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ABSTRACT image of the night sky would consist of a sparse field of

points (corresponding to the locations of the stars). hukte

the image acquired by an ordinary telescope comprises a

sparsesuperposition of pulse®wing to atmospheric effects

and non-idealities in the imaging apparatus. This traeslat

to an apparenincrease in sparsityf the underlying image

and consequently has an adverse effect on the performance of
ny state-of-the-art CS imaging system. Similar blurrifig e
ects are observed in various other applications, suchdis ra

Compressive Sensing (CS) has emerged as a potentiallyevidit-
nique for the efficient acquisition of high-resolution sidgand im-
ages that have a sparse representation in a fixed basis. iteenaf
linear measurement®/ required for robust polynomial time recov-
ery of S-sparse signals of lengtN can be shown to be proportional
to Slog N. However, in many real-life imaging applications, the
original S-sparse image may be blurred by an unknown point sprea

function defined over a domain; this multiplies the apparent spar- . .
sity of the image, as well as the corresponding acquisitam, by a interferometry, synthetic aperture radar (SAR), and sonar

factor of|©2]. In this paper, we propose a new CS recovery algorithm In this paper, _We deve_Io.p. and analyze ‘_"‘ CsS framework
for such images that can be modeled as a sparse superpagition 0" the compressive acquisition of sparse images contami-

pulses. Our method can be used to infer both the shape of the twN@t€d by a small amount of unknown blur. We mot.ivate a
dimensional pulse and the locations and amplitudes of thgepu deterministic model for the image classes of interest; we de

Our main theoretical result shows that our reconstructiethad re- V€ @ bound on the number of linear measurements required
quires merelyM = O(S + |Q2|) linear measurements, so that  © encode the essential information contained in this model

is sublinear in the overall image sparsfys|. Experiments with and finally, we develop an iterative algorithm that estiraate
real world data demonstrate that our method provides cerafite POt the two-dimensional (2D) locations and amplitudes of

gains over standard state-of-the-art compressive setmihgiques (1€ Sparse nonzeros of the image, as well as the 2D-blurring
in terms of numbers of measurements required for stableeego function, using far fewer measurements than conventiofal C

. . . ~methods. Our approach can be linked to various concepts in
Index Terms— Compressive sensing, blind deconvolution, the jiterature, including dictionary learning [4] and lulide-
sparse approximation convolution [5]. Our work is an extension of our recent thyeor
1. INTRODUCTION and methods dealing with the compressive sensing of streams

Compressive Sensing (CS) [1, 2] is an alternate frameworfzf 1D pulses [6_]' _ . .
to the traditional Shannon/Nyquist framework of digitaj-si The paper is organized as follows. Section 2 provides a

nal and image acquisition. CS can be viewed as a scheme fBF€f review of compressive sensing, as well as deconvolu-
fion techniques used in imaging. Section 3 introduces our

simultaneous sensing and compression; instead of being pr _ ) ) i
portional to the Fourier bandwidth, the rate of data actjaisi proposed signal model and describes our main theoretical re
sult and algorithm. Section 4 illustrates the advantagesiof

need only be proportional to ttsparsityof the signal, i.e., the : X )
number of nonzero coefficients of a signal representation iff€thod with example reconstructions of an real world image.
some basis. Thus, if the sparsity of the target signal/inimge Section 5 concludes with discussion and extensions.

known to be much smaller than its ambient dimension, then

CS can potentially lead to considerable savings in dataiacqu 2. PRELIMINARIES

sition and transmission costs. ) ) )

Nevertheless, in many real-world sensing applications’ Signalz € RY is termed asi’-sparse in the orthonormal
the assumption of exact sparsity is an oversimplificatiaw. F Pasis¥ if the corresponding basis expansion= Uz con-
example, CS has been proposed as an effective method f&ins no more thai’ nonzero elemen.ts. In the sequel, unless
astronomical imaging [3]. A perfectly sharp high-resanti  Otherwise noted, the sparsity bagisis assumed to be the
identity matrix forRY. Denote the set of alk-sparse signals
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2.1. Compressive Sensing stationary across different parts of the image. Assuming a

S instead of collecti Il th fficients of sparse underlying field of light sources (which are well well
uppose lens €ad ot collecting all the coetlicients of a Vec'separated in space) and a stationary blurring functiorathe
tor x € RY, we merely recordV/ inner products (measure-

_ SN quired image appears as a superposition of non-overlapping
ments) OdeV\_"trl M < 15\7 ||3_re-seltecte(;l vectqrs, 'gns q(ian be pulses with identical shapes but varying amplitudes. If the
{R{ejﬁrfﬁeq_ﬁ n ?rnpts 0 ? :cncegr. rtarllr;scorn;)am " ©® € original image consists of nonzeroes and the blurring ker-

- 'hecentraltenet o IS an bEEXactiyrecov- s defined over a domaip, then the overall sparsity of the
ered fromy, even thoughb is low-rank and has a nontrivial

) o ired i j Q h - | denot di-
nullspace. In particular, a condition @ known as thae- acquired image jumps 10 (5|2} (where] - | denotes cardi

: ! . i nality of a set). Thus, for a CS imaging system to yield com-
stricted isometry propert{RIP) can be defined thus [7]: parable image quality as in the ideal case, the number of mea-

Definition 1 An M x N matrix ® has theK-RIP with con-  surements increases @(S|€2| log(N/S[€[)). In many sit-

stantdg if, for all z € X, uations, the cost of acquiring these additional measur&men
) ) ) may be prohibitively high.
(1 =6r)llzllz < [|Pz]lz < (14 dk)llzl3- 1) Despite this apparent increase in the sparsity of the ac-

A matrix ® with the K-RIP essentially ensures a stable metricqUIer Image, it IS clear_that th_e number of mdepender.]t de
grees of freedom in the image is much smaller t8gn|. This

embedding of the set @l K-sparse signals into a space of : .
dimensionM . An important hallmark of CS is that matrices is due to the fact that the sparse signal model does not @aptur

. the inter-dependencies among the nonzero coefficients Thi
whose elements are chosen as i.i.d. samples from a randoﬂ‘l P 9

subgaussian distribution [8] satisfy the RIP with high prob motivates us to de_ve_lop anew CS framework for 2D-fields of
ability, providedM > O (K log(N/K)). Thus,M is linear pulses. As with existing CS approaches, we introduce and an-

in the sparsity of the signal séf andonly logarithmicin the alyze th_ree concepts: a r_ngh—d|men3|or_1al model for our sig-
ambient dimensiony. nals of interest, a sampling bound (akin to the RIP), and a

CS signal recovery aims to perform stable, feasible inver]feaSIbIe recovery algorithm.

sion of the operatop onto its domairt . Amultitude of CS 3.2 signal model

recovery algorithms exist in the literature; recentlyrative Without loss of generality, we will assume that the signals

support selection algorithms (eg., CoSaMP [9]) have emliergeof interest are square 2D-images/éfpixels. Thus, a typical

that offer uniform, stable guarantees while remaining comp signalz consists of a sum d&f spikesr in a 2D-field circularly

tationally efficient. The RIP plays a crucial role in CS re- ; ) -
covery; it can be shown that # possesses tH3¥-RIP, then convolved with an unknown 2D-blurring kernf
state-of-the-art recovery algorithms like CoSaMP canveco p——
any K -sparse signat, given measurements= ®x.

Owing to the commutative nature of convolution, any such
2.2. Applications of CS in 2D-imaging element: can be represented in multiple ways:

The CS approach can be used in a variety of imaging appli- o= Ha— Ha
cations. As a consequence of the theory described above, CS ’

techniques for imaging are particularly effective in S&8  \yhere I (respectively,X) is a square circulant matrix with
where () the cost of acquiring each pixel measurement ists columns comprising two-dimensional circular shiftstod
high, and (i) the target image can be sparsely represented byactory, (respectively;r). In general, for a giver, H and

a suitable fixed basis. One example of a CS imaging system need not be unique. To avoid possible ambiguities, we
is the single-pixel camera [10]. CS has also been proposgfake the following two assumptionsi) (The blurring ker-

as a viable approach in astronomical imaging, since the agre| is minimum phase For square 2D-signals, this implies
tual sparsity of a size¥ image of the night sky (measured in that the nonzero coefficients of the blurring kernel are eonc

terms of the canonical basis) is much smaller thaf8]. trated in a circular regiof2 of diameterd around thecenter
of the square. This is in order to remove any possible ambi-
3. ACS FRAMEWORK FOR 2D PULSES guities arising from the shift-invariant nature of conviba.
(ii) The S nonzero spikes comprising are separated by at
3.1. Mativation leastA pixels in discrete 2D-space, whese > d. This is

Due to variable environmental conditions, as well as imperin order to ensure that the pulses do not overlap. Hence, we
fections in the imaging apparatus (such as a poorly focusseate implicitly assuming a speciatructureamong the sparse
lens), acquired images are often corrupted by a small amounbnzero coefficients of; a similar model for 1D signals has

of unknown blur. In applications such as astronomical imagbeen introduced and studied in [11]. We denote this special
ing, the objects in the field of view may be reasonably mod2D-structured sparsity model 244 . A general signal model
eled to be at infinity, so that the blurring function remainsfor a superposition of 2D-pulses can be defined thus:



Definition 2 LetM% be the structured sparsity model in the Algorithm 1 CS recovery of 2D pulse-fields
space ofV-dimensional square 2D-images as defined abovenpyts: Projection matri®, measurements
Let Mg be the space of minimum phase kernels with nonzeros model parameters, 2, A.
restricted to the regiof). Define the set: Output: M(S, Q, A)-approximatior® to true signak
itializa: 5 — T T R
M(S,Q,A) = {zeRY:z—zxh, Inltllallze. T = O., h._ (15,0,...,0);¢=0
A while halting criterion falsedo
such thatr € Mg andh € Maj}. (estimate spike locations and amplitudes)

Then, M(S,Q, A) is called a 2D pulse-field model. L ' Zj L

2.Z2—Tx*xh
3.3. Sampling bound Z f{__gT(}(L;’?}&)h_&\;DH
We derive an RIP-like sampling bound for signals belong- 5 sﬁpp(DQ(e))
ing to the 2D pulse-field model. Observe that any signal 6.7 — QU supp(Fs_1)
z € M(S,Q,A) consists of at mos$ x |©2] nonzeros; thus, 7.8z — @)y, blpe = 0
M(S, 9, A) is a subset of the set of alf(2)-sparse signals. 8. Ei D(b)h Y, T =

On the other hand, only a small fraction of afl|(2|)-sparse (estimate blurring kernel)
signals can be written as a superposition of pulses. Thus, ~ . -~
to achieve an RIP-like stable embedding for this reduced set 9. XA: C(@), 2 = 2X
of signals, intuition suggests that we require far fewentha 1(_)- h« ®ly

0 (59| log N) linear measurements. The following theorem®nd while

makes this notion precise. returnz « = h

Theorem 1 SupposeM (5,2, A) is a 2D pulse-field model
as in Definition 2. Then, for any> 0 and
since bothz (respectively,X) and h (respectively,H) are

M>0 (i ((S +19)In (1) + Slog(N/S — A) + t)) _unk_no_vvn and have tp be_simultaneously inferred._ This task

02 0 is similar to performingblind deconvolutiori5], which at-
tempts simultaneous inference of the spike locations and
kernel coefficients; the key difference is that in our case, w
are only given access to the random measuremeatsl not
the Nyquist-rate samples. We adopt a two-stage iterative
approach for signal recovery, akin to the Richardson-Lucy
algorithm for blind deconvolution [13]. We fix estimates of
. . . the spikest; and kernel coefficientgi, and update the con-
Proof sketch. A full proof of this theorem is presented in i ration of the spike locations. This can be shown to be
the expanded final version of the manuscript [12]. The proofq,ialent to performing one iteration of CoSaMP, followed
mechanism involves constructing a net of point&ih which 1, s ving a simple linear program (refer [11] for a detailed
can be shown to lie within a squared distarcef any nor-  yagcrintion of the 1D-analogue of the procedure.) Once a

malized pointz belonging to the model, and applying the new candidate for the spike vectdy,; has been chosen, we

Johnson-Lindenstrauss lemma for approximate metric prese - .
solve for the kernel coefficients; 1 using a least-squares

an M x N i.i.d. subgaussian matri® will satisfy the follow-
ing property with probability at least — e~*: for every pair
21,22 € M(S,Q, A),

(1= 8)ll21 — 22ll3 < D21 — B2} < (1+ )21 — 2l

vation of finite point clouds. O . . .

Theorem 1 indicates that the number of measurements rg_rocedure. This ;.:)roce-ss 'S |tfarat(.ad until convergence.n
quired for the stable geometric embedding of signalgvin The full algorithm is detailed in pseudocode form in Al-
is proportional ta(S + |Q2]); thus, it issublinearin the maxi- gorithm 1. Steps 1 to 8_W|th|n each iteration are carriedout i
mum sparsitys| 2| of the images of interest. order to update the estimates of the spike locations andiampl

tudes given a fixed estimate of the 2D-kernel; Steps 9 and 10
are subsequently used to update the kernel coefficients. The

3.4. Recovery algorithm ) . .

yag . _algorithm possesses the same iterative structure as CqSaMP
The CS recovery problem can be stated as follows: 9V€Rith three main difference i) the kernel estimaté can be
measurements of a superposition of pulses: &

transformed into its circular convolution operalﬁrvia the
y=>®z=®Hz = dXh, one—to-one mappin@ and is subsequently used to form the
overall linear operatob;,; (ii) the sparse approximation steps

the goal is to reconstruct the best possible M(S,Q,A) (5 and 8) are instead replaced by linear progr@mB- in

from the measurements Standard or structured sparsity order to perform best approximations to thé5 -structured
methods for CS recovery are unsuitable for this problemsparsity model; andjii) the kernel is updated in steps 9 and



(b) (d)

Fig. 1. (a) Black-and-white image of V838 Monocerotis, a nova-litar, captured by the Hubble Space Telescope on Februag08, 2
(http://heritage.stsci.edu/gallery/bwgallery/bwOiout.shtml) . (b) Test image is a zoomed in-version of gggon highlighted in green
(resolutionN = 64 x 64 = 4096.) Reconstruction of test image frohd = 330 random Gaussian measurements was performed using (c)
CoSaMP and (d) Algorithm 1. Our algorithm is robust to vaoias in the pulse shapes across different 2D pulses.

10 via a simple matrix pseudoinverse. A more detailed deto wavelet- and Fourier-sparse 2D-functions. While ouothe

scription of the mechanism and properties of the algorithnretical results are promising, we still do not possess a com-

can be found in the expanded version of this paper [12]. plete characterization of the convergence properties of ou

proposed algorithm, as well as its sensitivity to factorshsas

4. NUMERICAL EXAMPLES noi_se a_md model-mismatch; we defer these challenging theo-
retical issues to future research.

To demonstrate the utility of our approach, we test our pro-
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