
Memory Access Scheduling Schemes for Systems with Multi-Core Processors

Hongzhong Zheng1 Jiang Lin2

1Department of Electrical and
Computer Engineering

University of Illinois at Chicago
{hzheng, zhu@ece.uic.edu}

Zhao Zhang2 Zhichun Zhu1

2Department of Electrical and
Computer Engineering
Iowa State University

{linj, zzhang@iastate.edu}

Abstract
On systems with multi-core processors, the memory ac-

cess scheduling scheme plays an important role not only in
utilizing the limited memory bandwidth but also in balanc-
ing the program execution on all cores. In this study, we
propose a scheme, called ME-LREQ, which considers the
utilization of both processor cores and memory subsystem.
It takes into consideration both the long-term and short-
term gains of serving a memory request by prioritizing re-
quests hitting on the row buffers and from the cores that
can utilize memory more efficiently and have fewer pend-
ing requests. We have also thoroughly evaluated a set of
memory scheduling schemes that differentiate and priori-
tize requests from different cores. Our simulation results
show that for memory-intensive, multiprogramming work-
loads, the new policy improves the overall performance by
10.7% on average and up to 17.7% on a four-core proces-
sor, when compared with scheme that serves row buffers hit
memory requests first and allows memory reads bypassing
writes; and by up to 9.2% (6.4% on average) when com-
pared with the scheme that serves requests from the core
with the fewest pending requests first.
1 Introduction

Commodity processors have used multi-core and multi-
threading architectures extensively. This trend makes mem-
ory bandwidth a crucial resource – each extra core or thread
generates extra memory traffic. Memory access scheduling,
the reordering of concurrent memory requests from the pro-
cessor, plays an increasingly important role for those pro-
cessors [10, 8, 5, 14, 3, 20, 6, 13, 15]. Previous research
studies had focused on memory access scheduling for pro-
cessors of a single core and a single thread context; only
recently has the focus been shifted to multi-core and multi-
threaded processors [19, 12, 11].

In order to achieve the best overall performance from a
multi-core processor, all processor cores need to be well
utilized. Therefore, the memory access scheduling should
minimize the memory stall time for all cores. On the other

hand, memory bandwidth is a crucial resource and therefore
the utilization of memory bandwidth is of the first prior-
ity. The two objectives contradict each other in many cases.
For example, requests from each core may be served in the
round-robin order to avoid stalling any processor core for a
very long time. However, because of the spatial locality in
the memory access stream from a single core, it usually im-
proves bandwidth utilization by serving multiple requests
from a single core continuously. Thus, the memory access
scheduling schemes for multi-core systems need to consider
the utilization of both the processor cores and the memory
subsystem, while existing schemes mainly focus on the sec-
ond part.

To address this issue, we propose a new approach that
differentiates and prioritizes memory requests from differ-
ent processor cores by considering the memory efficiency
of application running on each core, and integrates it with
conventional memory scheduling policies that emphasizes
improving the memory bandwidth utilization and reducing
the average memory latency. The motivation of prioritizing
requests based on the coming cores is that each application
benefits differently from extra memory bandwidth. Thus,
for multi-core systems running multiprogramming work-
loads, allocating more memory bandwidth to an application
that can utilize the bandwidth more efficiently will improve
the overall performance without jeopardizing other applica-
tions.

The memory efficiency of an application is defined as
the ratio of its IPC to its memory bandwidth usage under
the single-core running environment. The information can
be collected in many ways, e.g. off-line or on-line profiling,
which is feasible and having low hardware overhead. We
have combined this new metric into least-request (LREQ),
an existing memory access scheduling scheme proposed for
SMT processors [19], which prioritizes memory requests
from the thread with the fewest pending requests. The new
scheme, called ME-LREQ, uses the workload’s memory ef-
ficiency and the number of pending requests of the core to
schedule concurrent requests.

We have evaluated several memory scheduling schemes,
including Round-Robin, LREQ, ME-LREQ and others, by
using Hit-First with Read-First (HF-RF) as the performance
baseline, which serves row buffers hit memory requests first
with Read-bypass-Write. The details of those schemes are
discussed in Section 2 and Section 3. We have confirmed
that memory access scheduling plays a significant role in
the performance of multi-core processors; and the pro-
posed ME-LREQ scheme significantly outperforms the oth-
ers. Our cycle-accurate simulation shows that for memory-
intensive workloads constructed from SPEC2000 programs
and on a four-core processor, the Round-Robin scheme may
improve performance over HF-RF by up to 5.6% and the
LREQ scheme may improve performance by up to 8.1%.
By comparison, the proposed ME-LREQ may improve the
performance by up to 17.7%. The average improvement
of ME-LREQ over HF-RF is 10.7%. Additionally, the im-
provement of ME-LREQ increases with the number of pro-
cessor cores. For example, the performance improvement
is up to 21.4% over HF-RF and up to 12.9% over LREQ on
eight cores, and 19.9% and 10.3% on average, respectively.
2 Conventional Memory Scheduling

Schemes
Previous studies have shown that even for single-core

and single-threaded processors, it is frequent that multiple
memory requests are clustered together and occur in a short
time period. Memory scheduling schemes are proposed to
exploit this memory-level parallelism for utilizing DRAM
optimization features. They can effectively reduce the aver-
age latency of concurrent requests and improve the memory
bandwidth utilization for both single-threaded and multi-
threaded processors [10, 8, 5, 14, 3, 20, 6, 13, 19, 15].
FCFS and Read-First. The naive first-come first-serve
scheme serves memory requests according to their arriving
order. A simple extension is to serve memory read requests
before write requests since the read requests will cause the
processor to stall and write requests normally can be well
handled by write buffers.
Hit-First. DRAM has a three-dimensional structure,
bank, row and column. A request hitting in the row buffer
has shorter latency than a row buffer miss. The Hit-First
scheme schedules row buffer hits before misses to reduce
the average memory access latency and improve the band-
width utilization [5, 14].
Least-Request. The least-request scheme assigns the
highest priority to the requests from the thread with the
fewest pending requests for systems with SMT proces-
sors [19]. The rationale is that returning a request from
that thread is likely to release more waiting instructions de-
pendent on the request than returning a request from other
threads.
Round-Robin. To make fair scheduling among all cores,
the memory controller can serve the requests from each core

in a round-robin way. This simple scheme may reduce the
long waiting time for cores with poor locality or low mem-
ory bandwidth demands. However, it destroys the spatial
locality available in memory access streams; and does not
consider different demands from different programs.
3 Memory Efficiency-based Scheduling

Scheme
3.1 Memory Efficiency: Qualitative and Quantitative

Definitions
To achieve good overall performance for a multi-core

systems, all processor cores and the memory subsystem
need to be well utilized. Thus, a memory scheduling
scheme designed for multi-core processors must consider
several issues together. First of all, a good scheme should
adopt the approaches that have been approved successful
in improving memory performance such as read-first and
hit-first, since all processor cores will benefit from the re-
duction on the average memory latency. Second, a good
scheme should differentiate requests from different cores;
and when prioritizing requests, it should consider the pro-
gram execution at all cores – if serving a given request may
allow the waiting core to proceed for more instructions than
serving other requests without starving other cores, then it
is a good choice. Third, a scheme can be sophisticated but
must have a simple implementation; otherwise, it cannot be
practically implemented in the memory controller.

We propose the use of memory efficiency in memory ac-
cess scheduling to meet all these requirements. Qualita-
tively, the memory efficiency of a program indicates the
amount of work that can be done if its memory request is
served. In other words, allocating additional memory re-
source to a program with high memory efficiency (by serv-
ing its requests first) can get better performance return than
allocating the resource to a program with low memory ef-
ficiency. In addition, since the performance of a program
with low memory efficiency is less sensitive to the mem-
ory resources allocated, such scheduling scheme can im-
prove the overall performance with only small impact on
programs with low memory efficiency.

Quantitatively, the memory efficiency of an application
can be represented by the ratio of its number of committed
instructions to its memory bandwidth usage. In general, this
depends on the application’s inherent behavior, the system
architectural configuration and also the behavior of other
applications running concurrently. The information can be
collected either during run-time or from off-line profiling.
A reasonable on-line scheme can detect the changes of run-
ning phases and environment, dynamically adapt the value
of memory efficiency, and be more accurate. On the other
hand, an off-line profiling only pays one-time overhead for
different running instances. For many applications, the be-
havior can be represented by a small number of program

2

slices of the application; and thus it is feasible to get the
approximate information of memory efficiency off-line by
running representative program slices under single-core and
single-thread environment. We define memory efficiency as
follows: ME[i] = IPCsingle[i]/BWsingle[i], (1)
where ME is the memory efficiency, i is the identity of
a program thread, and IPCsingle[i] and BWsingle[i] are the
IPC value and the memory bandwidth usage (in GB/s), re-
spectively, of the application running on a single-core and
single-threaded processor with the same core configuration.

Memory efficiency can address the shortcomings of the
existing memory access scheduling schemes in the context
of multi-core processors. For example, FCFS and Least-
Request are representative ones. In their scheduling, the
scheduling decision is solely based on the microarchitec-
tural status observed in a very short time window; no long-
term property of the program execution is considered. Nev-
ertheless, those schemes still have their merits for multi-
core processors. The FCFS scheme, for example, is a nat-
ural choice and has a simple implementation. The Least-
Request scheme allows a program thread with fewest mem-
ory requests to move faster than the others, which usually
improves the accumulated instruction throughput in a short
time window.
3.2 ME-LREQ Scheme: Approach and Implementa-

tion
Memory efficiency represents the long-term property of

program execution; while existing schemes make memory
scheduling decision solely based on the microarchitectural
status observed in a very short time window. A good mem-
ory scheduling scheme for multi-core systems needs to con-
sider both the long-term and short-term effects in order to
well utilize both the processor cores and memory system.

We have proposed and designed a new scheme called
ME-LREQ, which integrates the Memory Efficiency indica-
tor into the Least-Request scheme. Requests from threads
that have higher memory efficiency and fewer pending re-
quests have higher priority than requests from other threads.
In addition, reads and row buffer hits have higher priority
than writes and row buffer misses, respectively. We choose
Least-Request because a previous study [19] has shown that
it has better performance than other schemes on SMT pro-
cessors and is easy to implement. There can be various
implementations of the ME-LREQ approach. Our scheme
uses the following formula to determine the priority of all
pending requests belonging to a program thread running at
core i at a given time:

Priority[i] = ME[i]/PendingRead[i], (2)
where ME[i] is the memory efficiency of the application
running on the core i and PendingRead[i] is the number of
current pending read requests of the core. A program of a
high priority value at a given moment receives a high pri-

ority in memory access scheduling. The scheme only con-
siders pending read requests because write requests usually
have small performance impact.

The above scheme cannot be directly implemented in
memory controller because of its logic design complexity:
The calculation involves a series of division; and division
units are very expensive. We use a simple and approximate
implementation that uses a hardware table to store the pre-
computed and converted division results. Figure 1 shows
the addition to the memory controller. The workload prior-
ity tables store a set of priority numbers for each application
and every possible number of pending requests. We assume
that the memory efficiency value is collected by profiling
execution using hardware performance counters for instruc-
tion throughput and last level cache miss number, which are
widely available on modern processors. The values calcu-
lated by Equation 2 for each possible pending request num-
ber are scaled approximately and then stored into the tables.
We assume that the tables are initialized by OS at the time
of program loading and context switching. The hardware
implementation cost is small for today’s memory controller.
For example, in our experimental setup, the maximum num-
ber of pending memory requests per thread is 64, and each
table entry stores a 10-bit priority information. The total
number of bits in the tables is only N × 64 × 10 or 640N
bits for an N-core system.

The memory controller maintains a read request queue
and a write request queue, plus two counters for the num-
ber of outstanding read and write requests for each core. At
the time of scheduling (when a memory channel is available
for a memory transaction), the numbers of the outstanding
read requests of all threads, if not zero, are used to access
the workload priority tables in parallel. The output is the
current priorities of all threads. A set of comparators is
used to select the thread with the highest priority, and then
the first read request of the selected thread is scheduled.
A tie of equal priority may be broken by a random selec-
tion. Write requests are scheduled after read requests under
normal conditions. However, when the number of pend-
ing write requests reaches a threshold (half of the memory
buffer size in our experiments), writes are scheduled first
until the number falls below another threshold (one-fourth
of the buffer size).
4 Experimental Setup
4.1 Simulation Environment

We use M5 [1] as the base architectural simulator and ex-
tend its memory part to simulate the DDR2 memory system
in details. The simulator keeps tracking the states of each
memory channel, DIMM and bank, and schedules pending
memory requests according to the used scheduling policy.
Based on current memory states, memory commands are
issued according to the hit-first policy, under which row
buffer hits are scheduled before row buffer misses. Reads

3

�
�

� � �
��� �

���
	 �� ��������	 � ��	 � � ��������� ���

���
 "!��
	 �#� ��	
��	 ��� $ ����� $ ��%�&����'�

(�)+*����
&�� �
	

, -
./
, -
01-
23

4 1-
1-
2

(�)*�����&�� �$ ���+&�� � �

56(7� *�	 ��&�8�*
 9�� :��	 �; 9��!�!����

� <#� ��	 = ��)�

�
�

� � �
�>� �

�
�

� � �
��� �

?@)#��!�� ���
?@)�
!+� �����A�B�C+D EGFHC�IKJ D CL L A�D�M NPO+D J Q

��*��:	 ���P�H�+=
 9�
 9��	 �
)�
<#� 	 ��� � ��	

?R)�
!�� ���

$ ����� $ ��%�&����'�S�T��&�<#� �
	 �

FVU'O�I#I#A�L �
F�U'O�IPI#A+LP�

Figure 1: The implementation of ME-LREQ in memory controller for N -core processor (M -entry request buffer shared by N cores).
Parameters Values
Processor 1/2/4/8 cores, 3.2 GHz, 4-issue per core,

16-stage pipeline
Functional units 4 IntALU, 2 IntMult, 2 FPALU, 1 FPMult
IQ, ROB and LSQ size IQ 64, ROB 196, LQ 32, SQ 32
Physical register num 228 Int, 228 FP
Branch predictor Hybrid, 8k global + 2K local, 16-entry RAS,

4K-entry and 4-way BTB
L1 caches (per core) 64KB Inst/64KB Data, 2-way, 64B line,

hit latency: 1 cycle Inst/3-cycle Data
L2 cache (shared) 4MB, 4-way, 64B line, 15-cycle hit latency
MSHR entries Inst:8, Data:32, L2:64
Memory 2 logic channels (2 physical channels each),

2-DIMMs/phy. channel, 4-banks/DIMM
Channel bandwidth 800MT/s, 16byte/logic-channel,

12.8GB/s/logic-channel
Memory controller 64-entry buffer, 15ns overhead
DRAM latency 5-5-5, precharge 12.5ns, row access 12.5ns,

column access 12.5ns

Table 1: Major simulation parameters.
are scheduled before write operations under normal condi-
tions. However, when outstanding writes occupy more than
half of the memory buffer, writes are scheduled first until
the number of outstanding writes drops below one-fourth
of the memory buffer size. The memory transactions are
pipelined whenever possible. The simulation uses the close
page mode with cache line interleaving rather than the open
page mode with page interleaving since it is more widely
used in practice. Table 1 shows the major simulation pa-
rameters.

In order to limit the simulation time while still emulating
the representative behavior of program executions, simula-
tion points are picked up according to SimPoint 3.0 [16].
To make fair evaluation, we use different simpoints for
profiling and performance comparison. We randomly se-
lect a single simpoint using 10 million instruction slice for
profiling and measure the programs’ memory efficiency,
which is presented in Table 2. We also randomly se-
lect simpoints using 100 million instruction slices in the
construction of multi-core workloads for evaluating the ef-
fectiveness of memory scheduling schemes. The execu-
tion of the workloads is stopped when the last processor
core commits 100 million instructions. Other processor
cores will reload their applications and keep running af-
ter committing 100 million instructions, although the statis-
tics such as the IPC values are collected only for the 100

million instructions of the simpoint. To compare the per-
formance of a workload running on a multi-core proces-
sor with different scheduling configurations, we adopt the
SMT speedup [17] as the performance metric. It is cal-
culated as

∑n

i=1
(IPCmulti[i]/IPCsingle[i]), where n is the

total number of cores, IPCmulti[i] is the IPC value of the
application running on the ith core under the multi-core ex-
ecution and IPCsingle [i] is the IPC value of the same appli-
cation under single-core execution. Using the performance
metric and running method can prevent biased approaches,
such as giving all resources to the application with the high-
est ILP degree, from producing artificial performance gains.
4.2 Workload Construction

In our experiments, each processor core is single-
threaded and runs a distinct application. We classified the
twenty-six benchmarks of the SPEC2000 suite into MEM
(memory-intensive) and ILP (compute-intensive) applica-
tions. The MEM applications are those getting more than
15% performance gain in the perfect memory system (with
zero latency and infinite bandwidth) compared with in the
two-channel DDR2 system in Table 1. Table 2 also shows
the Memory Efficiency (ME) value of each application. We
construct the multi-programming workloads randomly us-
ing these applications as shown in Table 3. Each workload
is named by the number of cores, the workload type and its
workload index. For example, workload 2MEM-1 consists
of two memory-intensive applications wupwise and swim;
and workload 4MIX-2 mixes two MEM applications mgrid
and applu with two ILP applications mesa and apsi.

5 Performance Evaluation and Analysis
5.1 Performance Impact of Scheduling Schemes

We have evaluated the performance of five memory
scheduling schemes: Hit-First with Read-first (HF-RF),
Memory Efficiency only (ME), Round Robin (RR), Least
Request (LREQ) and Memory Efficiency with Least Re-
quest (ME-LREQ). In the following discussions, we will
only use the shorthand names of those schemes.

Figure 2 shows the SMT speedup (as defined above) of
those schemes. As expected, the performance difference of
those schemes enlarges with the number of cores increas-
ing. For the memory-intensive workloads and using HF-RF
as the reference point, the performance gains from LREQ

4

Performance impact for dual-core systems

1.5

1.6

1.7

1.8

1.9

2

1 2 3 4 5 6 AVG

MEM

SM
T

Sp
ee

du
p

HF-RF ME RR LREQ ME-LREQ

Performance impact for dual-core systems

1.5

1.6

1.7

1.8

1.9

2

2.1

1 2 3 4 5 6 AVG

MIX

SM
T

Sp
ee

du
p

Performance impact for four-core systems

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 AVG

MEM

SM
T

Sp
ee

du
p

Performance impact for four-core systems

2.5

2.9

3.3

3.7

4.1

1 2 3 4 5 6 AVG

MIX

SM
T

Sp
ee

du
p

Performance impact for eight-core systems

2

2.4

2.8

3.2

3.6

4

1 2 3 4 5 6 AVG

MEM

SM
T

Sp
ee

du
p

Performance impact for eight-core systems

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6 AVG

MIX

SM
T

Sp
ee

du
p

Figure 2: Performance impact of the scheduling schemes with different core configurations and varied workloads.
Application Code Class ME. App. Co. Cl. ME.
gzip a I 192 facerec n M 40
wupwise b M 15 ammp o I 280
swim c M 2 lucas p M 1
mgrid d M 4 fma3d q M 4
applu e M 1 parser r I 38
vpr f M 27 sixtrack s I 80
gcc g M 22 eon t I 16276
mesa h I 78 perlbmk u I 2923
galgel i M 8 gap v M 7
art j M 20 vortex w I 51
mcf k M 1 bzip2 x I 216
equake l M 2 twolf y I 951
crafty m I 222 apsi z I 36

Table 2: Application code, class (I-ILP, M-MEM) and memory ef-
ficiency value (ME.). Memory efficiency values are collected us-
ing simpoints different from those used in the multi-core workload
construction for the performance evaluation in Section 5.

and ME-LREQ are insignificant on the two-core platform
and workloads. On the four-core platform, the average per-
formance gain of LREQ increases to 4.0% and ME-LREQ
to 10.7%, respectively. On eight cores, the gains of LREQ
and ME-LREQ further increase to 8.7% and 19.9% on av-
erage, respectively. The more cores the processor has, the
larger room the memory access scheduling may make a dif-
ference.

ME-LREQ performs much better than the other schemes
for memory-intensive workloads on four and eight cores.
Using the HF-RF scheme as the reference point, the average
speedup is 10.7% on four cores and 19.9% on eight cores,
and the maximum speedup is 17.7% and 21.4%, respec-
tively. LREQ is the second best scheme. It was designed to
consider the short-term urgency of memory requests [19];
the result indicates that this consideration is still important
for multi-core processors. If using LREQ as the reference
point, the average speedup of ME-LREQ is 6.4% and 10.3%
on four cores and eight cores, respectively. ME-LREQ con-
siders both the short-term and long-term gain of individual

Group Workload code Workload code
2-core 2MEM-1 bc 2MIX-1 ab

2MEM-2 de 2MIX-2 cr
2MEM-3 fj 2MIX-3 hd
2MEM-4 kl 2MIX-4 ez
2MEM-5 np 2MIX-5 mf
2MEM-6 qv 2MIX-6 oj

4-core 4MEM-1 bcde 4MIX-1 arbc
4MEM-2 fgij 4MIX-2 hzde
4MEM-3 npqv 4MIX-3 mofj
4MEM-4 bdkl 4MIX-4 stkl
4MEM-5 qvce 4MIX-5 uxnp
4MEM-6 cjkq 4MIX-6 ywqv

8-core 8MEM-1 bcdefjkl 8MIX-1 arhzbcde
8MEM-2 npqvbdfv 8MIX-2 mostfjkl
8MEM-3 gicecjkq 8MIX-3 uxywnpqv
8MEM-4 bcdenpqv 8MIX-4 armobcfj
8MEM-5 qvcefjkl 8MIX-5 uxhznpde
8MEM-6 bvgicjpq 8MIX-6 stywqvfk

Table 3: Workload mixes.
memory requests; and the performance differences confirm
the significance of considering the long-term gain.

Comparing all schemes, the performance rank in the in-
creasing order is as follows: ME, HF-RF, RR, LREQ and
ME-LREQ. A point worth noting is that ME is a fixed pri-
ority scheme, i.e. the programs and cores have fixed prior-
ity during the whole program execution. (We assume that
a program is always assigned to a given core, though the
schemes can be easily extended to handle the other case.)

The ME scheme gives fixed priority to threads accord-
ing to their overall memory efficiency, putting the long-
term gain in program progress as the only priority. It even
performs slightly worse than HF-RF in general (average
−0.6%). The main reason, we believe, is that it ignores
the dynamic change of the gain from serving a memory
request. For example, during a period that a high-priority
thread generates a burst of memory requests, the requests
from the other threads are blocked unconditionally even if
there are only a few of them. The RR scheme serves re-

5

quests from all threads in round-robin order and avoids the
problem of ME scheme. However, it does not perform as
well as the LREQ or ME-LREQ scheme since it does not
differentiate requests from different cores at all; and it may
destroy the spatial locality in the memory access streams.

The average speedup of MIX workloads by the ME-
LREQ scheme over HF-RF scheme is 4.0% and 12.1% on
four cores and eight cores, respectively. The average im-
provement on four cores is not as significant as on eight
cores, but is still obvious for some workloads, e.g. 6.6%
for 4MIX-2. When compared with the LREQ scheme on
the eight-core systems, the ME-LREQ scheme always out-
performs it and achieves an average speedup of 5.1% and a
maximum speedup of 8.4%. Even for MIX workloads, the
demand on the memory subsystem is high when the number
of cores increases to eight.
5.2 Comparison of Simple and Fixed Priority Schemes

There is a natural question to ask: What will happen if
we assign a different priority sequence other than that from
ME? In other words, do the performance gains of ME and
ME-LREQ come from the simple fact that fixed priorities
are given to all cores? If that would be the case, we do not
have to use the relatively complex design based on memory
efficiency. To answer this question, we compare the SMT
speedups of four schemes on the four-core platform: HF-
RF, ME, FIX-3210 and FIX-0123. The latter two schemes
are two random and fixed priority schemes: FIX-3210 gives
the priority to cores in the order of 3, 2, 1, and 0; and FIX-
0123 gives the priority in the reverse order.

Performance of fixed priority policies

1.0

1.5

2.0

2.5

3.0

3.5

4MEM-1 4MEM-2 4MEM-3 4MEM-4 4MEM-5 4MEM-6

SM
T

Sp
ee

du
p

HF-RF ME FIX-3210 FIX-0123

Figure 3: Performance impact of simple and fixed priority schedul-
ing schemes on the four-core systems.

Figure 3 shows the SMT speedups of the four schemes.
It is obvious that fixing the priority degrees randomly has
a noticeable but unpredictable performance impact on the
multi-core systems. A given workload may be improved
by a suitable priority setup and may also be harmed by an
unsuitable setup. For instance, compared with the HF-RF
scheme, the workload 4MEM-1 gets a 2.8% performance
improvement by the FIX-0123 scheme but a 13.8% perfor-
mance degrade by the FIX-3210 scheme. On the other hand,
workload 4MEM-6 gets an 18.0% performance loss with
the FIX-0123 scheme, but only 1.5% performance down-
grade with the FIX-3210 scheme. In comparison, the ME
scheme achieves relatively consistent performance for those

workloads. This indicates that using the ME information
to guide the priority setup is necessary. Worth noting is
that fix-priority schemes cannot reflect the run-time require-
ments of each core; and thus in order to achieve good perfor-
mance, the scheduling scheme needs to integrate run-time
information as the ME-LREQ scheme does.
5.3 Impact on Memory Read Latency and System

Fairness
Next, we will analyze the impact of those scheduling

schemes on memory read latency. For clarity, we use the
four-core systems and memory-intensive workloads as ex-
amples. (Other systems and workloads show similar re-
sults.) The left part of Figure 4 compares the average la-
tency of read requests under the five scheduling schemes.
The results indicate that the scheduling schemes have sig-
nificant impact on the average read latency. This latency
also depends on the workloads’ behavior and varies a lot
across the memory-intensive applications. The ME-LREQ
scheme gets the lowest average read latency for all work-
loads, which is consistent with the overall performance re-
sults. For instance, it reduces the average read latency of
the workload 4MEM-1 from 613 cycles to 490 cycles, com-
pared with the HF-RF scheme. As a result, the performance
of this workload is improved by 17.4%. For all workloads,
the ME-LREQ scheme has the average read latency of 323
cycles; while the HF-RF scheme has the latency of 376
cycles. The reduction on the read latency is translated to
an average performance gain of 10.7% by the ME-LREQ
scheme, compared with the HF-RF scheme. On average,
the ME scheme reduces the latency slightly compared with
the HF-RF scheme; the RR and LREQ schemes further re-
duce the latency; and the ME-LREQ gets the shortest read
latency.

The right part of Figure 4 further shows the variants of
the average read latency of individual processor core us-
ing two workloads 4MEM-1 and 4MEM-5 as examples.
The HF-RF scheme serves requests from different cores
as if they were produced by a single core. Thus, each
core observes almost the same average read latency. The
RR scheme attempts to serve requests from each core in a
round-robin way. The cores with more pending requests
will have longer waiting time than others. The latency un-
der this scheme has larger variant across different cores than
the HF-RF scheme, but is still within a narrower range than
that under the other schemes.

The ME scheme causes the latency varied the most
across cores. For example, for the workload 4MEM-5, re-
quests of core 1 get the highest priority and requests of core
3 get the lowest priority. As a result, the average read la-
tency of requests from core 1 is much shorter than that of
core 3 (289 vs. 1042 cycles). This indicates that a fixed pri-
ority scheme may stave cores of low priority. The extreme
long read latency of core 3 may make this core having large

6

Average latency of read requests

100

200

300

400

500

600

700

4MEM-1 4MEM-2 4MEM-3 4MEM-4 4MEM-5 4MEM-6 AVG

CP
U

cy
cl

es

HF-RF ME
RR LREQ
ME-LREQ

Average latency of read requests for each core

0
200
400
600
800

1000
1200

0 1 2 3 0 1 2 3

4MEM-1 4MEM-5

CP
U

Cy
cl

es

HF-RF ME RR LREQ ME-LREQ

Figure 4: Comparison of memory read latency.

memory stall time (its IPC drops from 1.16 of HF-RF to
0.66 of ME). In addition, the extreme imbalance of read
latency across processor cores produces higher average la-
tency than that of the LREQ and ME-LREQ schemes and
limits the overall performance. By comparison, ME-LREQ
does not have this issue because the priority of each pro-
gram changes dynamically when the number of its pending
read requests increases or drops. For core 3 of 4MEM-5,
for example, ME-LREQ reduces the average latency to 887
cycles. After all, ME-LREQ performs the best because it
considers both the long-term and short-term gains of serv-
ing a memory request. The average read latency, in general,
is closely related to the short-term gain.

The performance gain from the proposed scheduling pol-
icy would be biased if it sacrifices the fairness among the
concurrently running applications. Figure 5 shows that the
ME-LREQ policy can even improve the fairness in addi-
tion to improving performance (as shown previously in Fig-
ure 2). Here, we follow two previous studies [4, 11] and
adopt unfairness as the metric, which is the ratio of the max-
imum performance slowdown to the minimum performance
slowdown among all concurrent applications/threads using
their performance on the single-core and single-threaded
system as the reference. For clarity, we use the four-
core systems and memory-intensive workloads as examples.
(Other systems and workloads show similar results.)

Unfairness Impact with Scheduling Policies

0

0.5

1

1.5

2

2.5

3

4MEM-1 4MEM-2 4MEM-3 4MEM-4 4MEM-5 4MEM-6 AVG

Un
fa

irn
es

s

HF-RF ME
RR LREQ
ME-LREQ

Figure 5: Comparison of fairness with scheduling policies.
The results indicate that ME-LREQ policy achieves the

best fairness among those scheduling policies. Compared
with HF-RF, RR and LREQ, ME-LREQ can reduce unfair-
ness by 7.9%, 7.6% and 16.6% on average, respectively.
The maximum unfairness reduction of ME-LREQ is 32.5%
for the workload 4MEM-1 and it reduces the unfairness by
more than 10% on four of the six workloads. Compared
with LREQ, the scheme with second best performance, ME-

LREQ can reduce unfairness by 9.7% on average and by
up to 17.6% (for 4MEM-6). It is not surprise that ME
lowers fairness by 4.7% on average and by up to 22.4%
(for 4MEM-4) compared with HF-RF because of its un-
even resource allocation by fixed scheduling priority. In
comparison, ME-LREQ combines both the short-term fac-
tor from current memory sub-system status and long-term
factor from processor utilization to determine the memory
scheduling priority for individual memory request of each
core dynamically. This can avoid excessive memory re-
source allocation to memory-intensive workloads and star-
vation of non-memory-intensive workloads. Thus, it im-
proves the fairness among current applications. At the same
time, the even memory resource allocation by ME-LREQ
can also reduce memory stall time for each processor core
and fully utilize all processor cores to improve the overall
performance.
6 Related Work

Two previous studies [7, 18] used a metric Mem/Uop,
which is the ratio of memory transactions to micro-ops
(Uop) retired, to guide the power management of single-
thread processors. Our definition of memory efficiency uses
a similar formula, but the concept serves for the purpose of
memory access scheduling for the best performance. The
performance of a generic main memory system is char-
acterized by its latency and bandwidth. Memory access
scheduling is an effective technique in reducing the av-
erage memory latency and improving bandwidth utiliza-
tion for streaming applications as well as general-purpose
applications. Moyer develops compiler techniques to re-
order non-caching accesses for stream-oriented computa-
tions [10]. McKee and Wulf study the effectiveness of five
access ordering schemes on a uniprocessor system [9] Hong
et al. study the performance impact of access ordering for
inner loops of streaming computations on a Direct Rambus
system [5]. Rixner et al. discuss multiple memory access
scheduling policies and evaluate their performance impact
on media processing applications [14]. The Impulse mem-
ory controller supports application-specific optimizations
through address translation (remapping) to improve bus and
cache utilization, and also supports prefetching at the mem-
ory controller to hide the cost of remapping [2]. Fine-grain
scheduling schemes [3, 20] can effectively improve the per-

7

formance of multi-channel memory systems. Hur and Lin
propose adaptive history-based scheduling policies that se-
lect the next memory operation based on the recent memory
access history to minimize the expected delay and match the
program’s mixture of reads and writes [6]. Rixner analyzes
the effects of policies utilizing channel buffers of virtual
channel SDRAM and memory access scheduling schemes
in reducing memory access latency in web servers [13].
Zhu and Zhang evaluate memory optimizations for the SMT
processors and propose thread-aware scheduling schemes
based on the pending request number and processor re-
source usage [19]. Jun and Brian propose a burst scheduling
access reordering mechanism for the single thread proces-
sor to maximize the data bus utilization by clustering the ac-
cesses on the same row of the same bank [15]. Recent stud-
ies from Nesbit et al. [4] and Mutlu et al. [11] propose fair
scheduling policies to balance the memory resource usage
among the multi cores on chip. Different from those pre-
vious studies, our work focuses on the memory scheduling
scheme for multi-core processors to improve overall perfor-
mance without sacrificing fairness.
7 Conclusion

In this study, we thoroughly evaluate the performance
impact of a set of memory scheduling policies on the multi-
core processors, including a new policy called ME-LREQ.
The ME-LREQ policy considers both the global memory
efficiency of a program and the current number of pending
requests. The results show that the new policy outperforms
the other policies significantly for memory-intensive work-
loads; and the improvement increases with the number of
cores. It successfully combines a short-term optimization
objective and a long-term objective on the multi-core pro-
cessor platform. The current policy uses off-line profiling
information to determine the global memory efficiency. In
the future, we plan to study online methods that can dynam-
ically predict the memory efficiency of a program as well as
to explore other design choices in the combination.
Acknowledgment

We appreciate the constructive comments from the
anonymous reviewers. This work is supported in part by the
National Science Foundation under grants CCF-0541408
and CCF-0541366.

References
[1] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and

S. K. Reinhardt. The m5 simulator: Modeling networked systems.
IEEE Micro, 26(4):52–60, 2006.

[2] J. Carter, W. Hsieh, L. Stoller, M. Swansony, L. Zhang, E. Brunvand,
A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama. Impulse: Building a smarter memory controller. In
Proc. of the Fifth Intl. Symp. on High-Performance Computer Archi-
tecture, pages 70–79, Jan. 1999.

[3] V. Cuppu and B. Jacob. Concurrency, latency, or system overhead:
Which has the largest impact on uniprocessor DRAM-system perfor-

mance? In Proc. of the 28th Intl. Symp. on Computer Architecture,
pages 62–71, June 2001.

[4] R. Gabor, S. Weiss, and A. Mendelson. Fairness and throughput in
switch on event multithreading. In Proc. of the 39th Intl. Symp. on
Microarchitecture, pages 149–160, Dec. 2006.

[5] S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke, J. H. Aylor,
and W. A. Wulf. Access order and effective bandwidth for streams
on a Direct Rambus memory. In Proc. of the Fifth Intl. Symp. on
High-Performance Computer Architecture, pages 80–89, Jan. 1999.

[6] I. Hur and C. Lin. Adaptive history-based memory schedulers. In
Proc. of the 37th Intl. Symp. on Microarchitecture, pages 343–354,
Dec. 2004.

[7] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase mon-
itoring and prediction on real systems with application to dynamic
power management. In Proc. of the 39th Intl. Symp. on Microarchi-
tecture, pages 359–370, Dec. 2006.

[8] S. A. McKee, A. Aluwihare, B. H. Clark, R. H. Klenke, T. C. Landon,
C. W. Oliver, M. H. Salinas, A. E. Szymkowiak, K. L. Wright, W. A.
Wulf, and J. H. Aylor. Design and evaluation of dynamic access or-
dering hardware. In Proc. of the Tenth Intl. Conf. on Supercomputing,
pages 125–132, May 1996.

[9] S. A. McKee and W. A. Wulf. Access ordering and memory-
conscious cache utilization. In Proc. of the First Intl. Symp. on High-
Performance Computer Architecture, pages 253–262, Jan. 1995.

[10] S. A. Moyer. Access Ordering and Effective Memory Bandwidth.
PhD thesis, University of Virginia, Department of Computer Science,
Apr. 1993. Also as TR CS-93-18.

[11] O. Mutlu and T. Moscibroda. Stall-time fair memory access schedul-
ing for chip multiprocessors. In Proc. of the 40th Intl. Symp. on
Microarchitecture, pages 208–222, Dec. 2007.

[12] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair Queuing
CMP Memory Systems. In Proc. of the 39th Intl. Symp. on Microar-
chitecture, pages 208–222, Dec. 2006.

[13] S. Rixner. Memory controller optimizations for web servers. In Proc.
of the 37th Intl. Symp. on Microarchitecture, pages 355–366, Dec.
2004.

[14] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens.
Memory access scheduling. In Proc. of the 27th Intl. Symp. on Com-
puter Architecture, pages 128–138, June 2000.

[15] J. Shao and B. T. Davis. A burst scheduling access reordering mech-
anism. In Proc. of the 13th Intl. Symp. on High-Performance Com-
puter Architecture, pages 285–294, Feb. 2007.

[16] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automat-
ically characterizing large scale program behavior. In Proc. of the
Tenth Intl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, pages 45–57, Oct. 2002.

[17] A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic jobschedul-
ing with priorities for a simultaneous multithreading processor. In
Proc. of the 2002 ACM SIGMETRICS Intl. Conf. on Measurement
and Modeling of Computer Systems, pages 66–76, 2002.

[18] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu,
J. Lee, and D. Brooks. A dynamic compilation framework for con-
trolling microprocessor energy and performance. In Proc. of the 38th
Intl. Symp. on Microarchitecture, pages 271–282, 2005.

[19] Z. Zhu and Z. Zhang. A performance comparison of dram memory
system optimizations for SMT processors. In Proc. of the 11th Intl.
Symp. on High-Performance Computer Architecture, pages 213–224,
2005.

[20] Z. Zhu, Z. Zhang, and X. Zhang. Fine-grain priority scheduling on
multi-channel memory systems. In Proc. of the Eighth Intl. Symp.
on High-Performance Computer Architecture, pages 107–116, Feb.
2002.

8

