
Rsyn – An Extensible Physical Synthesis Framework

Guilherme Flach, Mateus Fogaça, Jucemar Monteiro,
Marcelo Johann and Ricardo Reis

Universidade Federal do Rio Grande do Sul (UFRGS) - Instituto de Informática - PGMicro/PPGC
{gaflach, mpfogaca, jucemar.monteiro, johann, reis}@inf.ufrgs.br

ABSTRACT
Due to the advanced stage of development on EDA sci-
ence, it has been increasingly difficult to implement real-
istic software infrastructures in academia so that new prob-
lems and solutions are tested in a meaningful and consistent
way. In this paper we present Rsyn, a free and open-source
C++ framework for physical synthesis research and devel-
opment comprising an elegant netlist data model, analysis
tools (e.g. timing analysis, congestion), optimization meth-
ods (e.g. placement, sizing, buffering) and a graphical user
interface. It is designed to be very modular and incremen-
tally extensible. New components can be easily integrated
making Rsyn increasingly valuable as a framework to lever-
age research in physical design. Standard and third party
components can be mixed together via code or script lan-
guage to create a comprehensive design flow, which can be
used to better assess the quality of results of the research
being conducted. The netlist data model uses the new fea-
tures of C++11 providing a simple but efficient way to tra-
verse and modify the netlist. Attributes can be seamlessly
added to objects and a notification system alerts compo-
nents about changes in the netlist. The flexibility of the
netlist inspired the name Rsyn, which comes from the word
resynthesis. Rsyn is created to allow researchers to focus
on what is really important to their research spending less
time on the infrastructure development. Allowing the shar-
ing and reusability of common components is also one of the
main contributions of the Rsyn framework. In this paper,
the key concepts of Rsyn are presented. Examples of use
are drawn, the important standard components (e.g. phys-
ical layer, timing) are detailed and some case studies based
on recent Electronic Design Automation (EDA) contests are
analyzed. Rsyn is available at http://rsyn.design.

Keywords
EDA, Physical Synthesis, Framework, Open Source

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

ISPD ’17, March 19-22, 2017, Portland, OR, USA
c© 2017 ACM. ISBN 978-1-4503-4696-2/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3036669.3038249

1. INTRODUCTION
A common challenge faced by academia in physical syn-

thesis research is the lack of an open, collaborative and stan-
dard framework in which the work can be conducted. This
may be circumvented by narrowing the scope of the research,
which may lead to oversimplification, making it hard to as-
sess the real benefits of a technique when inserted in a full
design flow.

Some public physical synthesis tools do exist as for timing
analysis [14], placement [42], routing [22], but they usually
are developed to solve one very specific problem, and are
hard to integrate in a cohesive way into a design flow. The
underlying data structures are typically tightly tied to the
optimization problem and difficult to extend. Even when the
tool offers an Application Program Interface (API), there
may be memory and runtime overheads due to the main-
tenance of redundant information (e.g. netlist). Moreover,
the code experience gained in one tool is not directly trans-
lated to another one making the learning process very timing
consuming.

Those drawbacks often push researchers to implement
their own infrastructure as the time required to integrate or
learn third party tools may not compensate the familiarity
and efficiency of an infrastructure developed specifically to
solve the research problem of interest. Therefore, researchers
end up devoting a lot of time to infrastructure development
and less time in the core of the research project. Considering
that many physical design problems share common infras-
tructure requirements, it is clear that a lack of a common
and powerful infrastructure hinders the advancement of this
field.

In the last decade, renowned conferences such as Interna-
tional Symposium on Physical Design (ISPD), Design Au-
tomation Conference (DAC), International Conference on
Computer-Aided Design (ICCAD) and International Work-
shop on Timing Issues in the Specification and Synthesis of
Digital Systems (TAU) have promoted research on emerging
Electronic Design Automation (EDA) challenges [25, 39, 41,
30, 36, 18, 17] by organizing contests where teams compete
to achieve the best results. The teams are composed by a
small group of students who have few months to develop a
tool 1 that solves the proposed problem. These contests usu-
ally boost research in the proposed field, which can be veri-
fied by the large number of related publications that follow
the contests. Even though contests do a great job promot-
ing research and creating standard ways to validate results,

1The tools are typically not required to be open-sourced.

33

there is still plenty room for more horizontal and vertical
integration.

In this paper, an open-source, modular and extensible
framework, called Rsyn, for physical synthesis research is
presented. The elegant netlist data model and integrated
tools allow fast prototyping of ideas. The modular design of
the framework makes it possible to easily extend Rsyn for
specific and general purposes. And the collaborative nature
leverages it as an increasingly relevant and powerful frame-
work for physical design research.

Rsyn provides support for common industrial file formats
used in physical design, such as Library Exchange Format
(LEF)/Design Exchange Format (DEF) [19], Liberty [28],
Verilog [40] and the popular Bookshelf academic format [3].
Currently, Rsyn is already able to work on the benchmarks
from the contests presented in Table 1.

Table 1: Current Contests Supported by Rsyn
Conference Contest
ISPD 2005 Placement (Bookshelf)
ISPD 2006 Placement (Bookshelf)
ISPD 2012 Discrete Gate Sizing and Vt-Assignment
ISPD 2013 Discrete Gate Sizing and Vt-Assignment
ICCAD 2015 Incremental Timing-Driven Placement

The most relevant features currently provided by Rsyn
infrastructure are summarized as follows:

• An elegant and dynamic netlist data model imple-
mented using modern features of C++11.

• A notification system that alerts the modules in the
framework when a change is made in the netlist;

• Extensibility of the netlist objects via user-specific at-
tributes.

• Routing estimation and static timing analysis tools
that can be configured to use different routing and tim-
ing models, including user-specific ones.

• An intuitive Graphical User Interface (GUI) with em-
bedded features to help on analysing and debugging
optimization techniques.

• Support for the widely-adopted industrial file formats,
such as LEF/DEF [19].

The organization of the paper is as follows: Section 2
and Section 3 provide the description of the Rsyn architec-
ture and the available standard components, respectively. In
Section 4, we briefly summarize our recent research works
using the Rsyn framework. In Section 5, the related works
are shortly presented. Section 6 highlights the most relevant
conclusions. The reader may refer to the official website [35]
for more information, documentation and the source code.

2. ANATOMY OF RSYN FRAMEWORK
The core of Rsyn is composed of a netlist data model and

three main components as shown in Figure 1: an engine,
services, and processes.

The netlist data model stores structural and logical design
data and can be extended via object attributes. It serves as
a standard way to exchange and query design information

in the framework. The engine is the main hub in the Rsyn
framework. It manages and provides access to the design,
processes and services keeping session information. It is also
responsible for command registrations and dispatch.

Figure 1: Rsyn Framework

2.1 Netlist Data Model
Rsyn implements a hierarchical 2 netlist data model which

is managed by the object design. Figure 2 depicts the objects
that compose the netlist data model. User-specific attributes
can easily extend these objects and internally handle netlist
modifications. A notification system is provided so that ob-
servers can be aware of changes in the netlist performed by
third parties.

Figure 2: Netlist data model.

The netlist models a hierarchical directed graph where
pins represent the nodes and arcs represent the edges. Arcs
are classified into two types: cell and net arcs. Cell arcs
represent the logical relation between the input and output
pins of cells. Net arcs represent the logical relationship be-
tween the driver and sink of nets. Nets can only connect
pins in the same hierarchy level 3. The topological ordering
of the nodes is incrementally updated whenever the netlist
is changed allowing fast ordered traversal.

Hierarchies are represented by modules and connections
between hierarchies by ports. Instances abstract modules,
ports, and cells. The parent of an instance is the module
where it is instantiated. The only instance with no parent
is the top module.

All pins belong to one and only one instance and no in-
stance has pins in different hierarchy levels. A port is asso-
ciated to two pins: inner pin and outer pin. The inner pin

2Hierarchy support is still experimental.
3The concept of supernets, which will handle transparently
sinks in different hierarchies, is yet to be implemented.

34

Listing 1: Rsyn Code Example
1 Rsyn : : Attr ibute<Rsyn : : Pin , int> data = des ign .

c r e a t eAt t r i bu t e () ;
2 for (Rsyn : : Net net : module .

a l lNe t s InTopo log i ca lOrde r ()) {
3 for (Rsyn : : Pin pin : net . a l l P i n s (Rsyn : : SINK

)) {
4 data [pin] = foo (net) ;
5 } // end fo r
6 } // end fo r

belongs to the port itself and is inside the module where the
port is instantiated. The outer pin belongs to the instance
that represents the upper module in the hierarchy. Cells
are associated with library cells. Similarly, cell pins and cell
arcs are associated with the respective library pins and li-
brary arcs in the standard-cell library. This allows common
data to be shared among cells, pins and arcs of the same
type.

The snippet in Listing 1 shows the key concepts of the
netlist data model. In the example, at line 1, an integer
attribute for pins is created. At line 2 the nets are traversed
in topological order. For each net, its sinks pins are swept
at line 3. And at line 4 the attribute value is set.

2.2 Services and Processes
Services and processes provide the basic functionality re-

quired to implement a design flow. They are two related
concepts that differentiate only by their lifespan. New ser-
vices and processes created by users and collaborators will
typically extend the Rsyn framework features. Services and
processes are registered and managed via the engine.

A service usually is active during several flow steps imple-
menting tasks that are recurrent and/or require a state to be
kept. A typical usage of a service would be to create analy-
sis tools (e.g. timing, power) and to implement the shared
infrastructure among several flow steps (e.g. incremental le-
galization used by several optimization steps during detailed
placement).

A process implements any task that does not require keep-
ing its state after it is finished. They are normally used to
implement a flow step. A typical usage of a process would
be to create optimization steps (e.g. sizing, legalization,
placement, routing). Even though these processes affect the
state of the design, their internal data is not required any-
more once they have finished. A typical process will rely on
several services to perform its task.

2.3 Script
Currently, Rsyn implements its script language focused on

simplicity. A script is a sequence of commands. Any com-
mand registered in the engine can be called via a Rsyn script.
The command syntax mimics the GNU/Linux command line
syntax. The parameters are divided into two types: posi-
tional and named. Positional parameters are assigned by
their position and named parameters by their name. The
command syntax is loosely defined as follows:

<command> [<value> ...] [-<param> <value> ...]

where <command> and <param> are any alfa-numeric
identifier and <value> can be a number, string or JSON [23].

Listing 2: Rsyn Script Example
1 s t a r t ”myService ” ;
2 run ”myOptimization1 ” {
3 ” e f f o r t ” : 1 ,
4 ”debug ” : ” f i r s t pass ”
5 } ;
6 run ”myOptimization2 ” {
7 ” e f f o r t ” : 10 ,
8 ”debug ” : ”second pass ”
9 } ;

10 myReport ”r epor t . txt ” −nets − c e l l s ;

The JSON data type was chosen due to its flexibility and
readability.

In Listing 2, a tiny Rsyn script is presented. Line 1 shows
the call to start an Rsyn service while lines 2-5 and 6-9
show two calls to optimization flows and their user-defined
parameters. Line 10 presents a call to a circuit report with
some parameters.

2.4 Graphical User Interface (GUI)
A modular GUI is provided by the Rsyn framework to

aid users to develop, improve, debug and better understand
synthesis algorithms. It also has a great impact as an ed-
ucational tool and in the engagement of students in EDA
subjects. In Figure 3, a screen shot of the Rsyn’s GUI is
presented.

Figure 3: Graphical User Interface of the Rsyn
framework showing Superblue18 circuit

The GUI is built using wxWidgets [45] and OpenGL [27]
and can be compiled independently of the non-graphical
functionalities. The GUI is extended via overlays, which
can be loaded on demand to present visual data for a new
feature (e.g. service).

The main overlay is the one responsible for presenting
physical information of the design including standard-cells,
macro-blocks, timing paths, and so forth. The circuit ele-
ments may be drawn and colorized by user-defined require-
ments and metrics, such as: criticality (e.g. slack), physical
cell type (e.g. combinational, sequential), and so forth.

The property list on the right presents physical and tim-
ing information. These fields automatically show cell’s data
when it is selected. The command line shell location is at the
bottom. There the user can issue any registered command
in the engine.

35

2.5 Sandbox
Sandboxes allow creating a draft design that can be opti-

mized independently of the main design. Once the optimiza-
tion is finished, the changes can be committed. Sandboxes
can be created from scratch or directly from a subset of el-
ements of the design, as shown in Figure 4.

Figure 4: A sandbox extracted from the main de-
sign.

A sandbox provides similar API as a module from where
instances can be created and connected via nets. However,
it does not support hierarchy. Usually, sandbox represents a
small design, and hence its implementation can take advan-
tage of the reduced number of elements to improve efficiency.

3. STANDARD COMPONENTS
Section 2 highlighted the basic infrastructure to work and

extend the Rsyn framework while this section presents sev-
eral services, processes, and other standalone components
already implemented. These are the parts that transform
Rsyn from a simple netlist data model into a powerful frame-
work to research physical synthesis and optimization meth-
ods.

3.1 Physical Design
The physical design comprises geometric information

about the circuit layout and the technology, as illustrated
in Figure 5. Physical design is responsible to aggregate and
associate physical layout data to the attributes of the logic
netlist. Moreover, the physical design also provides user-
defined attributes mapped to the remaining layout elements
(e.g. row, obstacle, die boundaries) and to the fabrica-
tion technology components. The notification system of the
physical design alerts registered observers about third-party
modification in the observed physical data. The hierarchical
organization of physical design is inspired by the architec-
ture of LEF and DEF formats.

3.2 Routing Estimation
The standard routing estimation service provides a way

to estimate the physical interconnection among the pins
of a net. Given a net, this service generates a Resis-
tance–Capacitance (RC) tree as shown in Figure 6. Con-
sequently, timing analysis, wire length estimation and con-
gesting prediction may use the estimated tree.

Currently, the routing estimation service relies on a rout-
ing estimation model to generate the interconnection. This
separation between the routing estimator and the routing
model allows using different methodologies during a flow or

Figure 5: Schematic of the Physical Design Infras-
tructure. The physical design manages data of the
circuit and the fabrication technology.

research project without requiring any additional changes to
the service.

The default routing model integrated into Rsyn generates
Steiner trees to estimate the interconnection. The Steiner
tree is then translated to an RC tree using resistance and
capacitance information from metal layers. The physical
design service supplies the pin positions.

Figure 6: Routing Estimated RC tree.

3.3 Timing Analysis
Static Timing Analysis (STA) is essential to assert the

performance of a design and to guide the optimization of a
synthesis flow. It is extensively used in several steps and
hence requires to be flexible and efficient.

The timer embedded in the Rsyn framework has the com-
mon functionality required by any STA tool, calculating the
Total Negative Slack (TNS), Worst Negative Slack (WNS),
arrival and required time at each pin and their slack, delay
of the timing arcs and tracing the critical path. The tim-
ing propagation may be estimated for early, and late modes
and the analysis is performed incrementally (i.e. only the
elements that need the update are updated). Currently, the
timer supports only one timing domain.

Similar to the routing estimation service, the timing anal-
ysis is independent of a timing model. Specific timing models
can be used at different steps according to the availability
of more accurate routing or sizing information for instance.
Combined with the separation of routing and routing model
estimation, it provides a flexible scheme for the algorithm

36

development avoid code rewriting. The high-level organiza-
tion of the timer is outlined in Figure 7.

Figure 7: Timing analysis and routing estimator in-
frastructure.

Currently, the default timing model implemented in Rsyn
is based on Elmore [6] delay following the guidelines pre-
sented in the ICCAD 15 contest. The default timing model
uses the RC tree generated by the default routing estima-
tor and cell characterization information obtained from a
Liberty file.

3.4 Standard-Cell Library Characterization
Rsyn framework provides a simple library characterization

service to compute the driver resistance and logical effort
[38] of standard-cell timing arcs. Library characterization
is performed by sampling the delay of the timing arc at
different capacitance loads and estimating the delay via least
squares regression as shown in Figure 8.

The drive resistance provides a linearized timing model,
which is useful for analytical optimization algorithms. The
drive resistance can also be used to sort cells by their drive
strength and reduce the number of candidates for a gate-
sizing algorithm, for instance.

3.5 Standard-Cell Legalization
Jezz legalizer [31] provides standard-cell legalization for

minimum cell displacement based on Abacus [37]. It sup-
ports cell legality evaluation, to legalize cells in full and in-
cremental modes, and cell legalization subject to maximum
displacement. Jezz features are available in Rsyn framework
via the service or process call systems.

Figure 8: Driver Resistance Computation

3.6 Utilities
The utilities are features inside of Rsyn framework that

provide shared resources to any element of the framework.
The main idea of utilities is to abstract and encapsulate
simple and very common required operations that are sys-
tematically performed inside of Rsyn components. A simple
example is to compute the boundary area for the physical
elements. There are several similar operations that are fre-
quently used and are required in practically all the frame-
work. The utilities may also be used to pass complex data,
like boundaries definition, between independent Rsyn ele-
ments. The most relevant utilities already available in the
framework are the following: colorize the design based on a
user-defined metrics; customized step and stopwatches; com-
mand line parser; execution logger; float point comparator;
definitions and operations for polygons and rectangles; and
Cartesian point.

3.7 Third Party Software
Rsyn framework integrates a set of third party projects.

They provide several features to the Rsyn framework. Be-
low it is shortly described their main features. FLUTE [4]
is an algorithm to build Steiner tree topologies that may be
used to estimate routing. NCTUgr [22] is a global router
tool. LEF and DEF [19] are parsers to recover data of the
fabrication technology and circuit layout, respectively. Lib-
erty [28] is a parser to recover timing and power information
of the cell library from the Liberty files. JSON for Modern
C++ [23] (Json) is a JavaScript Object Notation parser.
Json scripts control the initialization of parameters and exe-
cution order for algorithms and flow. LEMON [20] is a graph
library with a focus on combinational optimization mainly
linked to graphs and networks. CPLEX [5] is a solver to
mixed integer linear programming.

4. EXPERIMENTAL VALIDATION
Rsyn was created to fulfil the need to have a stable and

versatile infrastructure upon which our research projects and
contest tools could be developed. It was motivated to cope
with our frustration of having to spend more time coding
for infrastructure rather than optimization. Although our
research group had been very successful in recent EDA con-
tests, it was clear that the infrastructure developed for one
contest was too tied to the contest problem and was not
easily adapted to other contest or research projects.

So, after participating in the ICCAD 2014 Incremental
Timing-Driven Placement Contest [18], we started to ag-

37

gregate and refactor several years worth of coding into the
Rsyn framework. The goals were to create a platform where
all physical design related projects could be developed and
that would grow incrementally to form a full academic de-
sign flow. The framework should be intuitive to improve
code readability and allow fast prototyping of ideas, ulti-
mately freeing researchers to focus on the core of the re-
search project.

In this section, we explore some usages of Rsyn framework
in our research projects, which already show the benefits of
having such framework.

4.1 ICCAD 2015 Contest
The 2015’s edition of the ICCAD contest [17] served as

an opportunity to consolidate the new framework while
developing the desired algorithms. The development and
enhancement of the Rsyn framework overlapped with the
development of our research on incremental timing-driven
placement, which turned out to be a win-win relation. While
using Rsyn as the platform for the optimization algorithms,
several bugs were found and fixed, and new features were
implemented. It became easier to enhance our research
projects while consolidating the Rsyn framework.

We conceived a total of 9 analytical techniques to mitigate
both early and late timing violations which will be released
as default optimization methods of Rsyn. The techniques to
mitigate early timing violation rely on useful clock skew, it-
erative cell spreading, register swaps and register-to-register
path fix. In late timing violation, techniques go through
clustered movements (based on [2]) and single cell move-
ments aiming to reduce the load capacitance in the critical
nets, and balance driver load capacitance based on the cells
drive strength. Furthermore, moving non-critical cells away
from over-utilized regions minimizes area utilization over-
flow. The large number of different techniques implemented
was directly related to the flexibility to try new ideas pro-
vided by Rsyn.

The techniques were integrated into the flow depicted in
Fig. 9. A diamond shape indicates that the steps run un-
til the quality of the result stops improving while the circle
shape means that the quality of the result may degrade a
certain number of times before exiting. The flow produces
the best-known results for the ICCAD 2015 contest infras-
tructure, reducing on average the late WNS slack by 11%
and the late TNS by 33% w.r.t. the initial placement so-
lution. This Timing-driven placement flow completely re-
moves early timing violation on 62.5% of the benchmarks.
For more details about the techniques, please refer to [7].

4.2 Routing-Aware Incremental Timing-
Driven Placement

We have also extended our previous work [7] to avoid cell
movement towards to routing bins that have routing over-
flow violation. Therefore, this flow mitigates early and late
timing violations aware of routing congestion regions. More-
over, Rsyn infrastructure was extended to support routing
data and a third party router. The 2016 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI) paper [24]
addresses the proposed Routing-Aware Incremental Timing-
Driven Placement flow.

This project shows how Rsyn can be enhanced incremen-
tally. Although the congestion infrastructure still needed to

Early Optimization Late Optimization

Skew Optimization

Iterative Spreading

Register Swap

Reg-To-Reg Path Fix

Buffer Balancing

Cell Balancing

Load Optimization

Clustered Move

ABU Reduction

Initial Placement

Figure 9: Our timing-driven flow

be developed, it is now part of the Rsyn framework being
available to other projects.

4.3 Incremental Timing-Driven Quadratic
Placement

One drawback of the proposed flow in [7] is the absence
of global timing-driven placement techniques. The clustered
cell movement is the only technique that moves more than
one cell at the same time, and yet the limit of cells per
cluster and the search area are small. To cope with that, we
proposed an incremental quadratic formulation for timing-
driven placement.

Quadratic formulations have been explored for global
wirelength-driven placement [42, 21] and timing-driven
placement [43, 34]. However, the existing techniques are
purely constructive, i.e., do not consider previous solutions,
a behavior which is not desired during incremental place-
ment. In [8] a method is proposed to apply quadratic place-
ment incrementally, which is called neutralization.

Figure 10 presents the key ideas of such technique. The
original netlist (Fig. 10(a)) is transformed into a graph using
the methodologies presented in [42] (Fig. 10(b)). Neutral-
ization forces are added to avoid a major disturbance in the
initial solution (Fig. 10(c)) and the critical paths are identi-
fied (Fig. 10(d)). Then extra edges are added between nodes
of the critical path (Fig. 10) making the quadratic placement
align the critical paths. The weights of these edges are set
to address Elmore delay [6], which is another contribution of
that work. Applying this formulation jointly with the flow
presented in Section 4.1 improves the results, on average, by
9.4% and 7.6% regarding WNS and TNS, respectively.

In this project, we already could take advantage of the in-
frastructure implemented inside Rsyn, finally being able to
fully focus on the optimization process. Many analysis and
experimentation tasks were done exploring much of the in-
frastructure provided by Rsyn, such as critical path tracing,
legalization and visualization.

5. RELATED WORKS
One of the most traditional open source projects among

EDA community is ABC [1] from Berkley University. ABC
is a logic synthesis and verification environment on which
users may rely on user-friendly and flexible data structures.
Just like Rsyn, ABC aims to support different applications.
The project is consolidated, providing implementations of

38

Figure 10: Incremental timing-driven quadratic
placement strategy.The neutralization forces are
drawn as the black single-edged arrows, the critical
path as the bold red line and the additional forces
as the double-edged blue arrows.

many state-of-art algorithms and support for many indus-
trial and academic file formats [1].

Another open project on synthesis is Yosys [44], which
translates Verilog code to an equivalent netlist, support-
ing both Application-Specific Integrated Circuit (ASIC) and
Field-Programmable Gate Array (FPGA) flows. One of the
Yosys goals is to make up for the lack of the extensibility of
commercial synthesis tools. It features flexible data struc-
tures and tools for coarse grain synthesis. ABC is integrated
into Yosys flow to perform logic minimization and technol-
ogy mapping. Yosys is available on GitHub licensed under
Internet Systems Consortium (ISC) license [16]. Once Rsyn
and Yosys are both open sources and collaborative tools, a
middleware could be build using both projects to provide
logic and physical design.

OpenTimer [14] is an open-source tool for static timing
analysis, winner of three awards in TAU contests [12, 11]. It
implements a scheduler that aids to perform different tasks
in parallel, achieving a runtime ten times smaller than other
academic tools. Other features include Common Path Pes-
simism Removal (CPPR) and a fast incremental timing anal-
ysis. OpenTimer code is available on its website [13] under a
General Public License (GPL) license [9]. Unfortunately, it
is outside of any control version repository for the EDA com-
munity to share its contributions to the project. However,
since OpenTimer is an accurate and fast academic tool, it
may be integrated as part of Rsyn tools and repository and
extended according to the community needs.

Parsing tools may compose the largest group of the avail-
able open projects. We highlight Icarus Verilog [15] for
Hardware Description Language (HDL), Liberty Parser [28]
for standard cell libraries and OpenAcess [26]. The Ope-
nAccess is a C++ API that provides a solution for the wide
range of complex file formats and syntax present today in
the commercial design flow, such as LEF/DEF. Its source
code is open, so the industry and academic community may

propose extensions. By adopting an open and verified API,
the EDA engineers may avoid coding their parsers, leading
to fewer errors in the design flow.

Until now, we addressed only individual tools. Qflow [32]
proposes an entirely open source design flow, from Verilog
description to physical layout. It takes advantage of other
academic tools, like Yosys [44] for Verilog parsing, Gray-
wolf [10] for placement and Qrouter [33] for detailed routing.
The authors claim that small commercial circuits were al-
ready designed using Qflow and highlight that small startups
which cannot afford commercial tools may take advantage
of the design flow.

Ophidian [29] is an open source project focused on re-
search and teaching to physical synthesis. However, the
project has only support to parsing few types of circuit files,
netlist, and placement.

We believe there is a wide space for projects like ABC
and Yosys on the physical design domain. Since nowadays
there is no open framework addressing physical design where
EDA developers may share their implementations. Rsyn fits
this task and it goes further providing tools to report results
(e.g. graphics) and a user interface to aid in the debugging
process.

6. CONCLUSION
This paper presented Rsyn, an open-source framework

that provides a versatile and modular infrastructure for
physical synthesis research. Rsyn is designed to be extended
incrementally and already contains several components that
allow researchers to focus on the core of the research project
rather than on the infrastructure to support it. Rsyn pro-
vides a standard and collaborative platform to share imple-
mentations, optimization techniques and code reuse.

With Rsyn, we intend to build a comprehensive, but in-
tuitive physical design environment where the EDA com-
munity can develop and analyze new techniques. Rsyn also
aims at getting more students interested in EDA research by
allowing a better interaction with optimization algorithms.

Our current experience with the framework, already shows
its potential to increase productivity. Rsyn allowed us to
enhance our current results and explore different research
topics much faster than what would be possible without it.

Acknowledgments
This work is partially supported by Brazilian Coordina-
tion for the Improvement of Higher Education Personnel
(CAPES) and by the National Council for Scientific and
Technological Development (CNPq).

7. REFERENCES
[1] Berkeley Logic Synthesis and Verification Group,

ABC: A System for Sequential Synthesis and
Verification.
http://www.eecs.berkeley.edu/˜alanmi/abc/.

[2] A. Bock, S. Held, N. Kammerling, and U. Schorr.
Local search algorithms for timing-driven placement
under arbitrary delay models. In DAC, pages 1–6,
June 2015.

[3] Bookshelf. http://vlsicad.eecs.umich.edu/BK/
ISPD06bench/BookshelfFormat.txt.

39

[4] C. Chu and Y. C. Wong. Flute: Fast lookup table
based rectilinear steiner minimal tree algorithm for
vlsi design. TCAD, 27(1):70–83, Jan 2008.

[5] Cplex. http://www-03.ibm.com/software/products/
en/ibmilogcpleoptistud/.

[6] W. C. Elmore. The Transient Response of Damped
Linear Networks with Particular Regard to Wideband
Amplifiers. Journal of Applied Physics, 19(1):55–63,
1948.

[7] G. Flach, M. Fogaça, J. Monteiro, M. Johann, and
R. Reis. Drive strength aware cell movement
techniques for timing driven placement. In ISPD, 2016.

[8] M. Fogaça, G. Flach, J. Monteiro, M. Johann, and
R. Reis. Quadratic timing objectives for incremental
timing-driven placement optimization. In ICECS,
2016.

[9] Gnu general public license.
https://www.gnu.org/licenses/gpl-3.0.en.html.

[10] Graywolf. https://github.com/rubund/graywolf.

[11] J. Hu, G. Schaeffer, and V. Garg. Tau 2015 contest on
incremental timing analysis. In ICCAD, pages
882–889, Nov 2015.

[12] J. Hu, D. Sinha, and I. Keller. Tau 2014 contest on
removing common path pessimism during timing
analysis: Special session paper: Common path
pessimism removal (cppr). In ICCAD, pages 591–591,
Nov 2014.

[13] T.-W. Huang and M. D. F. Wong. Opentimer: An
open-source high-performance timing analysis tool.
https://web.engr.illinois.edu/˜thuang19/software/
timer/OpenTimer.html.

[14] T.-W. Huang and M. D. F. Wong. Opentimer: A
high-performance timing analysis tool. In ICCAD,
ICCAD ’15, pages 895–902, Piscataway, NJ, USA,
2015. IEEE Press.

[15] Icarus verilog. http://iverilog.icarus.com/.

[16] Isc license (isc). https://opensource.org/licenses/ISC.

[17] M.-C. Kim, J. Hu, J. Li, and N. Viswanathan.
Iccad-2015 cad contest in incremental timing-driven
placement and benchmark suite. In ICCAD, ICCAD
’15, pages 921–926, Piscataway, NJ, USA, 2015. IEEE
Press.

[18] M.-C. Kim, J. Hu, and N. Viswanathan. Iccad-2014
cad contest in incremental timing-driven placement
and benchmark suite. In ICCAD, ICCAD ’14, pages
361–366, Piscataway, NJ, USA, 2014. IEEE Press.

[19] Lef/def. http://www.si2.org/. 2016-11-21.

[20] Library for efficient modeling and optimization in
networks (lemon).
https://lemon.cs.elte.hu/trac/lemon.

[21] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and
I. Nedelchev. POLAR: Placement based on novel
rough legalization and refinement. In ICCAD, Nov
2013.

[22] W. H. Liu, W. C. Kao, Y. L. Li, and K. Y. Chao.
Nctu-gr 2.0: Multithreaded collision-aware global
routing with bounded-length maze routing. TCAD,
32(5):709–722, May 2013.

[23] N. Lohmann. Json.
https://github.com/nlohmann/json. 2016-11-21.

[24] J. Monteiro, N. K. Darav, G. Flach, M. Fogaça,
R. Reis, A. Kennings, M. Johann, and L. Behjat.
Routing-aware incremental timing-driven placement.
In ISVLSI, pages 290–295, July 2016.

[25] G.-J. Nam. Ispd 2006 placement contest: Benchmark
suite and results. In ISPD, ISPD ’06, pages 167–167,
New York, NY, USA, 2006. ACM.

[26] Openaccess coalition.
https://projects.si2.org/oac index.php.

[27] Opengl. https://www.opengl.org/. 2016-11-21.

[28] Open source liberty.
http://www.opensourceliberty.org/.

[29] Ophidian - open-source library for physical design
research and teaching.
https://github.com/eclufsc/ophidian.

[30] M. M. Ozdal, C. Amin, A. Ayupov, S. M. Burns,
G. R. Wilke, and C. Zhuo. An improved benchmark
suite for the ispd-2013 discrete cell sizing contest. In
ISPD, ISPD ’13, pages 168–170, New York, NY, USA,
2013. ACM.

[31] J. C. Puget, G. Flach, R. Reis, and M. Johann. Jezz:
An effective legalization algorithm for minimum
displacement. In SBCCI, pages 1–5, Aug 2015.

[32] Qflow. http://opencircuitdesign.com/qflow/.

[33] Qrouter. http://opencircuitdesign.com/qrouter/.

[34] B. M. Riess and G. G. Ettelt. SPEED: fast and
efficient timing driven placement. In ISCAS, volume 1,
1995.

[35] Rsyn. http://rsyn.design.

[36] D. Sinha, L. Guerra e Silva, J. Wang, S. Raghunathan,
D. Netrabile, and A. Shebaita. Tau 2013 variation
aware timing analysis contest. In ISPD, ISPD ’13,
pages 171–178, New York, NY, USA, 2013. ACM.

[37] P. Spindler, U. Schlichtmann, and F. M. Johannes.
Abacus: Fast legalization of standard cell circuits with
minimal movement. In ISPD, ISPD ’08, pages 47–53,
New York, NY, USA, 2008. ACM.

[38] I. Sutherland, B. Sproull, and D. Harris. Logical Effort:
Designing Fast CMOS Circuits. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1999.

[39] C. N. Sze, P. Restle, G.-J. Nam, and C. Alpert.
Ispd2009 clock network synthesis contest. In ISPD,
ISPD ’09, pages 149–150, New York, NY, USA, 2009.
ACM.

[40] Ieee standard verilog hardware description language.
IEEE Std 1364-2001, pages 01–856, 2001.

[41] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei.
Iccad-2012 cad contest in design hierarchy aware
routability-driven placement and benchmark suite. In
ICCAD, pages 345–348, Nov 2012.

[42] N. Viswanathan and C. C. N. Chu. FastPlace: efficient
analytical placement using cell shifting, iterative local
refinement,and a hybrid net model. TCAD, 24, 2005.

[43] N. Viswanathan, G.-J. Nam, J. A. Roy, Z. Li, C. J.
Alpert, S. Ramji, and C. Chu. ITOP: Integrating
Timing Optimization Within Placement. In ISPD.
ACM, 2010.

[44] C. Wolf. Yosys open synthesis suite.
http://www.clifford.at/yosys/.

[45] wxwidgets. http://www.wxwidgets.org/. 2016-11-21.

40

