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ABSTRACT

Compressive Sensing (CS) has emerged as a potentially viable tech-
nique for the efficient acquisition of high-resolution signals and im-
ages that have a sparse representation in a fixed basis. The number of
linear measurementsM required for robust polynomial time recov-
ery ofS-sparse signals of lengthN can be shown to be proportional
to S log N . However, in many real-life imaging applications, the
originalS-sparse image may be blurred by an unknown point spread
function defined over a domainΩ; this multiplies the apparent spar-
sity of the image, as well as the corresponding acquisition cost, by a
factor of|Ω|. In this paper, we propose a new CS recovery algorithm
for such images that can be modeled as a sparse superpositionof
pulses. Our method can be used to infer both the shape of the two-
dimensional pulse and the locations and amplitudes of the pulses.
Our main theoretical result shows that our reconstruction method re-
quires merelyM = O(S + |Ω|) linear measurements, so thatM

is sublinear in the overall image sparsityS|Ω|. Experiments with
real world data demonstrate that our method provides considerable
gains over standard state-of-the-art compressive sensingtechniques
in terms of numbers of measurements required for stable recovery.

Index Terms— Compressive sensing, blind deconvolution,
sparse approximation

1. INTRODUCTION
Compressive Sensing (CS) [1, 2] is an alternate framework
to the traditional Shannon/Nyquist framework of digital sig-
nal and image acquisition. CS can be viewed as a scheme for
simultaneous sensing and compression; instead of being pro-
portional to the Fourier bandwidth, the rate of data acquisition
need only be proportional to thesparsityof the signal, i.e., the
number of nonzero coefficients of a signal representation in
some basis. Thus, if the sparsity of the target signal/imageis
known to be much smaller than its ambient dimension, then
CS can potentially lead to considerable savings in data acqui-
sition and transmission costs.

Nevertheless, in many real-world sensing applications,
the assumption of exact sparsity is an oversimplification. For
example, CS has been proposed as an effective method for
astronomical imaging [3]. A perfectly sharp high-resolution
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image of the night sky would consist of a sparse field of
points (corresponding to the locations of the stars). Instead,
the image acquired by an ordinary telescope comprises a
sparsesuperposition of pulses, owing to atmospheric effects
and non-idealities in the imaging apparatus. This translates
to an apparentincrease in sparsityof the underlying image
and consequently has an adverse effect on the performance of
any state-of-the-art CS imaging system. Similar blurring ef-
fects are observed in various other applications, such as radio
interferometry, synthetic aperture radar (SAR), and sonar.

In this paper, we develop and analyze a CS framework
for the compressive acquisition of sparse images contami-
nated by a small amount of unknown blur. We motivate a
deterministic model for the image classes of interest; we de-
rive a bound on the number of linear measurements required
to encode the essential information contained in this model;
and finally, we develop an iterative algorithm that estimates
both the two-dimensional (2D) locations and amplitudes of
the sparse nonzeros of the image, as well as the 2D-blurring
function, using far fewer measurements than conventional CS
methods. Our approach can be linked to various concepts in
the literature, including dictionary learning [4] and blind de-
convolution [5]. Our work is an extension of our recent theory
and methods dealing with the compressive sensing of streams
of 1D pulses [6].

The paper is organized as follows. Section 2 provides a
brief review of compressive sensing, as well as deconvolu-
tion techniques used in imaging. Section 3 introduces our
proposed signal model and describes our main theoretical re-
sult and algorithm. Section 4 illustrates the advantages ofour
method with example reconstructions of an real world image.
Section 5 concludes with discussion and extensions.

2. PRELIMINARIES

A signalx ∈ RN is termed asK-sparse in the orthonormal
basisΨ if the corresponding basis expansionα = ΨT x con-
tains no more thanK nonzero elements. In the sequel, unless
otherwise noted, the sparsity basisΨ is assumed to be the
identity matrix forRN . Denote the set of allK-sparse signals
in R

N asΣK . In terms of geometry,ΣK can be identified
as the union of

(
N

K

)
, K-dimensional subspaces ofRN , with

each subspace being the linear span of exactlyK canonical
unit vectors ofRN .



2.1. Compressive Sensing

Suppose instead of collecting all the coefficients of a vec-
tor x ∈ RN , we merely recordM inner products (measure-
ments) ofx with M < N pre-selected vectors; this can be
represented in terms of a linear transformationy = Φx, Φ ∈
RM×N . The central tenet of CS is thatx can beexactlyrecov-
ered fromy, even thoughΦ is low-rank and has a nontrivial
nullspace. In particular, a condition onΦ known as there-
stricted isometry property(RIP) can be defined thus [7]:

Definition 1 An M × N matrix Φ has theK-RIP with con-
stantδK if, for all x ∈ ΣK ,

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22. (1)

A matrixΦ with theK-RIP essentially ensures a stable metric
embedding of the set ofall K-sparse signals into a space of
dimensionM . An important hallmark of CS is that matrices
whose elements are chosen as i.i.d. samples from a random
subgaussian distribution [8] satisfy the RIP with high prob-
ability, providedM ≥ O (K log(N/K)). Thus,M is linear
in the sparsity of the signal setK andonly logarithmicin the
ambient dimensionN .

CS signal recovery aims to perform stable, feasible inver-
sion of the operatorΦ onto its domainΣK . A multitude of CS
recovery algorithms exist in the literature; recently, iterative
support selection algorithms (eg., CoSaMP [9]) have emerged
that offer uniform, stable guarantees while remaining compu-
tationally efficient. The RIP plays a crucial role in CS re-
covery; it can be shown that ifΦ possesses the3K-RIP, then
state-of-the-art recovery algorithms like CoSaMP can recover
anyK-sparse signalx, given measurementsy = Φx.

2.2. Applications of CS in 2D-imaging

The CS approach can be used in a variety of imaging appli-
cations. As a consequence of the theory described above, CS
techniques for imaging are particularly effective in settings
where (i) the cost of acquiring each pixel measurement is
high, and (ii ) the target image can be sparsely represented by
a suitable fixed basis. One example of a CS imaging system
is the single-pixel camera [10]. CS has also been proposed
as a viable approach in astronomical imaging, since the ac-
tual sparsity of a size-N image of the night sky (measured in
terms of the canonical basis) is much smaller thanN [3].

3. A CS FRAMEWORK FOR 2D PULSES

3.1. Motivation
Due to variable environmental conditions, as well as imper-
fections in the imaging apparatus (such as a poorly focussed
lens), acquired images are often corrupted by a small amount
of unknown blur. In applications such as astronomical imag-
ing, the objects in the field of view may be reasonably mod-
eled to be at infinity, so that the blurring function remains

stationary across different parts of the image. Assuming a
sparse underlying field of light sources (which are well well-
separated in space) and a stationary blurring function, theac-
quired image appears as a superposition of non-overlapping
pulses with identical shapes but varying amplitudes. If the
original image consists ofS nonzeroes and the blurring ker-
nel is defined over a domainΩ, then the overall sparsity of the
acquired image jumps toO (S|Ω|) (where| · | denotes cardi-
nality of a set). Thus, for a CS imaging system to yield com-
parable image quality as in the ideal case, the number of mea-
surements increases toO (S|Ω| log(N/S|Ω|)). In many sit-
uations, the cost of acquiring these additional measurements
may be prohibitively high.

Despite this apparent increase in the sparsity of the ac-
quired image, it is clear that the number of “independent” de-
grees of freedom in the image is much smaller thanS|Ω|. This
is due to the fact that the sparse signal model does not capture
the inter-dependencies among the nonzero coefficients. This
motivates us to develop a new CS framework for 2D-fields of
pulses. As with existing CS approaches, we introduce and an-
alyze three concepts: a high-dimensional model for our sig-
nals of interest, a sampling bound (akin to the RIP), and a
feasible recovery algorithm.

3.2. Signal model
Without loss of generality, we will assume that the signals
of interest are square 2D-images ofN pixels. Thus, a typical
signalz consists of a sum ofS spikesx in a 2D-field circularly
convolved with an unknown 2D-blurring kernelh:

z = x ∗ h,

Owing to the commutative nature of convolution, any such
elementz can be represented in multiple ways:

z = Hx = Hx,

whereH (respectively,X) is a square circulant matrix with
its columns comprising two-dimensional circular shifts ofthe
vectorh (respectively,x). In general, for a givenz, H and
x need not be unique. To avoid possible ambiguities, we
make the following two assumptions: (i) The blurring ker-
nel is minimum phase. For square 2D-signals, this implies
that the nonzero coefficients of the blurring kernel are concen-
trated in a circular regionΩ of diameterd around thecenter
of the square. This is in order to remove any possible ambi-
guities arising from the shift-invariant nature of convolution.
(ii ) The S nonzero spikes comprisingx are separated by at
least∆ pixels in discrete 2D-space, where∆ > d. This is
in order to ensure that the pulses do not overlap. Hence, we
are implicitly assuming a specialstructureamong the sparse
nonzero coefficients ofx; a similar model for 1D signals has
been introduced and studied in [11]. We denote this special
2D-structured sparsity model asM∆

S
. A general signal model

for a superposition of 2D-pulses can be defined thus:



Definition 2 LetM∆
S

be the structured sparsity model in the
space ofN -dimensional square 2D-images as defined above.
LetMΩ be the space of minimum phase kernels with nonzeros
restricted to the regionΩ. Define the set:

M(S, Ω, ∆) := {z ∈ R
N : z = x ∗ h,

such thatx ∈ M∆
S andh ∈ MΩ}.

Then,M(S, Ω, ∆) is called a 2D pulse-field model.

3.3. Sampling bound
We derive an RIP-like sampling bound for signals belong-
ing to the 2D pulse-field model. Observe that any signal
z ∈ M(S, Ω, ∆) consists of at mostS × |Ω| nonzeros; thus,
M(S, Ω, ∆) is a subset of the set of all (S|Ω|)-sparse signals.
On the other hand, only a small fraction of all (S|Ω|)-sparse
signals can be written as a superposition of pulses. Thus,
to achieve an RIP-like stable embedding for this reduced set
of signals, intuition suggests that we require far fewer than
O (S|Ω| log N) linear measurements. The following theorem
makes this notion precise.

Theorem 1 SupposeM(S, Ω, ∆) is a 2D pulse-field model
as in Definition 2. Then, for anyt > 0 and

M ≥ O

(
1

δ2

(
(S + |Ω|) ln

(
1

δ

)
+ S log(N/S −∆) + t

))

anM ×N i.i.d. subgaussian matrixΦ will satisfy the follow-
ing property with probability at least1 − e−t: for every pair
z1, z2 ∈ M(S, Ω, ∆),

(1 − δ)‖z1 − z2‖
2
2 ≤ ‖Φz1 − Φz2‖

2
2 ≤ (1 + δ)‖z1 − z2‖

2
2.

Proof sketch. A full proof of this theorem is presented in
the expanded final version of the manuscript [12]. The proof
mechanism involves constructing a net of points inRN which
can be shown to lie within a squared distanceδ of any nor-
malized pointz belonging to the model, and applying the
Johnson-Lindenstrauss lemma for approximate metric preser-
vation of finite point clouds. �

Theorem 1 indicates that the number of measurements re-
quired for the stable geometric embedding of signals inM
is proportional to(S + |Ω|); thus, it issublinearin the maxi-
mum sparsityS|Ω| of the images of interest.

3.4. Recovery algorithm
The CS recovery problem can be stated as follows: given
measurements of a superposition of pulses:

y = Φz = ΦHx = ΦXh,

the goal is to reconstruct the best possiblez ∈ M(S, Ω, ∆)
from the measurementsy. Standard or structured sparsity
methods for CS recovery are unsuitable for this problem,

Algorithm 1 CS recovery of 2D pulse-fields

Inputs: Projection matrixΦ, measurementsy,
model parametersS, Ω, ∆.

Output:M(S, Ω, ∆)-approximation̂z to true signalz
Initialize: x̂ = 0 , ĥ = (1⊤

Ω , 0, . . . , 0); i = 0
while halting criterion falsedo

(estimate spike locations and amplitudes)
1. i← i + 1

2. ẑ ← x̂ ∗ ĥ

3. Ĥ = C(ĥ), Φh = ΦĤ
4. e← Φ⊤

h
(y − Φhx̂)

5. Ω← supp(D2(e))
6. T ← Ω ∪ supp(x̂i−1)

7. b|T ← (Φh)†
T
y, b|T C = 0

8. x̂← D(b)
(estimate blurring kernel)
9. X̂ = C(x̂), Φx = ΦX̂

10. ĥ← Φ†
xy

end while
returnẑ ← x̂ ∗ ĥ

since bothx (respectively,X) and h (respectively,H) are
unknown and have to be simultaneously inferred. This task
is similar to performingblind deconvolution[5], which at-
tempts simultaneous inference of the spike locations and
kernel coefficients; the key difference is that in our case, we
are only given access to the random measurementsy and not
the Nyquist-rate samplesx. We adopt a two-stage iterative
approach for signal recovery, akin to the Richardson-Lucy
algorithm for blind deconvolution [13]. We fix estimates of
the spikeŝxi and kernel coefficientŝhi, and update the con-
figuration of the spike locations. This can be shown to be
equivalent to performing one iteration of CoSaMP, followed
by solving a simple linear program (refer [11] for a detailed
description of the 1D-analogue of the procedure.) Once a
new candidate for the spike vectorx̂i+1 has been chosen, we
solve for the kernel coefficientŝhi+1 using a least-squares
procedure. This process is iterated until convergence.

The full algorithm is detailed in pseudocode form in Al-
gorithm 1. Steps 1 to 8 within each iteration are carried out in
order to update the estimates of the spike locations and ampli-
tudes given a fixed estimate of the 2D-kernel; Steps 9 and 10
are subsequently used to update the kernel coefficients. The
algorithm possesses the same iterative structure as CoSaMP,
with three main differences:(i) the kernel estimatêh can be
transformed into its circular convolution operatorĤ via the
one–to-one mappingC and is subsequently used to form the
overall linear operatorΦh; (ii) the sparse approximation steps
(5 and 8) are instead replaced by linear programsD, D2 in
order to perform best approximations to theM∆

S
-structured

sparsity model; and,(iii) the kernel is updated in steps 9 and
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Fig. 1. (a) Black-and-white image of V838 Monocerotis, a nova-likestar, captured by the Hubble Space Telescope on February 8, 2004
(http://heritage.stsci.edu/gallery/bwgallery/bw0405/about.shtml) . (b) Test image is a zoomed in-version of the region highlighted in green
(resolutionN = 64 × 64 = 4096.) Reconstruction of test image fromM = 330 random Gaussian measurements was performed using (c)
CoSaMP and (d) Algorithm 1. Our algorithm is robust to variations in the pulse shapes across different 2D pulses.

10 via a simple matrix pseudoinverse. A more detailed de-
scription of the mechanism and properties of the algorithm
can be found in the expanded version of this paper [12].

4. NUMERICAL EXAMPLES

To demonstrate the utility of our approach, we test our pro-
posed algorithm on a real astronomical image. Our test im-
age is a64 × 64 region of a high-resolution image of V838
Monocerotis (a nova-like variable star) captured by the Hub-
ble Space Telescope (highlighted by the green square in Fig-
ure 1(a)). Notice the significant variations in the shapes of
the 3 large pulses in the test image (Figure 1(b)), as well
as smaller, spurious pulses. We measure this image using
M = 330 random measurements and reconstruct using both
the sparse approximation approach (CoSaMP) as well as our
proposed Algorithm 1. For our reconstruction methods, we
usedS = 3, |Ω| = 120, K = 360 and∆ = 20. As is visually
evident from Figure 1, conventional CS does not provide use-
ful results with this reduced set of measurements. In contrast,
our approach gives us excellent estimates for the locationsof
the pulses. Further, our algorithm also provides an circular
pulse shape estimate that could be viewed to be equivalent to
be a weighted average of the 3 original pulses.

5. DISCUSSION

We have introduced a new CS framework for a superposi-
tion of 2D pulses. The key notion is to establish a particular
geometric model governing the signal set of interest . This
enabled us to quantitatively derive a reduced bound on the
number of random measurements required for the stable em-
bedding of this set. Further, we have developed a recovery
algorithm that estimates both the spike locations as well as
the 2D-profile of the pulses, and numerically demonstrated
its benefits over state-of-the-art methods for CS recovery.We
have discussed sparse signals and images as represented in
the identity basis; our method could be extended in principle

to wavelet- and Fourier-sparse 2D-functions. While our theo-
retical results are promising, we still do not possess a com-
plete characterization of the convergence properties of our
proposed algorithm, as well as its sensitivity to factors such as
noise and model-mismatch; we defer these challenging theo-
retical issues to future research.
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