, some fin configurations can be forbidden, e.g. most
images do not allow fingers covering a single fin only. A
FET realized with f fingers has f gates and f + 1 source
and drain contacts. A FET with several fingers connects
source and drain nets alternately. The placement algorithm
is also allowed to swap FETs. In this case, the source and
drain contacts of the FET exchange their places. Figure 3
shows the same FET realized in three different ways.

All gates are manufactured with self-aligned double pat-
terning (SADP). In the first step, a regular pattern of unidi-
rectional poly (PC) shapes is generated. In the second step,
these shapes are cut off by the cut (CT) mask, leaving the
desired gates. Not all placements admit a legal layer decom-
position. Situations for which no legal cut mask exists are
detected by our placement algorithm and excluded from the
search tree as soon as possible.

The output of the placement algorithm consists of

e FET locations (z,y) : F — R?
e finger numbers ¢ : F — Ny, and
e swap status s : F — {yes,no}.

This information is then passed to the routing algorithm
(see Section 3). The transistors are arranged in two stacks,
one next to each power rail. One stack consists of the cell’s
n-FETs and is placed directly next to the lower power rail,
whereas the other stack contains the p-FETs and is placed
directly next to the upper power rail. Our program is also
capable to realize multi-bit cells. These cells occupy multiple
circuit rows and have several pairs of stacks placed upon each
other. For the moment, we focus on single-bit instances with
two stacks, more details on our multi-bit implementation
will be given in Section 2.5.

The main design rules that have to be obeyed during
placement are horizontal and vertical distance rules.

1. A function d specifies the minimum size of gaps between
FETSs in the following way: If F5 is the right neighbor of F;

101

Figure 3: A FET of width 4 realized with 1 finger,
2 fingers, and 2 fingers swapped. Gates are shown
in blue, Source and drain contacts in gray.

on one of the stacks, then the gates must have a distance
of at least d := d(F1, ¢(F1), s(F1), Fa, ¢(F2), s(F2)) € {1,3}
tracks. For d = 1, the rightmost contact of Fi may over-
lap the leftmost contact of F5 and for d = 3 the FETs are
separated by two empty PC tracks. In the first case the dif-
fusion regions overlap and the contact is used simultaneously
by both FETs.

2. The SADP manufacturing process for the gates uses a
cut mask (CT). The design rules for CT require that there is
enough vertical space between FETs with different gate nets
(see Section 2.6). Additionally, gates cannot be connected
on the diffusion region but only in between both stacks.
Therefore, enough vertical space between the FETs must
be reserved for their connection as well.

2.1 Objective Function

We want to find placements which are small and as “rou-
table” as possible. To do so, we use an efficiently computable
model to measure the quality of a placement P involving the
following two values:

e W(P), defined as the width of the placement, i.e. the
number of required PC tracks,

e The gate-gate net length, ggnl(P) := > o\ ggnl(NV),
where ggnl(N) is the width of the bounding box of all
gate contacts in N.

The algorithm returns a placement which respects all de-
sign rules (including vertical constraints) and additionally
globally minimizes the placement width W (P). If there are
several such placements the algorithm chooses a placement
among them with the minimum gate-gate net length. This
does not guarantee routability but turns out to be a very
good indicator for real-world 7nm cells. A very similar ob-
jective function was already used in [1]. In [17] the number
of required M2 tracks is used as secondary objective.

2.2 Placement Algorithm

Our placement algorithm, as outlined in algorithms 1-3,
implements at its core a recursive enumeration of all possible
placements that backtracks as soon as the current (partial)
solution cannot be part of a placement that is better than
the best placement that has been found so far. We search
for legal solutions with increasing cell width. The minimum
width of a single stack, ignoring the constraints imposed by
the other stack, can be calculated very efficiently. The mini-
mum width of both stacks are lower bounds for the minimum
width of the entire cell. Therefore, we take the maximum
Wmax of both lower bounds and start by looking for solutions

Algorithm 1 TWOSTACKPLACEMENT
1: for all S € {N, P} do

2 Wi <0

3: while ENUMERATESTACK(Fs, Wiay) = 0 do

4. Wmax — Wmax + 1

5. end while

6: end for

7: Witk = max(Wyay, Winax)

8: for Wax = Wilit winit 11 .. do

9: Enumerate placements on both stacks with width at
most Whax.

10: if found optimal placement P then

11: return P

12: end if

13: end for

Algorithm 2 ENUMERATESTACK(F, Wiax)

K+ 0

P10

while LOWERBOUNDADDFINGERS(k) < Wiax do
for all possibilities to add « fingers to F do

STACKRECURSION(F)

end for
K< k+1

end while

: return P

whose width is at most Wiax. This describes lines 1-7 of Al-
gorithm 1. If no solution can be found with this restriction,
the cell width is increased and we repeat this procedure until
a placement is found. This means that parts of the search
tree are visited multiple times. However, this does not cause
a significant performance penalty, since the running time of
the last iteration usually dominates the running time of all
previous iterations.

2.3 Placing a Single Stack

An important subroutine of our placement method is ENU-
MERATESTACK (Algorithm 2). Its input is a set F of un-
placed FETs and a width restriction Wnax. It outputs a list
of all legal placements with width at most Wmax, or that no
such placement exists.

ENUMERATESTACK is implemented by distributing fingers
to the FETs. Initially, all FETs start with the minimum
number of fingers they can have. Afterwards, an increasing
number of fingers is distributed to all FETSs, trying every
distribution. Before assigning an additional finger to the
FETs, we use a fast routine to calculate a lower bound for
the width of placements with x additional fingers. We can
exit the loop as soon as this lower bound exceeds the width
bound Wphax. Once all fingers are distributed, STACKRE-
CURSION (Algorithm 3) is called.

Algorithm 3 is called recursively. In the beginning some of
the FETs have already been placed. We keep the positions
of these FETs fixed and compute a lower bound for the
total cell width where all FETs are placed. The minimum
width needed by a set of FETs with fixed number of fingers
equals the total number of fingers plus 2 additional tracks
for each gap that has to be inserted between two FETs. For
our lower bound calculation we use that a gap has to be
inserted if the nets of the rightmost contact of the left FET

102

Algorithm 3 STACKRECURSION(F,)

1: if LOWERBOUND(F,) > Wnax then
2: return
else if F, = () then
P < P U {current placement}
else
for all F' € F, do
Place F' on the leftmost possible track
STACKRECURSION(Fy, \ {F'})
Unplace F
10: Swap F' and repeat lines 7 — 9
11: end for
12: end if

and the leftmost contact of the right FET are not the same.
We count the number of times a net connects a leftmost
or rightmost FET contact and denote it by CN. If C¥ is
odd, it is not possible to place all contacts of this net next
to each other, avoiding gaps. However, the additional gap
can be avoided by placing one contact of the net at the cell
boundary. This can at most be done for two nets, one on
the left and the other on the right cell boundary. This gives
the following lower bound for the cell width.

Wip(Fu) = W(F\Fu) + > ¢(F)+ 2 max{0,noaa — 2},

FeFy

where W (F \ Fu) is the width of the already placed FETs,
EFefu ¢(F) the number of fingers yet to place, and noad

the number of nets with CV odd.

If this bound does not exceed the width limit Wiyax, we
recursively place FETSs in the stack from left to right, trying
every permutation of FETs. Given a partial solution, it
takes every yet unplaced FET and places it at the smallest
legal horizontal coordinate on top of the partial solution —
once unswapped and once swapped.

If only a single width-minimal placement (not necessarily
optimal w.r.t. the entire objective function) is required, as in
line 3 of Algorithm 1, a faster version of ENUMERATESTACK
is used that considers only partial solutions with a specific
block structure.

2.4 Placing Both Stacks

The placement algorithm on an entire cell is done by
placing one stack after the other. In contrast to single
stack placement where only horizontal constraints have to
be obeyed, vertical constraints are important for two stack
placement as well.

We fix a cell width and enumerate placements for both
stacks (Line 9 of Algorithm 1). This is done by enumerating
all placements with width at most Wnax on the first stack,
and for each of these placements enumerating placements
with width at most Wnax on the second stack. For the sec-
ond stack, an extended version of Algorithm 2 is used. This
extended version checks the vertical constraints between the
two stacks. Additionally, it is checked whether the space be-
tween the transistor rows is large enough to allow gate wiring
and a legal PC cut mask. Quickly deciding whether a legal
PC cut mask exists is a non-trivial problem and will later be
discussed in some detail (see Section 2.6). To speed up the
algorithm, this is already checked for a partial placement of

deviation

¥
A

intersecftion
height

V'S A
0 2

deviation

y-dist.

heightI

Figure 4: Cut mask rules. PC in blue, cut mask in
gray. Height of each cut shape has to be at least d.
y-distance between cut shapes on neighboring tracks
has to be at least v or cut shapes have to touch. In
the second case their deviation has to be at most s
and their intersection height at least d.

the second stack, allowing to prune entire branches of the
search tree.

Additional pruning can be accomplished since we are only
interested in a single optimum solution. We calculate lower
bounds for ggnl(.) and wnl(.) given a partial placement. If
these values exceed the upper bound given by an already
found placement we can prune all placements containing
these partial placements.

2.5 Multi-Bit Cells

Very large cells are typically not implemented on one but
several neighboring circuit rows. Such multi-bit cells can also
be placed with our program. To place a cell with k bits, we
first compute candidates for assignments of FET's to the bits.
We then evaluate the quality of these assignments (by their
number of bit-crossing connections, etc.) and solve the most
promising candidates with a variation of Algorithm 1. The
bits are placed one after the other with each new placement
respecting constraints due to already placed bits.

2.6 Cut Shapes

Gates, i.e. poly conductors (PC) manufactured by a single
exposure lithographic process suffer from major drawbacks
in modern technology nodes [7]. One issue is that the spac-
ing of printed line-ends becomes too large to allow dense
packing of transistors. To overcome this effect, self-aligned
double patterning (SADP) is used to produce lines and line-
ends separately. This reduces line end roughness (LER),
creates straighter PC lines [7] and doubles the density of
PC stripes, allowing a smaller PC pitch.

Using this double patterning technique means that design
rules have to be obeyed for a cut (CT) mask which removes
extraneous features. We assume that all gates are placed
on a regular pattern, where all PC lines are parallel to each
other and have equal distance. We call the possible posi-
tions of gates tracks. The CT mask is then used to remove
undesired features, i.e. to remove a connection between two
transistors. It is composed of several rectilinear cut shapes
which have to obey certain rules. These rules are depicted
in Figure 4.

Given some (partial) non-overlapping transistor placement
and gate routing we need to decide if a legal CT mask ex-

103

ists. If two transistors on different stacks using the same
gate track need to be disconnected, we need a cut shape in
between them. The exact position of the cut shape is not
important to obtain an LVS clean solution but matters re-
garding cut shape design rules. This leads to the following
formal definition of the CUT SHAPES problem.

CUT SHAPES

Instance: Boundary intervals [l1,u1],...,[ln,un] C N,
minimum height d € N, maximum deviation s € N,
minimum y-distance v € N.

Task: Find cut shape intervals [x1,y1],. .., [Zn,yn] C N,
s.t. [zi,yi] C [Li,wil,ys —xi > d, for i = 1,...,n and
either

i — Ti—1| <8, |y — Yi-1| < s,
L lwimmia <s lyi -y <5,

|SCz' *yi—ﬂ > d,lyi *xi—1| >d >’
2. Ti>yi-1+v ,or
3. Yi Sxi—l — v

fori=2,...n.

It can be proven that it is enough to deal with the special
case that no y-distance has to be left between neighboring
cut shapes i.e. v =0:

LEMMA 1. An algorithm A which solves CUT SHAPES in-
stances for v = 0 in time T can be used to solve arbitrary
CUT SHAPES instances with runtime T + O(n).

A fast algorithm for CUT SHAPES is important as it is
called many times during the placement algorithm and dom-
inates its total running time. In the following, we present
a polynomial time algorithm. The idea is to use a dynamic
programming approach, going through the instance track
by track. Since the number of coordinates inside an interval
[li,u;] is in general exponential in the input size, we have
an exponential number of states resulting in an exponen-
tial runtime. To reduce the number of states, we show that
a polynomially sized subset of coordinates always contains
a solution. We formally state this result after introducing
some notation.

DEFINITION 1. The coordinate sum of a feasible solution
(@i, Yili=1,...n is defined as >, (i +yi). A solution is
called uppermost optimal if no other solution with larger co-
ordinate sum exists.

THEOREM 1. For a given instance of the cut shape prob-
lem, let B := {l1,...,ln,u1,...,un} be the set of bound-
ary coordinates and [T, yili=1,....n an uppermost optimal so-
lution. Furthermore, using the Minkowski sum and prod-
uct, let B* := B + {0, —d,d, —s,s}*". Then x;,y; € B* for
t=1,...,n.

We will not give a formal proof here, but intuitively any
legal solution can be “shifted upwards” until it becomes up-
permost optimal. One can then show that the coordinates
used by this new solution are a subset of B*.

REMARK 1. The size of B* is polynomially bounded in the
number of tracks n. We have B* := B+ {0, —d,d, —s, s}*",
|B| = O(n), and |{0,—d,d,—s,s}*"| = O(n). Therefore,
|B*| = O(n?).

Algorithm 4 CUT SHAPES

1: for z1,y1 € B* N [l1,u1] with y1 — 21 > d do
2 Set [z1,y1] as solution of Pi(x1,y1)
3: end for
4: fori=2,...,ndo
5.

6

for z;,y; € B* N [li,u;] with y; —x; > d do
for [zi—1,yi—1] s.t. Pi—1(xi—1,y:—1) has a solution
and [zi—1,¥i—1], [Ti, yi] are legal neighbors do

7 Set [mi_l, yi_l], [.T,‘, yi} as solution of Pi (wi, yi)

8: end for

9: end for

10: end for

11: Pick legal cut shape on track n and use backtracking to

obtain entire solution.

DEFINITION 2. Let P;(Z,y) be the problem instance re-
stricted to tracks 1,...,1, with the additional constraints
T =T, Y =Y.

As shown by Theorem 1, it suffices to search for optimal
solutions on the coordinate set B*. This motivates Algo-
rithm 4.

THEOREM 2. Algorithm 4 solves CUT SHAPES optimally
and can be implemented with runtime O(nk*), where k =
|B*|. Using Remark 1, this gives a runtime of O(n°).

REMARK 2. By iterating over x;,yi, Ti—1,Yi—1 tn lines 5
to 9 more cleverly, the runtime of these lines can be improved
to O(k?). This gives a total runtime of O(nk?) = O(n).

In practice the number of y-coordinates on which cut
shapes can start or end is limited. In our application there
are about 500 possible coordinates which gives a constant
upper bound on k. Therefore, Algorithm 4 has a runtime of
O(n) in practice.

3. ROUTING

In order to solve the routing problem on a placed cell, we
use a mixed integer programming (MIP) approach.

Next to the input already given for the placement problem
(Section 2), the cell routing problem expects the location
of each FET from the placement. Furthermore, external
connections may be present for a net, together with a desired
location for this external input and output. During routing,
our goal is to minimize the wire length and number of vias
in order to optimize the power, timing, and yield properties
of the cell.

3.1 Grid Graph Construction

Since each wiring layer only allows either vertical or hori-
zontal wires, we represent the cell routing space by a three-
dimensional grid graph G = (V, E) with edge costs. For each
layer, we are given a set of routing tracks specifying feasible
positions for wires which are not necessarily equidistant.

By intersecting routing tracks on adjacent layers, we ob-
tain the vertex set V. The edge set E consists both of line
segments connecting adjacent intersections on the same layer
as well as vias between stacked vertices on adjacent layers.

Edge costs are given by multiplying their geometric length
by a layer-specific constant. This allows to e.g. increase costs
on M2 in order to leave more space for inter-cell routing, and
to trade off wire length against the number of vias.

On this graph, we are seeking a minimum-cost Steiner
tree packing that contains for each net a tree connecting its
terminals, which are given by the gate, source, and drain
contacts as well as its external pins. Furthermore, the pack-
ing is subject to additional constraints.

3.2 Design Rules and Coloring

For the wiring within a cell, design rules fall into two
basic categories: Diff-net rules require a certain minimum
distance between wires that belong to different nets. Same-
net rules are in place to avoid geometric configurations with
features below the lithographic capabilities and resolution,
and to reserve space for optical proximity correction (OPC).
While diff-net rules are most important, same-net rules have
become more and more important with each new technology.
Especially in routing, it is particularly important to obey all
these rules already during the routing algorithm because it
is not possible to fix errors in post-processing due to a lack
of space.

All features are manufactured using multiple masks in or-
der to increase packing density: Shapes on different masks
are allowed to have a smaller distance than shapes on the
same mask. Hence, a valid routing does not only consist of
a disjoint Steiner tree packing, but also requires features on
such layers to be assigned to masks such that certain design
rules are met. We call this assignment coloring. However,
in 7nm technology this only affects vias, since all wires are
colored using an alternating track-based coloring scheme.

3.3 Mixed Integer Programming Formulation

First, we describe the core MIP we use to model the
Steiner tree packing problem in graphs. Then, in Section 3.4,
we explain how design rules are incorporated into the model.

We ensure connectivity by adding for each net a relax-
ation of the Steiner tree problem in graphs to the model.
In [3], the undirected cut relaxation is used for that pur-
pose: For each cut X C V separating the terminal set,
the undirected cut relaxation requires at least one edge in
E(X,V \ X) to be contained in the Steiner tree. However,
the undirected cut relaxation has an integrality gap of 2,
which is already asymptotically attained in the special case
that G is a circuit, even if all vertices are terminals. One
can strengthen the relaxation by using a bidirected auxil-
iary graph G’ = (V, A) with A = {(4,5) : {i,j} € E} which
contains two opposing edges (4,5) and (j,4) for each origi-
nal edge {i,j} € E(G). Let r be an arbitrary root terminal
and add variables for all edges e € A. Then, for each cut
r € X C V that does not contain all terminals, require
that at least one edge leaving the cut is used. Finally, lower
bound the usage of each original edge {i,j} € E by the sum
of the usages of both directed edges (4, j) and (j,%). This re-
laxation is called bidirected cut relaxation. The integrality
gap of the bidirected cut relaxation is unknown, the worst
known example due to Skutella (reported in [6]) has an in-
tegrality gap of g.

By introducing additional flow variables, one can elimi-
nate the exponential number of cut constraints, resulting in
the multicommodity flow relaxation, first introduced in [16].
This relaxation is equivalent to the bidirected cut relax-
ation [11] and was already used in [5] to solve Steiner tree
packing problems. We will also use the multicommodity flow
relaxation:

For each net k € N, we denote by T, C V the set of its
terminals. A decision variable z* is introduced for each net
k € N specifying whether k is using an edge e € E of the
graph G. For each net k, we choose an arbitrary root termi-
nal 7, € Ty and denote the set of sink terminals Ty \ {rx} by
Sk. Then, the multicommodity flow relaxation introduces a
commodity for each sink ¢ € S, and requires a flow of one
unit of the commodity from rj to ¢ to be supported by z*.
More precisely, for each net k € N, terminal ¢ € S, and
directed edge (4,j) € A, a flow variable ffj is introduced
representing the flow of the commodity t along the directed
edge (7,7). Then, we add flow conservation constraints at
vertices in V' \ {¢,7} and enforce that r; sends one unit
of flow and that ¢ receives one unit of flow of commodity
t. Furthermore, for each net k and each edge (i,j) € A,
we add directed edge usage variables ffj that upper bound
the directed flow variables ffj and require f{-“j + ffz < :r]fiyj}.
For ease of notation, we combine the usage of each edge
e € E(G) also to a single variable z.. Also, we denote by
Fr(v) == 45" (v)) — fY(6~ (v)) the flow balance of sink ¢ at
a vertex v € V(G). The complete model is as follows:

min =) ceZe
eckE
s.t. ze = > zF VeekFE
keN
ze €{0,1} Vee E
zF €{0,1} VecEkeN
1 ifiz’l“k
fflv) = -1 ifi=t
0 else
YveV,keN,te S
0 <fh <i¥ YV (i,j) € A,k e N,t € S
ffj-i-f?i Sml{ci,]} V{i,jl€e BikeN

In this basic formulation, no additional constraints, espe-
cially with respect to distances between wires resulting from
the Steiner tree, are taken into consideration. Furthermore,
two nets may actually share the same vertex, but not the
same edge. Further constraints ensuring correctness in this
sense, but also modeling coloring and the additional DRC
constraints, are presented next.

3.4 Mapping DRC Constraints

To ensure vertex disjointness, for each k € N and vertex
v € V(G), we add a vertex usage variable z¥ € {0,1}. Then,
for each net k € N and v € e € E(G), we add the constraint
zf <af and add 3, zb < 1for allv € V(G).

On via layers, we need to assign colors to used edges. To
that end, for each such edge e € E, net k € N and color
m € M, we add a binary variable ™z* and enforce

zh = mak.
meM

Moreover, for each such edge e and color m, we add a binary
variable "ze = Y, m xR representing whether edge e is
used with color m by any net.

The transistor placement already induces forbidden edges
which are immediately mapped to the respective variables.

The basic distance rules are then mapped as follows. Sup-
pose that if an edge e € E is used by the wiring of net k € N/,
then a nearby edge ¢/ € E cannot be used by another net.

105

The inequality

xf + Z xie/ <1
ieN\{k}

prohibits this situation. All basic diff-net distance rules can
be modeled this way, including via distances and the inter-
layer via rules that prescribe minimum distances between
vias in adjacent via layers. Simple same-color and diff-color
spacing constraints can be modeled as well, using the corre-
sponding ™z* variables. We also add some of these distance
constraints for segments of the same net, as there are also
same-net rules for spacing between non-adjacent segments
of the same net.

An important same-net rule requires that each wire must
have a certain minimum length, depending on its layer. Let
e, €' be adjacent edges and assume that e is used and ¢’ is
not used. In order to fulfill the required minimum length, a
set F' of edges must also be used, c.f. Figure 5. We model
this implication by the constraint

> ap > |F| (we — o).
feF

Clearly, in the situation depicted above, this constraint re-
quires ¢y =1 for all f € F, and is non-binding otherwise.
e[e A

fo fs

Figure 5: Minimum length rule implementation: If
e is used and ¢’ is not used, then fi, f» and f; must
also be used.

Other rules like minimum via overhangs are modeled in a
similar way.

To route a cell, we first solve the model described in Sec-
tion 3.3 together with vertex-disjointness constraints to ob-
tain an electrically correct routing. Then, we add the ad-
ditional variables and constraints described in Section 3.4
and re-solve, which yields an optimum routing obeying the
design rules and DFM constraints.

4. EXPERIMENTAL RESULTS

The described algorithms are implemented and tested on
real-world 7nm instances. Table 1 reports on runtime and
quality of our results, split into placement and routing part,
for several characteristic current 7nm cells. All experiments
were done single-threaded on a 2.20GHz Intel Xeon E5-2699
v4 machine using CPLEX 12.6 as MIP-solver.

For the first 9 instances shown in Table 1 a placement
with provably smallest possible area was found in a few sec-
onds. Placements with optimal routability were found after
at most 2min and their optimality was proven after a max-
imum of 5min. Cells 10 and 11 were placed with provably
minimal area after less than 2min. Here placements with
improved routability were found after up to 7min. While
it could not be proven within a time limit of 60 min, it is
still possible that the found placements were already glob-
ally optimal w.r.t. routability.

All cells were routed in two phases. First, an electrically
correct routing was computed which took up to 30s on the
first 9 instances and 2min and 11 min on cells 10 and 11,
respectively. This solution can already be used for tasks

Table 1: Results on 7nm testbed: |F| number of fets,
V| number of nets, w cell width in tracks, ¢; time
until an area optimal placement has been found,
to time until a placement with optimal routability
has been found, t3 time until optimal routability has
been proven, t4 time until electrically correct routing
has been found, ¢5 time until routing with optimal
manufacturability and wire length has been found.
M; number of used M2 tracks. All times in [mm:ss].

Cell Placement Routing
#AFI W w 1 2t ta ts My
1 8 11| 6 0:00 0:00 0:00| 0:03 0:06 0
2 8 10| 6 0:00 0:00 0:00| 0:05 0:08 O
3 8 11|12 0:00 0:00 0:13| 0:08 0:16 O
4 8 11|12 0:00 0:00 0:26 0:11 0:26 0
5 14 16 | 12 0:00 1:27 4:28 0:09 0:39 1
6 & 11|16 0:01 1:38 2:37 0:24 2:42 0
7 17 22|12 0:00 1:.00 2:33| 0:09 0:17 O
8 11 15|12 0:03 0:19 0:36 | 0:09 0:20 O
9 8 11|16 0:08 1:03 1:04 0:28 2:08 0
10 14 18|30 0:38 647 - 1:48 1836 1
11 8 11|44 1:09 1:13 - 11:04 33:28 0

that do not require optimal manufacturability, for example
timing analysis. This allows a fast prototyping flow where
changes in the input and their consequences on the layout
can be tested quickly.

In the second phase additional rules were incorporated
into the model to improve DFM. From the set of all rout-
ings fulfilling these additional constraints our router then
found the solution with minimal net length. For the first
9 instances this took up to 3min, cell 10 and 11 needed
19min and 33 min, respectively. The final generated layout
of cell 10 can be seen in Figure 6.

[T TR

Nn N 5 & N N

ol ool -

Figure 6: Generated layout of cell 10 with 30 tracks
width. Only a single M2 wire (bottom left, green)
has been used.

5. CONCLUSION

We have presented a new flow for the automatic cell lay-
out that is able to deal with the challenges arising in 7nm
technology. The main features are the global optimization of
several design objectives, full integration of cut shape com-
putation into the placement algorithm, and an efficiently
solvable two stage MIP formulation in routing.

Acknowledgment

The authors would like to thank our cooperation partners at
IBM, in particular Gerhard Hellner, Iris Leefken, and Tobias
Werner.

106

6. REFERENCES

[1] R. Bar-Yehuda, J. A. Feldman, R. Y. Pinter, and

S. Wimer. Depth-first-search and dynamic
programming algorithms for efficient CMOS cell
generation. IEEE Trans. CAD, 8:737-743, 1989.

B. Basaran and R. A. Rutenbar. An O(n) algorithm
for transistor stacking with performance constraints.
In Proc. DAC’96, pages 221-226, 1996.

M. Grotschel, A. Martin, and R. Weismantel. The
Steiner tree packing problem in VLSI design.
Mathematical Programming, 78:265-281, 1997.

A. Gupta and J. P. Hayes. Optimal 2-D cell layout
with integrated transistor folding. In ICCAD’98, pages
128-135. IEEE, 1998.

N.-D. Hoang and T. Koch. Steiner tree packing
revisited. Math Meth Oper Res, 76(1):95-123, 2012.
J. Kénemann, D. Pritchard, and K. Tan. A
partition-based relaxation for Steiner trees.
Mathematical Programming, 127(2):345-370, 2011.
K. Lai et al. 32 nm logic patterning options with
immersion lithography. In Proc. SPIE 692/, Optical
Microlithography XXI, 69243C, 2008.

C. Lazzari, C. Santos, and R. Reis. A new
transistor-level layout generation strategy for static
CMOS circuits. In ICECS’06, pages 660-663, 2006.
M. Martins et al. Open cell library in 15nm freePDK
technology. In ISPD’15, pages 171-178. ACM, 2015.
C. J. Poirier. Excellerator: Custom CMOS leaf cell
layout generator. IEEE Trans. CAD, 8(7):744-755,
1989.

T. Polzin. Algorithms for the Steiner problem in
networks. PhD thesis, MPII Saarbriicken, 2003.

G. Posser, V. Mishra, P. Jain, R. Reis, and S. S.
Sapatnekar. Cell-internal electromigration: Analysis
and pin placement based optimization. IEEE Trans.
CAD, 35(2):220-231, 2016.

N. Ryzhenko and S. Burns. Standard cell routing via
boolean satisfiability. In DAC’12, pages 603—612, 2012.
B. Taylor and L. Pileggi. Exact combinatorial
optimization methods for physical design of regular
logic bricks. In DAC’07, pages 344-349. ACM, 2007.
S. Wimer, R. Y. Pinter, and J. A. Feldman. Optimal
chaining of CMOS transistors in a functional cell.
IEEE Trans. CAD, 6(5):795-801, 1987.

R. T. Wong. A dual ascent approach for Steiner tree
problems on a directed graph. Mathematical
Programming, 28(3):271-287, 1984.

P.-H. Wu, M. P.-H. Lin, T.-C. Chen, T.-Y. Ho, Y.-C.
Chen, S.-R. Siao, and S.-H. Lin. 1-D cell generation
with printability enhancement. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 32(3):419-432, 2013.

W. Ye, B. Yu, Y.-C. Ban, L. Liebmann, and D. Z.
Pan. Standard cell layout regularity and pin access
optimization considering middle-of-line. In
GLSVLSI’15, pages 289-294. ACM, 2015.

B. Yu, X. Xu, S. Roy, Y. Lin, J. Ou, and D. Z. Pan.
Design for manufacturability and reliability in
extreme-scaling VLSI. Science China Information
Sciences, 59(6):1-23, 2016.

2]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

