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Abstract—We propose a variance-component probabilistic
model for sparse signal reconstruction and model selection. The
measurements follow an underdetermined linear model, where
the unknown regression vector (signal) is sparse or approximately
sparse and noise covariance matrix is known up to a constant. The
signal is composed of two disjoint parts: a part with significant
signal elements and the complementary part with insignificant
signal elements that have zero or small values. We assign distinct
variance components to the candidates for the significant signal
elements and a single variance component to the rest of the signal;
consequently, the dimension of our model’s parameter space is
proportional to the assumed sparsity level of the signal. We derive
a generalized maximum-likelihood (GML) rule for selecting the
most efficient parameter assignment and signal representation
that strikes a balance between the accuracy of data fit and com-
pactness of the parameterization. We prove that, under mild
conditions, the GML-optimal index set of the distinct variance
components coincides with the support set of the sparsest solution
to the underlying underdetermined linear system. Finally, we
propose an expansion-compression variance-component based
method (ExCoV) that aims at maximizing the GML objective
function and provides an approximate GML estimate of the
significant signal element set and an empirical Bayesian signal
estimate. The ExCoV method is automatic and demands no prior
knowledge about signal-sparsity or measurement-noise levels. We
also develop a computationally and memory efficient approximate
ExCoV scheme suitable for large-scale problems, apply the pro-
posed methods to reconstruct one- and two-dimensional signals
from compressive samples, and demonstrate their reconstruction
performance via numerical simulations. Compared with the
competing approaches, our schemes perform particularly well in
challenging scenarios where the noise is large or the number of
measurements is small.

Index Terms—Compressive sampling, model selection, sparse
Bayesian learning, sparse signal reconstruction.

I. INTRODUCTION

O VER the past decade, sparse signal processing methods
have been developed and successfully applied to biomag-

netic imaging, spectral and direction-of-arrival estimation, and
compressive sampling, see [1]–[7] and references therein. Com-
pressive sampling is an emerging signal acquisition and pro-
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cessing paradigm that allows perfect reconstruction of sparse
signals from highly undersampled measurements. Compressive
sampling and sparse-signal reconstruction will likely play a piv-
otal role in accommodating the rapidly expanding digital data
space.

For noiseless measurements, the major sparse signal recon-
struction task is finding the sparsest solution of an underdeter-
mined linear system (see, e.g., [7, eq. (2)])

(1.1)

where is an measurement vector, is an vector
of unknown signal coefficients, is a known full-rank
sensing matrix with , and counts the number of
nonzero elements in the signal vector . The problem re-
quires combinatorial search and is known to be NP-hard [8].
Many tractable approaches have been proposed to find sparse
solutions to the above underdetermined system. They can be
roughly divided into four groups: convex relaxation, greedy pur-
suit, probabilistic, and other methods.

The main idea of convex relaxation is to replace the -norm
penalty with the -norm penalty and solve the resulting convex
optimization problem. Basis pursuit (BP) directly substitutes
with in the problem, see [9]. To combat measurement
noise and accommodate for approximately sparse signals,
several methods with various optimization objectives have
been suggested, e.g., basis pursuit denoising (BPDN) [5], [9],
Dantzig selector [10], least absolute shrinkage and selection
operator (LASSO) [11], and gradient projection for sparse
reconstruction (GPSR) [12]. The major advantage of these
methods is the uniqueness of their solution due to the convexity
of the underlying objective functions. However, this unique
global solution generally does not coincide with the solution
to the problem in (1.1): using the -norm penalizes
larger signal elements more, whereas the -norm imposes the
same penalty on all nonzeros. Moreover, most convex methods
require tuning, where the tuning parameters are typically func-
tions of the noise or signal sparsity levels. Setting the tuning
parameters is not trivial and the reconstruction performance
depends crucially on their choices.

Greedy pursuit methods approximate the solution in an
iterative manner by making locally optimal choices. An early
method from this group is orthogonal matching pursuit (OMP)
[13], [14], which adds a single element per iteration to the esti-
mated sparse-signal support set so that a squared-error criterion
is minimized. However, OMP achieves limited success in re-
constructing sparse signals. To improve the reconstruction per-
formance or complexity of OMP, several OMP variants have
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been recently developed, e.g., stagewise OMP [15], compres-
sive sampling matching pursuit (CoSaMP) [16], and subspace
pursuit [17]. However, greedy methods also require tuning, with
tuning parameters related to the signal sparsity level.

Probabilistic methods utilize full probabilistic models. Many
popular sparse recovery schemes can be interpreted using a
probabilistic point of view. For example, basis pursuit yields
the maximum a posteriori (MAP) signal estimator under a
Bayesian model with sparse-inducing Laplace prior distribu-
tion. The most popular probabilistic approaches include sparse
Bayesian learning (SBL) [18], [19] and Bayesian compres-
sive sensing (BCS) [20]. SBL adopts an empirical Bayesian
approach and employs a Gaussian prior on the signal, with
a distinct variance component on each signal element; these
variance components are estimated by maximizing a marginal
likelihood function via the expectation-maximization (EM)
algorithm. This marginal likelihood function is globally op-
timized by variance component estimates that correspond to
the -optimal signal support, see [18, Theorem 1] and [19,
Result 1] and Corollary 5 in Appendix B. Our experience
with numerical experiments indicates that SBL achieves the
top-tier performance compared with the state-of-art reconstruc-
tion methods. Moreover, unlike many other approaches that
require tuning, SBL is automatic and does not require tuning
or knowledge of signal sparsity or noise levels. The major
shortcomings of SBL are its high computational complexity
and large memory requirements, which make its application
on large-scale data (e.g., images and video) practically im-
possible. SBL needs EM iterations over a parameter space of
dimension , and most of parameters converge to zero
and are redundant. This makes SBL significantly slower than
other sparse signal reconstruction techniques. The BCS method
in [20] stems from relevance vector machines [21] and can be
understood as a variational formulation of SBL [18, Sec. V].
BCS circumvents the EM iteration and is much faster than
SBL, at a cost of poorer reconstruction performance.

We now discuss other methods that cannot be classified
into the above three groups. Iterative hard thresholding (IHT)
schemes [22]–[25] apply simple iteration steps that do not
involve matrix inversions or solving linear systems. However,
IHT schemes often need good initial values to start the iteration
and require tuning, where the signal sparsity level is a typical
tuning parameter [24], [26]. Interestingly, the IHT method in
[24] can be cast into the probabilistic framework; see [27]
and [28]. Focal underdetermined system solver (FOCUSS) [1]
repeatedly solves a weighted -norm minimization, with larger
weights put on the smaller signal components. Although close
to the problem in the objective function, FOCUSS suffers
from abundance of local minima, which limits its reconstruction
performance [18], [29]. Analogous to FOCUSS, reweighted

minimization iteratively solves a weighted basis pursuit
problem [30], [31]; in [30], this approach is reported to achieve
better reconstruction performance than BP, where the runtime
of the former is multiple times that of the latter. A sparsity
related tuning parameter is also needed to ensure the stability
of the reweighted method [30, Sec. 2.2].

The contribution of this paper is three-fold.
First, we propose a probabilistic model that generalizes the

SBL model and, typically, has a much smaller number of pa-
rameters than SBL. This generalization makes full use of the
key feature of sparse or approximately sparse signals, that most
signal elements are zero or close to zero, and only a few have
nontrivial magnitudes. Therefore, the signal is naturally par-
titioned into the significant and the complementary insignif-
icant signal elements. Rather than allocating individual vari-
ance-component parameters to all signal elements, we only as-
sign distinct variance components to the candidates for signif-
icant signal elements and a single variance component to the
rest of the signal. Consequently, the dimension of our model’s
parameter space is proportional to the assumed sparsity level of
the signal. The proposed model provided a framework for model
selection.

Second, we derive a generalized maximum-likelihood (GML)
rule1 to select the most efficient parameter assignment under the
proposed probabilistic model and prove that, under mild con-
ditions, the GML objective function for the proposed model is
globally maximized at the support set of the solution. In a
nutshell, we have transformed the original constrained op-
timization problem into an equivalent unconstrained optimiza-
tion problem. Unlike the SBL cost function that does not quan-
tify the efficiency of the signal representation, our GML rule
evaluates both how compact the signal representation is and how
well the corresponding best signal estimate fits the data.

Finally, we propose an expansion-compression vari-
ance-component based method (ExCoV) that aims at max-
imizing the GML objective function under the proposed
probabilistic model, and provides an empirical Bayesian signal
estimate under the selected variance component assignment,
see also [35]. In contrast with most existing methods, ExCoV is
an automatic algorithm that does not require tuning or knowl-
edge of signal sparsity or noise levels and does not employ a
convergence tolerance level or threshold to terminate. Thanks
to the parsimony of our probabilistic model, ExCoV is typi-
cally significantly faster than SBL, particularly in large-scale
problems, see also Section IV-C. We also develop a memory
and computationally efficient approximate ExCoV scheme that
only involves matrix-vector operations. Various simulation ex-
periments show that, compared with the competing approaches,
ExCoV performs particularly well in challenging scenarios
where the noise is large or the number of measurements is
small, see also the numerical examples in [35].

In Section II, we introduce our variance-component mod-
eling framework and, in Section III, present the corresponding
GML rule and our main theoretical result establishing its re-
lationship to the problem. In Section IV, we describe the
ExCoV algorithm and its efficient approximation (Section IV-B)
and contrast their memory and computational requirements with
those of the SBL method (Section IV-C). Numerical simulations
in Section V compare reconstruction performances of the pro-
posed and existing methods. Concluding remarks are given in
Section VI.

1See [32, p. 223 and App. 6F] for general formulation of the GML rule. The
GML rule is closely related to stochastic information complexity, see [33, eq.
(17)] and [34] and references therein.
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Fig. 1. Sparse signals with (a) binary and (b) Gaussian nonzero elements, respectively, and corresponding ExCoV reconstructions (c) and (d) from � � ���

noisy compressive samples, for noise variance �� .

Notation

We introduce the notation used in this paper:
• denotes the multivariate probability density

function (pdf) of a real-valued Gaussian random vector
with mean vector and covariance matrix ;

• , , , and “ ” denote the determinant, absolute
value, norm, and transpose, respectively;

• denotes the cardinality of the set ;
• is the largest integer smaller than or equal to ;
• and are the identity matrix of size and the

vector of zeros, respectively;
• is the diagonal matrix with the

th diagonal element ;
• “ ” and “ ” denote the Hadamard (elementwise) matrix

product and elementwise square of a matrix;
• denotes the Moore-Penrose inverse of a matrix ;
• denotes the projection matrix onto the column space

of an matrix and is the
corresponding complementary projection matrix;

• denotes that each element of is greater than the
corresponding element of , for equal-size ;

• denotes the element of ;
• denotes the Hermitian square root of a covariance

matrix and .

II. THE VARIANCE-COMPONENT PROBABILISTIC

MEASUREMENT MODEL

We model the pdf of a measurement vector given
and using the standard additive Gaussian noise model:

(2.1)

where is the known full-rank sensing matrix with

(2.2)

is an unknown sparse or approximately sparse signal
vector, is a known positive definite symmetric matrix of size

, is an unknown noise-variance parameter, and

is the noise covariance matrix. Setting gives white
Gaussian noise. An extension of the proposed approach to circu-
larly symmetric complex Gaussian measurements, sensing ma-
trix, and signal coefficients is straightforward.

A. Prior Distribution on the Sparse Signal

A prior distribution for the signal should capture its key
feature: sparsity. We know a priori that only a few elements of

have nontrivial magnitudes and that the remaining elements
are either strictly zero or close to zero. Therefore, is naturally
partitioned into the significant and insignificant signal compo-
nents. For example, for a strictly sparse signal, its significant
part corresponds to the nonzero signal elements, whereas its in-
significant part consists of the zero elements; see also Fig. 1 in
Section V. The significant signal elements vary widely in mag-
nitude and sign; in contrast, the insignificant signal elements
have small magnitudes. We, therefore, assign distinct variance
components to the candidates for significant signal elements
and use only one common variance-component parameter to ac-
count for the variability of the rest of signal coefficients.

Denote by the set of indices of the signal elements with
distinct variance components. The set is unknown, with un-
known size . We also define the complementary index set

(2.3a)

with cardinality , corresponding to signal ele-
ments that share a common variance, where

(2.3b)

denotes the full index set. We accordingly partition and
into submatrices and , and
subvectors and . Specifically,

• is the restriction of the sensing matrix to the index
set , e.g., if , then , where

is the column of and
• is the restriction of the signal-coefficient vector to the

index set , e.g., if , then ,
where is the element of .
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We adopt the following prior model for the signal coefficients:

(2.4a)

where the signal covariance matrices are diagonal:

(2.4b)

(2.4c)

with

(2.4d)

The variance components for are dis-
tinct; the common variance accounts for the variability of .

The larger is, the more parameters are introduced to the
model. If all signal variance components are freely adjustable,
i.e., when and , we refer to it as the full model.
Further, if , our full model reduces to that of the SBL
model in [18] (see also [20, Sec. III] and references therein).

B. Log-Likelihood Function of the Variance Components

We assume that the signal variance components and
are unknown and define the set of all unknowns:

(2.5a)

where

(2.5b)

is the set of variance-component parameters for a given index
set . The marginal pdf of the observations given is [see
(2.1) and (2.4)]

(2.6a)

where is the precision (inverse covariance) matrix of
given :

(2.6b)

and the log-likelihood function of is

(2.6c)

For a given model , we can maximize (2.6c) with respect to
the model parameters using the EM algorithm presented in
Section IV-A and derived in Appendix A.

III. GML RULE AND ITS EQUIVALENCE TO THE PROBLEM

We introduce the GML rule for selecting the best index set
, i.e., the best model, see also [32, p. 223]. The best model

strikes a balance between fitting the observations well and
keeping the number of model parameters small. The GML rule
maximizes

(3.1)

with respect to , where

(3.2)

is the ML estimate of for given :

(3.3)

and is the Fisher information matrix (FIM) for the signal
variance components and . Since the pdf of given (2.6a)
is Gaussian, we can easily compute using the FIM result
for the Gaussian measurement model [36, eq. (3.32) on p. 48]:

(3.4a)

with blocks computed as follows:

(3.4b)

(3.4c)

(3.4d)

where and denotes the th column of
.

The first term in (3.2) is simply the log-likelihood function
(2.6c), which evaluates how well the parameters fit the observa-
tions. To achieve the best fit for any given model , we maxi-
mize this term with respect to , see (3.1). The more param-
eters we have, the better we can fit the measurements. Since
any index set is a subset of the full set , the maximized log
likelihood for must have larger value than the maxi-
mized log likelihood for any other . However, the second term
in (3.2) penalizes the growth of . The GML rule thereby bal-
ances modeling accuracy and efficiency.

A. Equivalence of the GML Rule to the Problem

We now establish the equivalence between the unconstrained
GML objective and the constrained optimization problem
(1.1). Let denote the solution to and the index set
of the nonzero elements of , also known as the support of ;
then, denote the cardinality of .

Theorem 1: Assume (2.2) and the following:
1) the sensing matrix satisfies the unique representation

property (URP) [1] stating that all submatrices
of are invertible;

2) the Fisher information matrix for the signal vari-
ance components in (3.4a) is always nonsingular;
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3) the number of measurements satisfies

(3.5)

Then, the support of the -optimal signal-coefficient
vector coincides with the GML-optimal index set , i.e.,

in (3.1) is globally and uniquely maximized at
, and the -optimal solution coincides with the

empirical Bayesian signal estimate obtained by substituting
and the corresponding ML variance-component

estimates into .
Proof: See Appendix B.

Theorem 1 states that, under conditions (1)–(3), the GML rule
is globally maximized at the support set of the problem
solution; hence, the GML rule transforms the constrained opti-
mization problem in (1.1) into an equivalent unconstrained
optimization problem (3.1). Observe that condition (3) holds
when there is no noise and the true underlying signal is suffi-
ciently sparse. Hence, for the noiseless case, Theorem 1 shows
that GML-optimal signal model allocates all distinct variance
components to the nonzero signal elements of the solution.

The GML rule allows us to compare signal models. This is not
the case for the reconstruction approach (1.1) or SBL. The

approach optimizes a constrained objective and, therefore,
does not provide a model evaluation criterion; the SBL objective
function, which is the marginal log-likelihood function (2.6c)
under the full model and , has a fixed number
of parameters and, therefore, does not compare different signal
models.

In Section IV, we develop our ExCoV scheme for approxi-
mating the GML rule.

IV. THE EXCOV ALGORITHM

Maximizing the GML objective function (3.1) by an exhaus-
tive search is prohibitively complex because we need to deter-
mine the ML estimate of the variance components for each
of candidates of the index set . In this section, we describe
our ExCoV method that approximately maximizes (3.1). The
basic idea of ExCoV is to interleave the following:

• expansion and compression steps that modify the current
estimate of the index set by one element per step, with
goal to find a more efficient ;

• expectation-maximization (EM) steps that increase the
marginal likelihood of the variance components for a fixed

, thereby approximating .
Throughout the ExCoV algorithm, which contains multiple cy-
cles, we keep track of and , the best estimate
of [yielding the largest ] and corresponding signal esti-
mate obtained in the latest cycle. We also keep track of

and , denoting the best estimate of and cor-
responding signal estimate obtained in the entire history of the
algorithm, including all cycles.

We now describe the ExCoV algorithm:
Step 0 (Algorithm initialization): Initialize the signal esti-

mate using the minimum -norm estimate

(4.1)

and construct using the indices of the largest ele-
ments of . The simplest choice of is

(4.2a)

which is particularly appealing in large-scale problems; another
choice that we utilize is

(4.2b)

motivated by the asymptotic results in [37, Sec. 7.6.2]. Then,
and . Set the initial

.
Step 1 (Cycle initialization): Set the iteration counter

and choose the initial variance component estimates

as

(4.3a)

(4.3b)

(4.3c)

where . This selection yields a
diffuse signal-coefficient pdf in (2.4a). Set the initial

and .
Step 2 (Expansion): Determine the signal index

that corresponds to the component of with the largest
magnitude

(4.4a)

move the index from to , yielding:

(4.4b)

and construct the new ‘expanded’ vector of distinct variance
components and model-param-

eter set .
Step 3 (EM): Apply one EM step described in

Section IV-A for and previous ,
yielding the updated model parameter estimates

and signal

estimate . Define .
Step 4 (Update ): Check the condition

(4.5)

If it holds, set and ; otherwise, keep
and intact.

Step 5 (Stop expansion?): Check the condition

(4.6)



2940 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 6, JUNE 2010

where denotes the length of a moving-average window. If
(4.6) does not hold, increment by one and go back to Step 2;
otherwise, if (4.6) holds, increment by one and go to Step 6.

Step 6 (Compression): Find the smallest element
of

, where

(4.7a)

and determine the signal index that corresponds to this
element; move from to , yielding

(4.7b)

and construct the new “compressed” vector of dis-
tinct variance components

and

model-parameter set .
Step 7 (EM): Apply one EM step from Section IV-A

for and previous ,
yielding the updated model parameter estimates

and the
signal estimate .

Step 8 (Update ): Check the condition (4.5). If it holds, set
and ; otherwise, keep and intact.

Step 9 (Stop compression and complete cycle?) Check the
condition (4.6). If (4.6) does not hold, increment by one and
go back to Step 6; otherwise, if it holds, complete the current
cycle and go to Step 10.

Step 10 (Update ): Check the condition
. If it holds, set and ; otherwise,

keep and intact.
Step 11 (Stop cycling?): If has changed between two

consecutive cycles, set , construct as the
indices of largest-magnitude elements of

(4.8)

and go back to Step 1; otherwise, terminate the ExCoV algo-
rithm with the final signal estimate .

Computing using (4.8) can be viewed as a single hard
thresholding step of the expectation-conditional maximization
either (ECME) algorithm in [27] and [28]; furthermore, if the
rows of the sensing matrix are orthonormal it
reduces to one IHT step in [24, eq. (10)]. Note that the minimum

-norm estimate is a special case of (4.8), with
set to the zero vector. Therefore, we are using hard-thresh-

olding steps to initialize individual cycles as well as the entire
algorithm. Compare Steps 0 and 11.

One ExCoV cycle consists of an expansion sequence fol-
lowed by a compression sequence. The stopping condition (4.6)
for expansion or compression sequences utilizes a moving-av-
erage criterion to monitor the improvement of the objective
function. ExCoV is fairly insensitive to the choice of the moving
average window size . The algorithm terminates when the
latest cycle fails to find a distinct variance component support
set that improves . Finally, ExCoV algorithm outputs the

parameter and signal estimates having the highest . Parts
(c) and (d) of Fig. 1 illustrate the final output of the ExCoV
algorithm for the simulation scenario in Section V-A, where
spikes with circles correspond to the signal elements belonging
to the best index set obtained upon completion of the
ExCoV iteration.

A. An EM Step for Estimating the Variance Components for
Fixed

Assume that the index set is fixed and that a previous
variance-component estimate is
available. In Appendix A, we treat the signal-coefficient vector

as the missing (unobserved) data and derive an EM step
that yields a new set of variance-component estimates
satisfying

(4.9)

see, e.g., [38] and [39] for a general exposition on the EM algo-
rithm and its properties. Note that and together make up the
complete data. The EM step consists of computing the expected
complete log-likelihood (E step):

(4.10a)

and selecting the new variance-component estimates that maxi-
mize (4.10a) with respect to (M step):

(4.10b)

In the E step, we first compute

(4.11a)

(4.11b)

then construct the empirical Bayesian signal estimate

(4.11c)

by interleaving and according to the index sets
and , and, finally, compute

(4.11d)

(4.11e)

(4.11f)

where

(4.11g)



QIU AND DOGANDZIC: VARIANCE-COMPONENT BASED SPARSE SIGNAL RECONSTRUCTION AND MODEL SELECTION 2941

(4.11h)

Here, denotes the mean of the pdf , which
is the Bayesian minimum mean-square error (MMSE) estimate
of for known [36, Sec. 11.4]; it is also the linear MMSE esti-
mate of [36, Th. 11.1]. Hence, in (4.11c) is an empirical
Bayesian estimate of , with the variance components replaced
with their -iteration estimates.

In the M step, we update the variance components as

(4.12a)

(4.12b)

(4.12c)

where . Note that the term in (4.11e)
and (4.11h) is efficiently computed via the identity

(4.13)

For white noise and full model where
is dropped, our EM step reduces to the EM step under the SBL
model in [18].

B. An Approximate ExCoV Scheme

The above ExCoV method requires matrix-matrix multipli-
cations, which is prohibitively expensive in large-scale applica-
tions in terms of both storage and computational complexity.
We now develop a large-scale approximate ExCoV scheme that
can be implemented using matrix-vector multiplications only.

Our approximations are built upon the following
assumptions:

(4.14a)

(4.14b)

(4.14c)

where (4.14a) and (4.14b) imply white noise and orthogonal
sensing matrix, respectively. When (4.14c) holds, is zero
with probability one, corresponding to the strictly sparse signal
model. Our approximate ExCoV scheme is the ExCoV scheme
simplified by employing the assumptions (4.14), with the fol-
lowing three modifications.

1) An Approximate EM Step: Under the assumptions (4.14),
(4.11b) is not needed, and (4.11a) becomes

(4.15a)

where we have used the matrix inversion identity (A.1b) in
Appendix A. Note that (4.15a) can be implemented using the
conjugate-gradient approach [40, Sec. 7.4], thus avoiding ma-
trix inversion and requiring only matrix-vector multiplications.

We approximate updates of the variance components in (4.12c)
and (4.12a) by the following lower bounds:2

(4.15b)

(4.15c)

where , is a simple one-sample
variance estimate of , and the regularization term

in (4.15c) ensures numerical stability
of the solution to (4.15a). In particular, this term ensures that
the element of is smaller than or equal
to ten times the corresponding element of (for all );
see (4.15a).

2) An Approximate : We obtain an approximate
that avoids determinant computations in (3.2):

(4.16)

in which we have approximated by a diagonal matrix

(4.17)

where

(4.18)

See Appendix C for the derivation of (4.16).
3) A Modified Step 2 (Expansion): Since and,

therefore, , we need a minor modification of
Step 2 (Expansion) as follows. Determine the element of the
single variance index set that corresponds to the element
of with the largest magnitude; move
from to as described in (4.4b), yielding and

; finally, construct the new ‘expanded’ vector of distinct
variance components as

(4.19)

where our choice of the initial variance estimate for the added
element is such that the element of

and the corresponding element of are
equal; see (4.15a).

We now summarize the approximate ExCoV scheme. Run the
same ExCoV steps under the assumptions (4.14), with the EM
step replaced by the approximate EM step in (4.15a)–(4.15c),

evaluated by , and Step 2 (Expansion)
modified as described above.

2The right-hand side of (4.15b) is less than or equal to the corresponding
right-hand side of (4.12c); similarly, �� � on the right-hand side of (4.15c)
is less than or equal to the corresponding right-hand side of (4.12a).
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C. Complexity and Memory Requirements of ExCoV and SBL

We discuss the complexity and memory requirements of our
ExCoV and approximate ExCoV schemes and compare them
with the corresponding requirements for the SBL method.

In its most efficient form, one step of the SBL iteration re-
quires inverting an matrix and multiplying matrices of
sizes and respectively, see [18, eq. 17] and
[19, eq. 5]. The complexity for the inversion is and the
matrix multiplication demands operations. Therefore,
keeping (2.2) in mind, we conclude that the overall complexity
of each SBL step is . Furthermore, the storage require-
ment of SBL is .

The computational complexity of ExCoV lies in the EM up-
dates and the same number of evaluations (3.2). Exten-
sive simulation experiments show that the number of EM steps
in ExCoV is typically similar to if not fewer than the number
of SBL iterations. For one EM step in ExCoV, the matrix inver-
sion of size in (4.11h) and matrix-matrix multiplication
of sizes both at dominate the complexity, which require

operations. In terms of computing (3.2), the dominating
factor is , involving operations. Therefore, the
complexity of one EM step and evaluation in ExCoV
is . The sensing matrix is the largest matrix ExCoV
needs to store, requiring memory storage. The huge re-
duction in both complexity and storage compared with SBL is
simply because ExCoV estimates much fewer parameters than
SBL; the differences in the number of parameters and conver-
gence speed are particularly significant in large-scale problems.

The approximate ExCoV scheme removes the two com-
plexity bottlenecks of the exact ExCoV: the EM update
and are replaced by the approximate EM step and

in (4.16). If we implement (4.15a) in the
approximate EM step using the conjugate-gradient approach,
the algorithm involves purely matrix-vector operation of sizes
at most and . The complexity of one EM step is
reduced from to . In large-scale applications,
the sensing matrix is typically not explicitly stored but in-
stead appears in the function-handle form [for example, random
DFT sensing matrix can be implemented via the fast Fourier
transform (FFT)]. In this case, the storage of the approximate
ExCoV scheme is just .

V. NUMERICAL EXAMPLES

We apply the proposed methods to reconstruct one- and two-
dimensional signals from compressive samples and compare
their performance with the competing approaches.

Prior to applying the ExCoV schemes, we scale the mea-
surements by a positive constant so that ;
after completion of the ExCoV iterations, we scale the obtained
signal estimates by , thus removing the scaling effect. This
scaling, which we perform in all examples in this section, con-
tributes to numerical stability and ensures that the estimates of

are less than or equal to one in all ExCoV iteration steps.

A. One-Dimensional Signal Reconstruction

We generate the following standard test signals for sparse re-
construction methods, see also the simulation examples in [3],
[5], [12], [20], and [26]. Consider sparse signals of length

, containing 20 randomly located nonzero elements.
The nonzero components of are independent, identically dis-
tributed (i.i.d.) random variables that are either

• binary, coming from the Rademacher distribution (i.e.,
taking values or with equal probability) or

• Gaussian with zero mean and unit variance.
See Fig. 1(a) and (b) for sample signal realizations under the two
models. In both cases, the variance of the nonzero elements of

is equal to one. The measurement vector is generated
using (2.1) with white noise having variance

(5.1)

As in [12, Sec. IV.A] and the -magic suite of codes (available
at http://www.l1-magic.org), the sensing matrices are con-
structed by first creating an matrix containing i.i.d. sam-
ples from the standard normal distribution and then orthonor-
malizing its rows, yielding .

Fig. 1(c) and (d) present two examples of ExCoV reconstruc-
tions, for Gaussian and binary signals, respectively. Not surpris-
ingly, the best index sets obtained upon completion of the
ExCoV iterations match well the true support sets of the signals,
which is consistent with the essence of Theorem 1.

Our performance metric is the average mean-square
error (MSE) of a signal estimate :

MSE (5.2)

computed using 2000 Monte Carlo trials, where averaging
is performed over the random sensing matrices , the
sparse signal and the measurements . A simple bench-
mark of poor performance is the average MSE of the
all-zero estimator, which is also the average signal energy:
MSE .

We compare the following methods that represent state-of-
the-art sparse reconstruction approaches of different types:

• the Bayesian compressive sensing (BCS) approach in [20],
with a Matlab implementation available at http://www.ece.
duke.edu/~shji/BCS.html;

• the sparse Bayesian learning (SBL) method in [19, eq. (5)]
which terminates when the squared norm of the differ-
ence of the signal estimates of two consecutive iterations
is below ;

• the second-order cone programming (SOCP) algorithm in
[5] to solve the convex BPDN problem with the error-term
size parameter chosen according to [5, eq. (3.1)] (as in
the -magic package);

• the gradient-projection for sparse reconstruction (GPSR)
method in [12, Sec. III.B] to solve the unconstrained
version of the BPDN problem with the convergence
threshold and regularization parameter

(where and have been
manually tuned to achieve good reconstruction perfor-
mance), see [12] and the GPSR suite of Matlab codes at
http://www.lx.it.pt/~mtf/GPSR;

• the normalized iterative hard thresholding (NIHT) method
in [25] with the same convergence criterion as SBL, see
the MaTLAB implementation at http://www.see.ed.ac.uk/
~tblumens/sparsify/sparsify.html;
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Fig. 2. Average MSEs of various estimators of ��� as functions of the number of measurements � , for (left) binary sparse signals and (right) Gaussian sparse
signals, with noise variance equal to �� .

• the standard and debiased compressive sampling matching
pursuit algorithm in [16] (CoSaMP and CoSaMP-DB, re-
spectively), with 300 iterations performed in each run.3

• our ExCoV and approximate ExCoV methods using
, averaging-window length , and initial value

in (4.2b), with implementation available at http://
home.eng.iastate.edu/~ald/ExCoV.htm;

• the clairvoyant least-squares (LS) signal estimator for
known locations of nonzero elements indexed by set , ob-
tained by setting and the rest
elements to zero (also discussed in [10, Sec. 1.2], with av-
erage MSE

MSE (5.3)

(The above iterative methods were initialized using their default
initial signal estimates, as specified in the references where they
were introduced or implemented in the MATLAB functions pro-
vided by the authors.)

The CoSaMP and NIHT methods require knowledge of the
number of nonzero elements in , and we use the true number 20
to implement both algorithms. SOCP needs the noise-variance
parameter , and we use the true value to implement
it. In contrast, ExCoV is automatic and does not require prior
knowledge about the signal or noise levels; furthermore, ExCoV
does not employ a convergence tolerance level or threshold.

Fig. 2 shows the average MSEs of the above methods as
functions of the number of measurements . For binary sparse
signals and , SBL achieves the smallest average
MSE, closely followed by ExCoV; the convex methods SOCP
and GPSR take the third place, with average MSE 1.5 to 3.9
times larger than that of ExCoV, see Fig. 2 (left). When is
sufficiently large ( ), ExCoV, approximate ExCoV,
CoSaMP and CoSaMP-DB outperform SBL, with approximate
ExCoV and CoSaMP-DB nearly attaining the average MSE of
the clairvoyant LS method. Unlike CoSaMP and CoSaMP-DB,

3Using more than 300 iterations does not improve the performance of the
CoSaMP algorithm in our numerical examples. In the debiased CoSaMP, we
compute the LS estimate of ��� using the sparse signal support obtained upon
convergence of the CoSaMP algorithm.

our ExCoV methods do not have the knowledge of the number
of nonzero signal coefficients; yet, they approach the lower
bound given by the clairvoyant LS estimator that knows the
true signal support.

In this example, the numbers of iterations required by ExCoV
and SBL methods are similar, but the CPU time of the former
is much smaller than that of the latter. For example, when

, ExCoV needs 155 EM steps on average and SBL converges
in about 95 steps; however, the CPU time of SBL is 3.5 times
that of ExCoV. Furthermore, the approximate ExCoV is much
faster than both, consuming only about 3% of the CPU time of
ExCoV for .

For Gaussian sparse signals and , ExCoV achieves
the smallest average MSE, and SBL and BCS are the closest
followers, see Fig. 2 (right). When is sufficiently large

, approximate ExCoV, CoSaMP, CoSaMP-DB and NIHT
catch up and achieve MSEs close to the clairvoyant LS lower
bound.

For the same , the average MSE (5.3) of clairvoyant LS
is identical in the left- and right-hand sides of Fig. 2, since
it is independent of the distribution of the nonzero signal el-
ements. When is small, the average MSEs for all methods
and Gaussian sparse signals are much smaller than the binary
counterparts, compare the left- and right-hand sides of Fig. 2.
Indeed, it is well known that sparse binary signals are harder to
estimate than other signals [26]. Interestingly, when there are
enough measurements , the average MSEs of most
methods are similar for binary and Gaussian sparse signals, with
the exception of the BCS and NIHT schemes. Therefore, BCS
and NIHT are sensitive to the distribution of the nonzero signal
coefficients. Remarkably, for Gaussian sparse signals and suffi-
ciently large , NIHT almost attains the clairvoyant LS lower
bound; yet, it does not perform well for binary sparse signals.

B. Two-Dimensional Tomographic Image Reconstruction

Consider the reconstruction of the Shepp–Logan phantom of
size in Fig. 3(a) from tomographic projections. The
elements of are 2-D discrete Fourier transform (DFT) coef-
ficients of the image in Fig. 3(a) sampled over a star-shaped
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Fig. 3. (a) Size-��� Shepp-Logan phantom, (b) a star-shaped sampling domain in the frequency plane containing 30 radial lines, and reconstructions using
(c) filtered back-projection, (d) NIHT, (e) GPSR-DB, and (f) approximate ExCoV schemes for the sampling pattern in (b). (a), (b), (c) ���� � 18.9 dB
(d) ���� � 22.6 dB (e) ���� � 29.3 dB (f) ���� � 102.9 dB.

domain, as illustrated in Fig. 3(b); see also [25] and [41]. The
sensing matrix is chosen as [2]

(5.4)

with sampling matrix and orthonormal spar-
sifying matrix constructed using selected rows of 2-D DFT
matrix (yielding the corresponding 2-D DFT coefficients of the
phantom image that are within the star-shaped domain) and in-
verse Haar wavelet transform matrix, respectively. Here, the
rows of are orthonormal, satisfying . The ma-
trix is not explicitly stored but instead implemented via FFT
and wavelet function handle in Matlab. The Haar wavelet co-
efficient vector of the image in Fig. 3(a) is sparse, with the
number of nonzero elements equal to . In the ex-
ample in Fig. 3(b), the samples are taken along 30 radial lines in
the frequency plane, each containing 128 samples, which yields

.
Our performance metric is the peak signal-to-noise

ratio (PSNR) of a wavelet coefficients estimate :

dB (5.5)

where and denote the smallest and largest
elements of the image .

We compare the following representative reconstruction
methods that are feasible for large-scale data:

• the standard filtered back-projection that corresponds to
setting the unobserved DFT coefficients to zero and taking
the inverse DFT, see [41];

• the debiased gradient-projection for sparse reconstruction
method in [12, Sec. III.B] (labeled GPSR-DB) with conver-

Fig. 4. PSNR as a function of the normalized number of measurements���,
where the number of measurements changes by varying the number of radial
lines in the star-shaped sampling domain.

gence threshold and regularization parameter
, both manually tuned to achieve good

reconstruction performance;
• the NIHT method in [25], terminating when the squared

norm of the difference of the signal estimates of two con-
secutive iterations is below ;

• the approximate ExCoV method with averaging-window
length and initial value (4.2a), with signal esti-
mation steps (4.15a) implemented using at most 300 con-
jugate-gradient steps.

Fig. 3(c)–(f) present the reconstructed images by the above
methods from the 30 radial lines given in Fig. 3(b). Approxi-
mate ExCoV manages to recover the original image almost per-
fectly, whereas the filtered back-projection method, NIHT and
GPSR-DB have inferior reconstructions.
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In Fig. 4, we vary the number of radial lines from 26 to 43,
and, consequently, from 0.19 to 0.31. We observe the
sharp performance transition exhibited by approximate ExCoV
at (corresponding to 29 radial lines) very close
to the theoretical minimum observation number, which is about
twice the sparsity level 0.1 m. Approximate ExCoV
achieves almost perfect reconstruction with mea-
surements. NIHT also exhibits a sharp phase transition, but at

(corresponding to 33 radial lines), and GPSR-DB
does not have a sharp phase transition in the range of that
we considered; rather, the PSNR of GPSR-DB improves with
an approximately constant slope as we increase .

VI. CONCLUDING REMARKS

We proposed a probabilistic model for sparse signal re-
construction and model selection. Our model generalizes the
sparse Bayesian learning model, yielding a reduced parameter
space. We then derived the GML function under the proposed
probabilistic model that selects the most efficient signal rep-
resentation making the best balancing between the accuracy
of data fitting and compactness of the parameterization. We
proved the equivalence of GML objective with the opti-
mization problem (1.1) and developed the ExCoV algorithm
that searches for models with high GML objective function
and provides corresponding empirical Bayesian signal esti-
mates. ExCoV is automatic and does not require knowledge
of the signal-sparsity or measurement-noise levels. We applied
ExCoV to reconstruct one- and two-dimensional signals and
compared it with the existing methods.

Further research will include analyzing the convergence
of ExCoV, applying the GML rule to automate iterative hard
thresholding algorithms (along the lines of [27]), and con-
structing GML-based distributed compressed sensing schemes
for sensor networks, see also [44] and references therein for
relevant work on compressed network sensing.

VII. APPENDIX

We first present the EM step derivation (Appendix A and
then prove Theorem 1 (Appendix B), since some results
from Appendix A are used in Appendix B; the derivation of

in (4.16) is given in Appendix C.

APPENDIX A
EM STEP DERIVATION

To derive the EM iteration (4.11)–(4.12), we repeatedly apply
the matrix inversion lemma [43, eq. (2.22), p. 424]:

(A.1a)

and the following identity [43, p. 425]:

(A.1b)

where and are invertible square matrices. The prior pdf
(2.4a) can be written as

(A.2)

where is the diagonal matrix with diag-
onal elements obtained by appropriately interleaving the vari-
ance components and . Hence, and in
(2.4b) are restrictions of the signal covariance matrix
to the index sets and . In particular, is the matrix
of elements of whose row and column indices be-
long to the set ; similarly, is the matrix of elements
of whose row and column indices belong to .

We treat the signal vector as the missing data; then, the
complete-data log-likelihood function of the measurements
and the missing data given follows from (2.1)
and (A.2):

(A.3)

where const denotes the terms that do not depend on
and . From (A.3), the conditional pdf of given and

is shown in (A.4) at the bottom of the page, yielding
(A.5a) and (A.5b), shown at the bottom of the page, where

was defined in (2.6b) and
(A.5b) follows by applying (A.1a) and (A.1b). Then, (4.11a)

(A.4)

(A.5a)

(A.5b)
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and (4.11b) follow by setting and restricting the
mean vector in (A.5b) to the sub-vectors according to the index
sets and . Similarly, (4.11d) follows by restricting the rows
and columns of the covariance matrix in (A.5b) to a square
sub-matrix according to index set . Now,

where the second equality follows by restricting the rows and
columns of the covariance matrix in (A.5b) to

the index set . Setting leads to (4.11e). Similarly,

where the second term simplifies by using (A.1b) and (A.5b)
[see (2.6b)]:

and (4.11f) follows by setting . This concludes the
derivation of the E step (4.11). The M step (4.12) easily follows
by setting the derivatives of
with respect to the variance components to
zero.

APPENDIX B
PROOF OF THEOREM 1

We first prove a few useful lemmas.
Lemma 1: Consider an index set with

cardinality , defining distinct signal variance compo-
nents. Assume that the URP condition (1) holds, distinct vari-
ance components are all positive, and the single variance for

is zero, i.e., and , implying that
is the set of indices corresponding to all positive signal variance
components. Then, the following hold:

(B.1a)

(B.1b)

� (B.1c)

(B.1d)

where was defined in (2.6b) and, since is a diag-
onal matrix, ,

.
Proof: Using (2.6b) and setting leads to

and (B.1a) follows by using the limiting form of the Moore–
Penrose inverse [43, Th. 20.7.1]. Using (B.1a), we have

and (B.1b) follows by noting that and
has full column rank due to URP, see

also [43, Th. 20.5.1]. Now, apply (A.1a): see the equation at the
bottom of the page, and note that exists due
to and URP condition; (B.1c) then follows. Finally,

where the last term is finite when and URP condition
(1) holds, and (B.1d) follows.

Under the conditions of Lemma 1 and if ,
is unbounded as . Equation (B.1a)–(B.1c) show that
multiplying by or leads to bounded limiting ex-
pressions as . When , behaves as

as , see (B.1d); the smaller ,
the quicker grows to infinity.

We now examine and the signal estimate [see
(A.5b)]

(B.2)
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for the cases where the index set does and does not includes
the -optimal support .

Lemma 2: As in Lemma 1, we assume that the URP condi-
tion (1) holds and , , and , implying
that is the set of indices corresponding to all positive signal
variance components.

a) If includes the -optimal support ( ),
then

(B.3a)

(B.3b)

b) If does not include the -optimal support (
) and , then

� (B.3c)

Proof: implies that the elements of with indices
in are zero; consequently,

(B.4)

and (B.3a)–(B.3b) follow by using (B.4), (B.1b), and (B.2).
We now show part (b) where . Observe that, when

,

(B.5)

which follows by using (B.4) and partitioning into
and . The first two terms in (B.5) are finite at ,
which easily follows by employing (B.1a) and (B.1b). Then,
the equality in (B.3c) follows by using (B.1c). We now show
that (B.3c) is positive by contradiction. The URP property of

and the assumption that imply that
the columns of are linearly independent. Since
is a nonzero vector and columns of are linearly inde-
pendent, is a nonzero vector. If (B.3c) is
zero, then belongs to the column space
of , which contradicts the fact that the columns of

are linearly independent.
Lemma 2 examines the behavior of and the signal

estimate (B.2) as noise variance shrinks to zero. Clearly,
is desirable and, in contrast, there is a severe penalty if

. Under the assumptions of Lemma 2, [which
is an important term in the log-likelihood function (2.6c)] is fi-
nite when includes all elements of , see (B.3a); in contrast,
when misses any index from , grows hyperboli-
cally with as , see (B.3c). Furthermore, if includes

, (B.3b) holds regardless of the specific values of provided
that they are positive; hence, the signal estimate
will be -optimal even if the variance components are inac-
curate. The next lemma studies the behavior of the Fisher infor-
mation term of the GML function.

Lemma 3: For any distinct-variance index set
, define the index set of positive variance compo-

nents in :

(B.6a)

with cardinality

(B.6b)

Assume that the URP and Fisher-information conditions (1) and
(2) hold.

(a) If , then

if
if

(B.7a)

(b) If , then

if
if

(B.7b)

Proof: Without loss of generality, let
and block partition as

(B.8)

We first show part (a), where and, therefore,
. When , the URP

property of implies that and are finite matrices and

(B.9)

Consider now the case where and, consequently,
is unbounded as . Applying Lemma 1 to the index

set implies that multiplying by or leads to
bounded expressions; in particular, we obtain (B.10), shown at
the bottom of the next page, where the limits in (B.10a)–(B.10e)
are all finite; see also (3.4).

We analyze the Fisher information matrix and multiply
by all terms that contain and are not guarded by .
In particular, multiplying the last rows and
columns of by , respectively, leads to (B.11), shown at
the bottom of the next page, and (B.7a) follows.

We now show part (b), where and
. When

, the URP property of results in finite
and, therefore, is also finite, leading to

(B.12)

When , we have (B.13). See equation (B.13)
at the bottom of the next page, and (B.7b) follows by applying
Lemma 1 for and arguments analogous to those in part
(a).
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From Lemma 3, we see that the Fisher information term
of GML penalizes inclusion of zero variance components
into index set . In the following lemma, we analyze ML
variance-component estimation for the full model .

Lemma 4: Consider the full model with and
empty [see (2.3)], implying and the vari-
ance-component parameter vector equal to ,
where . In this case, the log-like-
lihood function of the variance components is (2.6c) with

. Assume that the URP and
measurement number conditions (1) and (3) hold and consider
all that satisfy

(B.14a)

(B.14b)

where (B.14a) states that the support of
is identical to the -optimal

support . Then, the log-likelihood at grows
proportionally to as approaches , with
speed

(B.14c)

If , is always finite; therefore, it can become in-
finitely large only if . Among all choices of
for which is infinitely large, those defined by
(B.14a) and (B.14b) “maximize” the likelihood in the sense that

grows to infinity at the fastest rate as , quan-
tified by (B.14c). Any choice of different from in (B.14a)
cannot achieve this rate and, therefore, has a “smaller” likeli-
hood than at .

Proof: Consider satisfying (B.14a), i.e.,
. Applying (B.1d) in Lemma 1 and (B.3a) in Lemma 2(a) for

the index set yields (B.14c)

(B.15)

We now examine the model parameters different from in
(B.14). If , is bounded and, therefore, the likelihood

is always finite. Since we are interested in those for
which the likelihood is infinitely large, we focus on the case

(B.10a)

(B.10b)

�

(B.10c)

�

� (B.10d)

� (B.10e)

(B.11)

(B.13)
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where and and partition the rest of the
proof into three parts:

a) For with cardinality

(B.16a)

we have and
, see (3.5). Applying (B.1d) and (B.3c) for

the index set (which satisfies the conditions of
Lemma 2(b)) yields

(B.16b)

and, consequently, at . The penalty is
high for missing the -optimal support.

b) For with cardinality that satisfies

(B.17a)

consider three cases: i) and
, ii) and

, and iii) , i.e., is strictly larger than
. For i), we apply the same approach as in a) above, and

conclude that at . For ii), we observe
that and apply
(B.1d) for the index set (which satisfies the condi-
tions of Lemma 2(b)) to this upper bound, yielding

(B.17b)

Therefore, that satisfy ii) have “smaller” likelihood (in
the convergence speed sense defined in Lemma 4) than
in (B.14a) at . For iii), arguments similar to those
in (B.15) lead to

(B.18)

and, consequently, that satisfy iii) cannot match or out-
perform at .

c) For with cardinality , is bounded
and, therefore, is finite.

With a slight abuse of terminology, we refer to all
defined by (B.14) as the ML estimates of under the scenario
considered in Lemma 4. Interestingly, the proof of Lemma 4 re-
veals that, as , grows to infinity when

as well, but at a slower rate than that in (B.14c). In Corollary
5, we focus on the model where the index set is equal to the

-optimal support and, consequently, .
Corollary 5: Assume that the URP and measurement

number conditions (1) and (3) hold and consider the model

with . Consider all variance-component estimates
that satisfy

(B.19a)

(B.19b)

Then,

(B.20)
If , is always finite. Among all choices of
and for which is infinitely large, those and
defined by (B.19a) and (B.19b) “maximize” the likelihood in the
sense that grows to infinity at the fastest rate as

, quantified by (B.20). Any choice of different from
in (B.19a) cannot achieve this rate and, therefore,

has a “smaller” likelihood than at .
Proof: Corollary 5 follows from the fact that the model

is nested within the full model .
We refer to all defined by (B.19) as the ML estimates of

under the scenario considered in Corollary 5.
Proof of Theorem 1: The conditions of Lemma 3 and

Corollary 5 are satisfied, since they are included in the the-
orem’s assumptions. Consider first the model ; by
Corollary 5, the ML variance-component estimates under this
model are given in (B.19). Applying (B.20) and (B.7a) in
Lemma 3 for yields

(B.21)

Hence, under the conditions of Theorem 1, is infin-
itely large. In the following, we show that, for any other model

, in (3.1) is either finite or, if infinitely large,
the rate of growth to infinity of is smaller than that spec-
ified by (B.21). Actually, it suffices to demonstrate that any

with yields a “smaller” than
, where has been defined in (B.19).

If , is bounded and, therefore, the resulting
is always finite.

Consider the scenario where and and re-
call the definitions of and its cardinality in (B.6).
Then, is the set of indices corresponding to all pos-
itive signal variance components, with cardinality .
Now, consider two cases: i) and ii)

. For i), the URP condition (1) implies that is
bounded and, therefore, in (3.2) is finite. For ii), observe
that

(B.22)

apply (B.1d) in Lemma 1 for the index set (meaning
that and in Lemma 1 have been replaced by
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and , respectively), and use (B.7b) in Lemma
3(b), yielding

(B.23)

where the last inequality follows from the assumption (2.2).
Therefore, by (B.22), goes to negative infinity as

. From i)–ii) above, we conclude that cannot exceed
when and .

We now focus our attention to the scenario where and
. For any and any corresponding , consider four

cases: i’) , ii’) and ,
iii’) and , and iv’)

. For i’), is bounded and, therefore, is finite. For
ii’), we have [see
(3.5)] and, therefore,

(B.24)

where we have applied (B.1d) in Lemma 1 and (B.3c) in Lemma
2(b) for the index set , and used (B.7a) in Lemma 3(a);
therefore, goes to negative infinity as . Here,
Lemma 2 (b) delivers the severe penalty since does not
include the -optimal support .

If iii’) holds, we apply (B.1d) in Lemma 1 and (B.3a) in
Lemma 2(a) for the index set and use (B.7a)
in Lemma 3(a), yielding

(B.25)

In this case, and the largest possible (B.25)
is attained if and only if , which is equiv-
alent to ; then, (B.25) reduces to (B.21). For ,
(B.25) is always smaller than the rate in (B.21), which is caused
by inefficient modeling due to the zero variance components in
the index set ; the penalty for this inefficiency is quantified by
Lemma 3.

For iv’), apply (B.1d) in Lemma 1 for the index set
and use (B.7a) in Lemma 3(a), yielding

(B.26)

where the inequality follows from ; there-
fore, by (B.22), cannot exceed .

In summary, the model maximizes in (3.1)
globally and uniquely. By (B.3b) in Lemma 2(a),

(B.27)

where is the set of ML variance-
component estimates in (B.19) for .

APPENDIX C
DERIVATION OF

Plugging (4.14a) and (4.14c) into (2.6b) and applying (A.1a)
yields

(C.1a)

(C.1b)

Approximating by its diagonal elements (4.17) leads to

(C.2a)

(C.2b)

(C.2c)

(C.2d)

where

(C.2e)

(C.2f)

for ; to simplify notation, we have omitted the
dependence of and on . Furthermore,

(C.2g)

(C.2h)

(C.2i)

(C.2j)
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We approximate (3.4b)–(3.4b) using (C.2h)–(C.2j) and use
[see (4.13) and (4.14b)]:

(C.3a)

(C.3b)

(C.3c)

yielding

(C.3d)
and, using the formula for the determinant of a partitioned ma-
trix [43, Th. 13.3.8]:

(C.4)

Finally, the approximate GL formula (4.16) follows when we
substitute (C.1), (C.2g), and (C.4) into (3.2).
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