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Abstract

Exploiting locality at run-time is a complementary ap-
proach to a compiler approach for those applications
with dynamic memory access patterns. This paper pro-
poses a memory-layout oriented approach to exploit cache
locality for parallel loops at run-time on Symmetric
Multi-Processor (SMP) systems. Guided by application-
dependent hints and the targeted cache architecture, it re-
organizes and partitions a parallel loop through shrinking
and partitioning the memory-access space of the loop at
run-time. In the generated task partitions, the data shar-
ing among partitions is minimized and the data reuse in a
partition is maximized. The execution of tasks in partitions
is scheduled in an adaptive and locality-preserved way to
achieve balanced execution, for minimizing the execution
time of applications by trading off load balance and local-
ity.

Based on simulation and measurement, we show our
run-time approach can achieve comparable performance
with the compiler optimizations for two applications, whose
load balance and cache locality can be well optimized by
the tiling and other program transformations. However, our
experimental results also show that our approach is able to
significantly improve the memory performance for the ap-
plications with dynamic memory access patterns. This type
of programs are usually hard to be optimized by compilers.

1. Introduction

The increasing speed gap between the processor and
the memory system makes techniques of latency hiding
and reduction very important for both uniprocessor systems
and multiprocessor systems. Recently, Symmetric Multi-
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Processor (SMP) systems have emerged as a major class of
high-performance platforms, such as HP/Convex Exemplar
S-class [1], Sun SPARCcenter 2000 [4], SGI Challenge [8],
and DEC AlphaServer [18]. SMPs dominate the server mar-
ket for commercial applications and are used as desktops
for scientific computing. They are also important building
blocks for large-scale systems. Because the access latency
of a processor to the shared memory in a SMP is usually
tens of times of that to a cache, improving the memory per-
formance of applications on SMPs is crucial to the success-
ful use of SMP systems.

The techniques for reducing the effect of long memory
latency have been intensively investigated by researchers
from application designers to hardware architects. The pro-
posed techniques, so far, fall into two categories: latency
avoidance and latency tolerance [9]. The latency tolerance
techniques [7] are aimed at hiding the effect of memory-
access latencies by overlapping computations with com-
munications or by aggregating communications. Most of
these techniques, while reducing the impact of contention-
less access latencies, do so at the cost of increasing a pro-
gram’s bandwidth requirements [3]. The latency avoidance
techniques, also called locality optimization techniques, are
aimed at reducing low-level memory accesses using soft-
ware and hardware approaches. In a SMP system, reducing
the total number of accesses at low levels of the memory hi-
erarchy is a substantial solution to reduce cache coherence
overhead, memory contention, and network contention. Op-
timizing the locality of parallel computations is more de-
manding than tolerating their memory latency, which is the
goal of this paper.

1.1. The problem

Locality optimization has been paid attention by many
researchers for several years. The majority of the exist-
ing work focuses on compiler-based optimizations [6, 10,
11, 12, 14, 15]. Because a compiler can exploit detailed
information of applications using comprehensive analy-
sis techniques, compiler-based locality optimization tech-



niques have been shown to be very effective in improving
the performance of those applications to which they can be
applied (see e.g. [6, 10, 11, 12, 14]). Unfortunately, many
of the applications in the real world possess dynamic data-
access patterns which cannot be analyzed at compiler time.

sparse-mm()
{      int i, j, k, r, start, end; 

        for (i=0; i<M; i++)
             for (j=0; j<M; j++){ 

                  start = Bcol[j]; end = Bcol[j+1]; 
                  for (k=Arow[i]; k<Arow[i+1]; k++)
                       for (r=start; r<end; r++)
                            if (Acol[k] == Brow[r]){ 

                                start = r+1; 
                                break; 
                             } 

        register double d; 

d = 0; 

                                d += A[k]*B[r]; 

                   C[i][j] = d;  
            }

}

double A[X], B[Y], C[M][M]; 
int Arow[M+1], Acol[X], Bcol[M+1], Brow[Y]; 

task t(i, j)

Figure 1. A Sparse Matrix Multiplication
(SMM) which has a dynamic data-access pat-
tern and an irregular computation pattern.

In Figure 1, we present a sparse matrix multiplication al-
gorithm where two sparse source matrices have dense rep-
resentations. In the innermost loop, the two elements to
be multiplied, A[k] and B[r], are indirectly determined
by the data in arrays Arow, Acol, Bcol and Brow. At
compiler-time, because a compiler does not know what kind
of data the program is going to process, it cannot determine
how the program accesses its data. The data-access pattern
of this program can only be determined at run-time when
input data has been obtained. However, on a SMP system,
the design of a run-time locality optimization technique is
challenged by low overhead requirement and the complexi-
ties of minimizing data sharing among caches, maximizing
data reuses in the cache, and trading off locality and the
other performance factors.

1.2. Our solution and contributions

Because most data reuses of an application occur in loop
structures [15] and the parallel loop is a major program
structure in scientific applications [13, 14, 16, 22], we pro-
pose a run-time technique to improve the memory perfor-
mance of parallel loops with dynamic data-access patterns.

In our run-time technique, the memory-access patterns
of parallel tasks in a program are captured at run-time using
a multi-dimensional memory-access space based on sim-

ple application-dependent hints. Based on the abstracted
memory-access space and the cache architecture, the local-
ity of a program is optimized through two types of space-
based transformations: space shrinking and space partition-
ing. Then, tasks are adaptively scheduled to trade off local-
ity and load imbalance, aiming at minimizing the parallel
computing time. The proposed information abstraction and
transformations can be efficiently implemented at accept-
able overhead. Finally, with respect to three applications
with different data-access patterns, the effectiveness of the
proposed technique is evaluated in detail on an event-driven
simulator and two commercial SMP systems,

1.3. Comparisons with related work

Exploiting cache locality at run-time has been paid at-
tention by some previous work. References [13, 22] present
dynamic loop scheduling algorithms that consider the affin-
ity of loop iterations to processors. Although significant
performance improvement can be acquired for some appli-
cations, the type of affinity exploited by this approach is
not very popular and the relations between memory refer-
ences of different iterations are not considered. The pro-
posed technique in this paper not only takes into consider-
ation the affinity of parallel tasks to processors, it also uses
information on the underlying cache architecture and mem-
ory reference patterns of tasks to minimize cache misses
and false sharing.

In the design of the COOL language [5], the locality ex-
ploitation issue is addressed by using language mechanisms
and a run-time system. Both task affinity and data affin-
ity are specified by users and then are implemented by the
run-time system. A major limit with this approach is that
the quality of locality optimizations totally depends on a
programmer. For complicated applications, such as the ex-
ample in Figure 1, it is difficult for a user to specify affinity.
Our proposed technique uses a simple programming inter-
face for a user or compiler to specify simple information
about data, not about complicated affinity relations. Re-
garding the run-time locality optimization of sequential pro-
grams, reference [16] proposes a memory-layout oriented
method. It reorganizes the computation of a loop based on
some simple hints about the memory reference patterns of
loops and cache architectural information. Compared with a
uniprocessor system, a cache coherent shared memory sys-
tem has more complicated factors that should be considered
for locality exploitation, such as data sharing and load im-
balance.

More recently, reference [2] uses a run-time system to
color the virtual pages of a program based on both machine-
specific parameters and a summary of the array access pat-
terns generated by the high-level compiler. This approach
still depends on the compiler-time static analysis on data-



access patterns

1.4. Organization of this paper

The remaining of this paper contains four sections. The
next section describes our run-time optimization technique
in detail. Section 3 presents our performance evaluation
method and performance results. In Section 4, we conclude
our work.

2. A memory-layout oriented optimization
technique

Task grouping

Estimation of memory

Run-time execution

Run-time library

Task partitioning

A program

Transforming/user

Compiling

Task scheduling

executables with hints

accessing pattern

Figure 2. Framework of the run-time tech-
nique.

Our run-time technique has been implemented as a set
of library functions. Figure 2 presents a framework for our
run-time optimization. A given sequential application pro-
gram is first transformed by a compiler or rewritten by a
user to insert run-time functions. The generated executable
file is encoded with application-dependent hints. At run-
time, the encoded run-time functions are executed to ful-
fill the following functionalities: estimating the memory-
access pattern of a program, reorganizing tasks into cache
affinity groups where the tasks in a group are expected
to heavily reuse their data in the cache, partitioning task-
affinity groups onto multiple processors so that data sharing
among multiple processors are is minimized, and then adap-
tively scheduling the execution of tasks.

In order to minimize run-time overhead, a multi-
dimensional hash table is internally built to manage a set

of task-affinity groups. Meanwhile, a set of hash functions
are given to map into an appropriate task-affinity group in
the hash table. Locality oriented task reorganization and
partitioning are integratedly finished in the task mapping.
This section describes our information estimation method,
the design of the hash table and hash functions along with
task reorganization and partitioning, and our task schedul-
ing algorithm.

2.1. Memory-access pattern estimation

In a loop structure, referenced data are usually structured
as arrays. Let A�� A�� � � � � An be the n arrays accessed in
the loop body of a nested data-independent loop. Each ar-
ray is usually laid out in a contiguous memory region, in-
dependent of the other arrays. In rare cases, an array may
be laid out across several uncontiguous memory pages. Al-
though our run-time system may not handle these rare cases
efficiently, the system works well for most memory layout
cases in practice. Visualizing an array in an independent
dimension, the memory regions of the n arrays can be in-
tegratedly abstracted as an n-dimensional memory-access
space, expressed as �A�� A�� � � � � An� where arrays are ar-
ranged in any selected order by a user. This n-dimensional
memory-access space actually contains all the memory ad-
dresses that are accessed by a loop. This abstract is similar
to that used in [16].

In order for the run-time system to precisely capture this
memory space information, the following three hints must
be provided by the interface.

Hint 1. n, the number of arrays accessed by tasks.

Hint 2. The size in bytes of each array. Based on this,
the run-time system maintains a Memory-access Space
Size vector �s�� s�� � � � � sn�, denoted the MSS vector,
where si is the size of i-th array �i � �� �� � � � � n�.

Hint 3. The starting memory address of each array. From
this, the underlying run-time system constructs a start-
ing address vector �b�� b�� � � � � bn�, denoted the SA
vector, where bi�i � �� �� � � � � n� is the starting mem-
ory address of i-th array.

Here Hint 1 is a static information. The array size may
be static if the size is known at compiler-time or dynamic if
the size is determined by run-time data and the hint should
tell how to calculate the size at run-time. The starting ad-
dresses are dynamic because memory addresses can only be
determined at run-time. Hint 3 tells how to determine the
starting addresses at run-time.

After determining the global memory-access space of a
loop, we need to determine how each parallel iteration ac-
cesses the global memory-access space so that we can re-
organize them to improve memory performance. Here, we



abstract each instance of a loop body of a parallel loop as
a parallel task. The access region of a task in an array is
simply represented by the starting address of its access re-
gion. So, the following hint should be provided by interface
functions.
Hint 4: A memory-access vector of task tj :

�aj�� aj�� � � � � ajn�

where aji is the starting address of the referenced region on
i-th array by tj �i � �� �� � � � � n�. In some loop structures,
a parallel iteration may not contiguously access an array so
that the access region may not be precisely abstracted by
the starting address. In this case, the loop iteration should
be further split into smaller iterations so that each iteration
accesses a contiguous region on each array. In addition, the
following hint also should be provided to assist task parti-
tioning.
Hint 5: The number of processors, p.
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(a) hints on memory layouts of two accessed arrays.
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Memory layout of A : size = 200*8; starting at &A[0] = 1000;   

Memory layout of B : size = 100*8; starting at &B[0] = 100; 

(c) An 2-dimensional memory-accessing space. 

Figure 3. Memory-access space representa-
tion.

Based on the above hints, the memory-access space of
the loop is abstracted as a n-dimensional memory-access
space:

�b� � b� � s� � �� b� � b� � s� � �� � � � � bn � bn � sn � ���

Task tj is abstracted as point �aj�� aj�� � � � � ajn� in the
memory-access space based on the estimation on its
memory-access pattern. Figure 3 presents an example of the
abstract representation of the memory accesses based on the
physical memory layout of arraysA andB in the SMM given

in Figure 1. Figure 3(a) gives the hints on the memory-
access space. Figure 3(b) illustrates the memory layout of
two arrays where B and A are laid out at starting address
100 and 1000 respectively. Each array element has size of
8 bytes. The memory space of arrays A and B is the whole
memory space accessed by tasks. Then, the memory-access
space is represented as a 2-dimensional space as shown in
Figure 3(c) where each point gives a pair of possible start-
ing memory-access addresses on A and B respectively by a
task. For example, t(1000, 100) means task t will ac-
cess array A at starting memory address 1000, and access
array B at starting physical address 100.

2.2. Task reorganization

In the memory-access space, nearby task points access
the same or nearby memory addresses in memory. So,
grouping nearby tasks in the memory access space has a
good change to enhance temporal locality and spatial local-
ity when they execute together. This is achieved by shrink-
ing the memory-access space based on the underlying cache
size.

Let fti�ai�� ai�� � � � � ain�ji � �� �� � � � �mg be a set of m
data-independent tasks of a parallel loop, and �b� � b� �
s� � �� b� � b� � s� � �� � � � � bn � bn � sn � �� be the
memory-access space of the parallel loop. Conceptually,
task ti (i=1, � � �, n) is mapped onto point �ai�� ai�� � � � � ain�
in the memory-access space based on the starting memory
addresses of their memory-access regions. In addition, let
p be the number of processors and C be the capacity of the
underlying secondary cache in bytes.

Task reorganization consists of two steps. In the first
step, the memory-access space �b� � b� � s� � �� b� � b� �
s� � �� � � � � bn � bn � sn � �� is shifted into origin point (0,
� � �, 0) by subtracting �b�� b�� � � � � bn� from the coordinates
of all task points. In the second step, we use equal-shrinking
method to shrink each dimension of the shifted memory by
fC�n. The n-dimensional space resulted from shrinking
is called a n-dimensional bin space. Here, f is a weight
constant in (0, 1]. In the bin space, each point is associated
with a task bin to hold all the tasks that are mapped into the
task bin.

In Figure 4, the shrinking procedure of the memory-
access space is exemplified by the 2-dimensional memory-
access space given in Figure 3. Before shrinking, the origi-
nal memory-access space is shifted to origin point (0,0) (see
Figure 4(b)). The shifting function is shown in Figure 4(b).
Then each dimension of the shifted memory-access space is
shrunk by C/2 into a new 2-dimensional bin space in Fig-
ure 4(c). The tasks in the shadow square in Figure 4(b)
would not access more space than the cache size, and are
mapped onto one point in the bin space so that they can be
grouped together to execute.
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(b) Shifting memory-access space by 
      function f  : f  (x, y) = (x-1000, y-100); 1 1
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Figure 4. Equally shrinking a memory-access
space.

2.3. Task partitioning

After shrinking an n-dimensional memory-access space,
tasks have been grouped based on locality affinity infor-
mation in an n-dimensional bin space. Task partitioning
is aimed at partitioning the n-dimensional bin space into p
partitions (p is the number of processors and each partition
is an n-dimensional polyhedron) so that

1. the data sharing degree among partitions is minimized,
which is measured by the volume of boundary spaces
among partitions.

2. p partitions are balanced, where the balance refers to
partitions with the same volume.

The major function of partitioning an n-dimensional bin
space Bn(0:L�, 0:L�, � � �, 0:Ln) is to find a partitioning
vector �k�k�� k�� � � � � kn� so that the above conditions are
satisfied. Because finding an optimal partition vector is
a NP-complete problem, we propose a heuristic algorithm
based on the following partitioning rules. Detailed proofs
can be found in [21].

Theorem 1 Ordering Rule
For a given partitioning vector �k�k�� k�� � � � � kn� not in de-
creasing order, the partitioning vector resulting by sorting
�k in decreasing order is at least as good as �k in terms of the
sharing degree.

Theorem 2 Increment Rule 1
For an n-dimensional bin space Bn, and partitioning vec-
tors �k(k�, k�, � � �, ki, ki�� � q, 1, � � �, 1) and �k�(k�, k�, � � �,
ki � q, ki��, 1, 1, � � � , 1), where q � �, �k is better than �k�

in terms of the sharing degree if and only if

ki � Li�� � ki�� � Li�

Corollary 1 Increment Rule 2
For an n-dimensional bin space Bn, and parti-
tioning vectors �k�k�� k�� � � � � ki� ki��� �� � � � � �� and
�k��k�� k�� � � � � ki � ki��� �� �� � � � � ��, where ki�� � �, �k is
better than �k� in terms of the sharing degree if and only if

ki � Li�� � �Li�

Based on the above three rules, we design an efficient
heuristic algorithm as follows.

1. Factor p, the number of processors, to generate all the
prime factors of p in decreasing order. Assume that
there are q prime factors: r� � r� � � � � � rq . Ini-
tially, the n-dimensional partitioning vector �k, stored
in k�� � n	, is (1, 1, � � �, 1) for the bin space Bn�
 �
L�� 
 � L�� � � � � 
 � Ln�.

2. Let last index the position in k�� � n	 where k�i	 � �
for i � last and k�i	 � � for i � last. Initially, last
= 1. For each prime factor rj where j increases from 1
to q, do the following:

(a) When (last � n), use the increment rule 2 to
determine whether rj should be put in k�last	.
Based on the ordering rule, the best place to put
rj must be in k�� � last	. So, we use increment
rules to find a better place in k�� � last	. If so,
last is increased by 1 and go back; otherwise,
use the increment rule 1 to put rj together with
k�last��	 or k�last��	, then reorder k�� � last�
�	 in decreasing order and go back.

(b) Otherwise: use the increment rule 1 to put rj to-
gether with k�last��	 or k�last��	, then reorder
k�� � last� �	 in decreasing order and go back.

The above algorithm has a computational complexity
O�n�

p
p�. After the determination of a partitioning vector,

the bin space is partitioned into multiple independent spaces
that are further reconstructed in a �n � ��-dimensional
space. This procedure is shown in Figure 5 where the bin
space produced in Figure 4 is partitioned by vector (2, 2).
The partitions in Figure 5(a) are first transformed into four
independent spaces in Figure 5(b), which are further trans-
formed into a 3-dimensional space shown in in Figure 5(c).
The 3-dimensional space in Figure 5(c) is implemented as
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Figure 5. Partitioning: the bin space is evenly
divided into 4 partitions from X and Y dimen-
sions.

a 3-dimensional hash table where task bins in each parti-
tion are chained together to be pointed by a record in a Task
Control Linked (TCL) list. The hashing of tasks into the
hash table is finished by the space transformation functions
(details are presented in [21]).

2.4. Task scheduling

In order to minimize the parallel computing time of
partitioned tasks, we present a Locality-preserved Adap-
tive Scheduling (LAS) algorithm by extending our linearly
adaptive algorithm proposed in [22].

Initially, the i-th task group chain in the TCL list is
considered to be the local task chain of processor i, for
i � �� �� � � � � p (p is the total number of processors). Each
task chain has a head and a tail. The initial allocation main-
tains the minimized data sharing achieved in the task reor-
ganization step among processors. The number of current
tasks in the local chain of processor i is recorded by a TCL
counter, denoted Ci, which is used in the LAS algorithm to
estimate load imbalance. In addition, each processor has a
chunking control variable of initial value of p, denoted Ki

for processor i, to determine how many tasks to be executed
at each scheduling step.

The scheduling algorithm still works in two phases: the

local scheduling phase and the global scheduling phase. All
the processors start at the local scheduling phase. In the
local scheduling phase, processor i calculates its load status
relative to the other processors as follows:

heavy if Ci �
Pp

j�� Cj�p� � (1)

light if Ci �
Pp

j�� Cj�p� � (2)

normal otherwise (3)

Here, � is dPp

j�� Cj�p����p�e, which decreases with the
execution to control the load distribution more closely.
Then, it adjusts its chunking control variable, Ki, as fol-
lowing:

Ki �

��
�

maxfp���Ki � �g if its load is light
minf�p�Ki � �g if its load is heavy
Ki otherwise

(4)

Finally, processor i gets ��Ki of remaining tasks from the
head of its local task chain to execute. The varying range
�p��� �p	 for the chunking control variables has been shown
to be safe for balancing load [13, 22].

When processor i finishes its local tasks, it sets its chunk-
ing control variable,Ki, to p, then enters the global schedul-
ing phase where it will get ��Ki of remaining tasks on the
most heavily load processor from the tail of the task chain.

3. Performance evaluation

3.1. Evaluation method

We implemented our locality optimization technique as
three simple run-time library functions. Performance eval-
uation is based on simulation and measurement. Simulation
was conducted on an event-driven simulator for bus-based
shared memory systems, which was built on the MINT, a
MIPS interpreter [19]. Measurements were conducted on
two commercial systems: HP/Convex S-class which is a
crossbar-based cache coherent SMP system with 16 proces-
sors, and Sun Ultr-SPRACstation-20 which is a bus-based
cache coherent SMP system with 4 processors.

The selected applications are: (1) dense matrix multi-
plication, denoted as DMM, that has a regular computation
pattern and a static data-access pattern, adjoint convolution,
denoted as AC, that has a irregular computation pattern and
a static data-access pattern, and sparse matrix multiplica-
tion with 30% non-zero elements, denoted as SMM, that
has a irregular computation pattern and a dynamic data-
access pattern. Their optimized versions by exploiting lo-
cality using our runtime library are denoted as DMM LO,
AC LO, and SMM LO respectively. For comparison, the
three benchmarks are parallelized respectively using the
best existing techniques as follows. (1) For the DMM ap-
plication, we parallelized the blocked matrix multiplication



algorithm given by Wolf and Lam [20]. This program is
denoted as DMM WL. (2) For the AC application, we first
used loop split, loop reverse, and loop fusion transforma-
tions to get a balanced outer loop, which is then equally
partitioned across processors. This program is denoted as
AC BF. (3) For the SMM application, we used the linearly
adaptive scheduling technique proposed in [22]to schedule
the executions of parallel iterations in SMM. This program
is denoted as SMM A. The detailed description about these
programs are given in [21].

3.2. Performance results

Processors Miss rate
DMM application AC applic ation SMM application

DMM WL DMM LO AC BF AC LO SMM A SMM LO
2 0.006 0.008 0.051 0.043 0.025 0.011
4 0.006 0.008 0.051 0.044 0.025 0.011
8 0.005 0.007 0.052 0.044 0.025 0.012

Table 1. Cache miss-rate based comparison
where experiments were conducted under
shrinking factor f = 1.

Table 1 presents the miss rates of the six benchmark
programs on 2 processors to 8 processors. Regarding
regular application DMM, the locality-optimized version
(DMM LO) using the run-time technique is 9% to 14%
higher than the well-tuned version (DMM WL) in the num-
ber of cache misses (Table 1). AC LO, a locality optimized
program of AC using the run-time technique, is shown to
achieve slightly better cache performance than AC BF, a
well-tuned program. Regarding the application SMM, the
run-time locality technique is shown to be very effective in
reducing cache misses. The cache miss rate was reduced for
more than 50% as shown in Table 1.

On HP S-class On SUN SPARC
program size processors size processors

2 4 8 16 2 4
DMM WL 1024 11 5.7 3.0 1.8 1024 108 57
DMM LO 1024 13 6.6 3.9 2.2 1024 115 63

AC BF 400 180 102 65 39 256 763 390
AC LO 400 144 91 60 38 256 698 349
SMM A 1024 4.1 2.5 1.4 0.8 1024 37 20

SMM LO 1024 2.2 1.3 0.5 0.5 1024 23 12

Table 2. Measured time (in seconds) based
comparison. (f = 1).

Table 2 presents execution comparisons on two SMP sys-
tems. Measured load balance is presented in Table 3. Re-
garding the DMM program, DMM WL consistently per-
formed a little bit better than DMM LO, not larger than
20% on both SMP systems. The better load balance in
DMM WL is a reason for this. This shows that the run-
time optimization can also achieve a comparable perfor-

On HP S-class On SUN SPARC
program size processors size processors

2 4 8 16 2 4
DMM WL 1024 0.0026 0.0052 0.0095 0.010 1024 0.01 0.02
DMM LO 1024 0.024 0.021 0.038 0.040 1024 0.06 0.03

AC BF 400 0.0007 0.001 0.0018 0.0031 256 0.002 0.003
AC LO 400 0.003 0.004 0.006 0.010 256 0.003 0.005
SMM A 1024 0.02 0.03 0.04 0.06 1024 0.012 0.022

SMM LO 1024 0.03 0.05 0.06 0.06 1024 0.035 0.038

Table 3. Measured load imbalance in terms
of the rate of the time deviation to the mean
time. (f = 1).

mance with the compiler-based optimization for regular ap-
plications. For program AC, AC LO performed better than
AC BF on two processors on both SMP systems. When
more processors were applied, the execution times were
close. But, AC BF always balanced load better due to its
perfect initial partition. But, the load imbalance occurred
in the AL LO was no larger than 1%. This shows that the
run-time optimization has chance to outperform compiler-
based optimization for applications with irregular compu-
tation pattern. For SMM, SMM LO had achieved a much
better performance improvement over the SMM A. About
50% reduction in execution time was observed for all test
cases on both SMP systems. This confirms the effectiveness
of the run-time technique in improving the performance of
applications with dynamic memory-access patterns

Table 4 presents run-time overhead measurements. On
both SMP systems, the run-time overhead is not larger than
10% of the execution time in all cases except one. This
shows the effectiveness of using hash table and hash func-
tions to integrate locality optimizations at run-time.

On HP S-class On SUN SPARC
program size processors size processors

2 4 8 16 2 4
DMM LO 1024 6 8 9 10 1024 9 10

AC LO 400 0.3 0.25 0.3 0.3 256 0.1 0.2
SMM LO 1024 5 8 16 2 1024 9 10

Table 4. Run-time overhead in percentage of
total time. (f = 1).

In Table 5, we show the effects of selecting different
shrinking factors for f . The change in f does affect the exe-
cution times of benchmark programs. But, this effect is not
very big. So, we recommend to use f=1 for programming
ease.

4. Conclusion

In this paper, we have presented a run-time locality op-
timization technique and have shown its effectiveness for
optimizing the memory performance of applications with
dynamic memory-access pattern. For those applications



Application Machine value of f
1 0.5 0.25 0.125

DMM LO (N=1024) S-class 6.6 6.1 5.8 5.8
DMM LO (N=1024) HyperSPARC 63 64 58 59

AC LO (N=400) S-class 91 90 91 90
AC LO (N=256) HyperSPARC 349 347 352 373

SMM LO (N=1024) S-class 1.3 1.3 1.4 1.5
SMM LO (N=1024) HyperSPARC 12 13 14.6 14.2

Table 5. The effects of different values of f on
execution time (in seconds) using 4 proces-
sors.

whose memory performance can be optimized well by cur-
rent compiler-based optimizations, the presented run-time
technique can achieve comparable performance. Using the
hash table and hash functions has been shown to be an ef-
fective way to reduce run-time overhead.

Our work does have some limits that need to be studied
further. (1) The access-pattern of a task on an array is es-
timated only by a starting address. When a task accesses
several non-contiguous regions on an array, multiple start-
ing addresses should be used or the task should be split into
several small tasks. Further investigation is needed for this
case. (2) In space shrinking, we only use an equal-shrinking
approach. When tasks accesses different arrays in different
ways, a non-equal shrinking approach should be used. But,
the difficulty is how to estimate array-access patterns at low
cost. (3) The program structure should be extended to con-
sider data-dependence. By combining our run-time local-
ity optimization technique with the run-time parallelization
technique given in [17], more general program structures
can be handled.
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