
A Performance Comparison of DRAM Memory System Optimizations
for SMT Processors

Zhichun Zhu
Dept. of Electrical & Computer Engineering

University of Illinois at Chicago
Chicago, IL 60607, USA

zhu@ece.uic.edu

Zhao Zhang
Dept. of Electrical & Computer Engineering

Iowa State University
Ames, IA 50011, USA

zzhang@iastate.edu

Abstract

Memory system optimizations have been well studied
on single-threaded systems; however, the wide use of si-
multaneous multithreading (SMT) techniques raises ques-
tions over their effectiveness in the new context. In this
study, we thoroughly evaluate contemporary multi-channel
DDR SDRAM and Rambus DRAM systems in SMT systems,
and search for new thread-aware DRAM optimization tech-
niques. Our major findings are: (1) in general, increas-
ing the number of threads tends to increase the memory
concurrency and thus the pressure on DRAM systems, but
some exceptions do exist; (2) the application performance
is sensitive to memory channel organizations, e.g. indepen-
dent channels may outperform ganged organizations by up
to 90%; (3) the DRAM latency reduction through improv-
ing row buffer hit rates becomes less effective due to the in-
creased bank contentions; and (4) thread-aware DRAM ac-
cess scheduling schemes may improve performance by up to
30% on workload mixes of memory-intensive applications.
In short, the use of SMT techniques has somewhat changed
the context of DRAM optimizations but does not make them
obsolete.

1 Introduction

Two technology trends may have strong impacts on fu-
ture high-performance computer designs: the exploitation
of thread-level parallelism (TLP) on the top of instruction-
level parallelism (ILP), and the employment of increas-
ingly complex memory hierarchies. In recent years, two
single-chip TLP techniques, namely simultaneous multi-
threading (SMT [30, 29]) and chip-level multiprocessing
(CMP [10, 1]), have been well studied and applied to com-
mercial processors. In this study, we focus on the memory
system considerations for SMT processors.

Main memory system designs and optimizations have be-
come an increasingly important factor in determining the
overall system performance. The main memory speed lags

far behind the processor speed, creating a scaring speed
gap, which will eventually offset most performance gains
from further improvements on the processor speed. For to-
day’s multi-GHz and multi-issue processors, a cache miss
penalty is equivalent to hundreds of processor cycles, a time
long enough for the processor to issue more than one thou-
sand instructions. Thus, the performance of future systems
will be increasingly dependent on complex memory hierar-
chies. This is especially true for systems running memory-
intensive applications, which in general have large working
sets and irregular memory access patterns.

Although directly reducing the physical memory access
latency is limited by the DRAM technology advancement
and cost considerations, the advance of modern memory sys-
tems has provided many opportunities to reduce the average
latency for concurrent memory accesses. For example, the
DRAM open page mode can reduce the latency of succes-
sive accesses to the same page by eliminating interim row
accesses [5]; and the memory access scheduling can reduce
the average access latency by reordering concurrent memory
accesses [22].

The SMT technique [30, 29] can effectively reduce the
memory stall time by executing instructions from other
threads when one thread is waiting for its data to be re-
turned from the main memory. This may make the over-
all system performance less dependent on the memory per-
formance. On the other hand, the SMT technique may in-
crease the contention on main memory systems and demand
memory systems with higher performance. Previous stud-
ies have shown that memory accesses tend to be clustered
together under the single-threaded execution [13, 22, 34],
resulting in the access concurrency in DRAM memory sys-
tems. When multiple memory-intensive threads are running
together, we can expect that the memory access concurrency
will be even higher. As a consequence, the memory system
should be able to deliver higher bandwidth than that under
single-threaded executions.

The emergence and employment of multithreading tech-
niques raise some important questions regarding the mem-

ory system designs and optimizations: whether those mem-
ory optimization techniques proposed for single-threaded
systems are still effective; and whether a memory system de-
signed for multithreaded systems should take the SMT fac-
tor into considerations. In this paper, we will answer those
questions quantitatively.

We extend a high-fidelity simulator based on the Al-
pha 21264 processor to model an SMT processor, and
develop simulators for DDR SDRAM and Direct Ram-
bus DRAM systems. Using both memory-intensive and
compute-intensive programs from the SPEC2000 bench-
mark suite, we analyze the performance of representa-
tive program mixes as the memory system configuration
changes. We have also searched for thread-aware DRAM
optimizations that consider the states of individual threads.
Our major findings are:

1. In general, the use of SMT techniques increases the
memory access concurrency; and the degree of concur-
rency increases with the number of running threads. We
do observe some exceptions: mixing memory-intensive
programs with applications of few memory demands
may decrease the concurrency, but not significantly.

2. The application performance is sensitive to memory
channel organizations. For example, organizing each
physical channel as an independent logic one may out-
perform combining them as a single logic channel by
up to 90% on 8-channel DDR SDRAM systems.

3. The DRAM latency reduction through improving row
buffer hit rates becomes less effective because of the
increased bank contentions. We find that DRAM row
buffer miss rates are consistently higher than the previ-
ously reported results on single-threaded systems. In
other words, the higher memory access concurrency
hinders the utilization of row buffers.

4. Thread-aware DRAM access scheduling schemes may
improve the overall system performance by up to 30%,
on workload mixes of memory-intensive applications.
The considered thread states include the number of
outstanding memory requests, the reorder buffer occu-
pancy, and the issue queue occupancy.

The paper is organized as follows. We will first briefly
introduce the contemporary DRAM memory optimization
techniques in the next section. Then we will discuss three
new thread-aware memory optimization techniques in Sec-
tion 3. After presenting the experimental environment in
Section 4, we evaluate the impact of SMT techniques on
memory systems and analyze the performance of different
memory optimization techniques in Section 5. Finally, Sec-
tion 6 discusses the related work, and Section 7 summarizes
our study.

2 Memory Optimization Techniques
For decades, the DRAM has been used to construct main

memories because of its high density, large capacity, and

low cost. Although it is called the dynamic random access
memory, its access time is not a constant but depends on the
current state of DRAM cell arrays. Many optimization tech-
niques exploit this property to reduce the average memory
access latency.

A typical high-performance memory system can support
multiple memory channels, which can be accessed in par-
allel. In addition, each memory channel can connect mul-
tiple independent groups of chips1; and each group con-
sists of multiple independent memory banks. Each bank
is organized as a two-dimensional array (row and column).
Depending on the status of row buffers (formed by arrays
of sense amplifiers), a DRAM access may require different
numbers of operations, and thus different access time. A
row buffer hit, where the data are already in the row buffer,
only requires a column access. A row buffer miss requires a
row access and a column access if the bank has already been
precharged; otherwise, it requires an additional precharge
operation. Thus, an important feature of DRAM accesses is
that concurrent accesses to different rows (also called pages)
in the same memory bank have significantly higher latencies
than those concurrent accesses to the same page or to dif-
ferent memory banks.

To fully utilize the contemporary DRAM features, mem-
ory system configurations are becoming increasingly com-
plex. Consequently, the performance of a memory sys-
tem perceived by applications is very sensitive to its con-
figuration. Previous studies have shown that tuning the
memory configurations, such as the burst width and chan-
nel organizations, can significantly affect the overall perfor-
mance [4, 34]. The performance depends on a number of
factors, including the number of memory channels, the page
mode, the DRAM mapping scheme, and the memory access
scheduling policy.
� Page modes: Contemporary DRAM systems, such

as SDRAM and Rambus DRAM, support two page
modes, open and close. The open page mode delays the
precharge operation and keeps the row buffer data valid
after a DRAM access in the hope that the next access
to this bank will fall into the same page (the row buffer
data are lost after a precharge operation). By contrast,
the close page mode performs the precharge operation
immediately after a column access, and favors succes-
sive accesses that are row buffer misses.

� Mapping schemes: Mapping schemes determine how
memory addresses are mapped to multiple DRAM
channels, chips, and banks. Previous studies have
shown that the choice of mapping schemes significantly
affects the row buffer hit rate and memory system per-
formance [32, 33, 8].

� Memory access scheduling: The memory access

1For SDRAMs, multiple chips are grouped together to support the wide
and low-speed memory bus; while for Rambus DRAMs, each chip is an
independent group and connects to the narrow and high-speed bus.

scheduling reorders concurrent memory operations, i.e.
precharge operations, row accesses, and column ac-
cesses, according to the current states of memory chan-
nels, banks, and outstanding requests. An optimized
memory access scheduling scheme can reduce the av-
erage memory access time and improve the memory
bandwidth utilization [13, 22].

3 Thread-aware Memory Access Scheduling
With the aggressive exploitation of ILP and TLP, higher

access concurrency will be exposed to the memory system,
making the memory access scheduling more important. Su-
perscalar processors have extensively used out-of-order ex-
ecution and non-blocking caches. Even though, they will
exhaust their instruction scheduling resources (e.g. issue
queues or reorder buffers) on cache misses that fall to the
DRAM memory. However, the processors may issue dozens
of instructions before stalling. Because cache misses tend to
be clustered together [19], a good amount of memory con-
currency exists. The degree of concurrency may further in-
crease when multiple threads are running together. Because
of the internal structure of DRAM systems, there is a good
opportunity for the memory access scheduling to reduce the
memory stall time.

3.1 Schemes for Single-threaded Processors

Previous studies have shown that the memory access
scheduling can effectively reduce the average memory ac-
cess latency and improve the memory bandwidth utilization
for single-threaded processors [18, 17, 13, 21, 22, 16, 34].
For example, a hit-first policy prioritizes memory accesses
hitting on the row buffers. Suppose two concurrent mem-
ory access streams touch DRAM pages A and B at the same
bank with the sequence of A-B-A-B-A-B-A-B. This is a case
of severe bank conflicts, which require the precharge opera-
tion, row access, and column access for every reference. The
memory access scheduling can reorder the access sequence
to A-A-A-A-B-B-B-B, converting six row buffer misses to
row buffer hits. Since a row buffer hit has a much shorter
latency than a row buffer miss, this technique effectively im-
proves the memory system performance.

The followings are some commonly used policies in the
memory access scheduling.� Hit-first: A row buffer hit has a higher priority than a

row buffer miss.
� Read-first: A memory read operation has a higher pri-

ority than a memory write operation.
� Age-based: An older request or a request whose wait-

ing time is longer than a predefined threshold has a
higher priority than a newly arrived one.

� Criticality-based: A request containing the critical
word (which is currently required by the processor to
resume its execution) has a higher priority than a non-
critical one.

3.2 Outstanding Request-based Scheme

The emergence and employment of SMT techniques in-
troduce a new possible direction in the memory access
scheduling: considering the current states of each thread.
A number of thread states may be used to guide the schedul-
ing, such as the number of pending memory requests, or the
number of issue queue entries occupied. In this study, we
propose three thread-aware scheduling schemes and analyze
their effectiveness.

Our first thread-aware scheduling scheme is based on the
current number of outstanding memory requests generated
by each thread. In addition to the hit-first, read-first, and
age-based policies proposed for single-threaded processors,
an outstanding request-based policy is introduced. These
policies can be combined with each other in several ways.
One scheme is to apply the hit-first and read-first policies
on top of the request-based one. This means that a read hit
always gets a higher priority than a read miss even if the hit
is generated by a thread with more pending requests. Mean-
while, among a group of same-type requests (e.g. a group
of read hits), the one generated by the thread with the fewest
pending requests will be served before others.

The rationale behind this scheme is two-fold. First, if
a thread has fewer cache misses than other threads, statis-
tically more instructions can be committed after each of its
cache misses is returned. Note that a load instruction that in-
curs a cache miss will block its subsequent finished instruc-
tions from being committed. For a load miss to the DRAM,
which has a very long latency, the processor core will even-
tually stall due to the full ROB before the data is returned.
Second, since cache misses from a thread tend to be clus-
tered together, the scheme helps the thread move faster into
the next phase of having no cache misses. The reason to
enforce the hit-first policy ahead of the request-based one is
that for SMT workloads, the sustained memory bandwidth
is more important than the latency of an individual access,
since the processor has the ability to overlap computations
of one thread with memory accesses of others.

3.3 Resource Occupancy-based Schemes

Another class of thread-aware memory access schedul-
ing schemes that we have studied is based on the number of
processor resources occupied by each thread. Similar to the
request-based scheme, the hit-first and read-first policies are
enforced ahead of the resource occupancy-based ones. Two
types of resource information are used here. The ROB-based
scheme assigns the highest priority to the requests gener-
ated by the thread that holds the most reorder buffer entries.
The IQ-based scheme assigns the highest priority to the re-
quests from the thread occupying the most issue queue en-
tries. The rationale behind the IQ-based scheme is that for
most workloads, the issue queue entries are the most lim-
ited resources. Thus, returning the requests from the thread
holding the most issue queue entries can release more en-
tries. As for the ROB-based scheme, the reorder buffer oc-

cupancy of each thread indicates the thread’s comprehensive
occupancy on processor resources. When a thread occupies
significantly more reorder buffer entries than other threads,
it is very likely that those entries are piled up due to the
thread’s pending memory requests. If its requests can be
served earlier by the memory system, each returned request
may release more processor resources than a returned re-
quest from other threads; and thus the instruction throughput
of the whole system can be improved. Note that the ROB
or IQ occupancy information should be piggybacked with
the memory request sent to the memory controller when a
cache miss is found. Because of the communication latency
between the memory controller and the processor core, the
memory controller does not always have the most up-to-date
information on the ROB or IQ occupancy. However, since
the scheduling is heuristics-based, the information does not
need to be completely precise.

4 Methodology

4.1 Simulator and Parameters

We use the Sim-Alpha from the SimpleScalar 4.0 release
as the base architectural simulator, which has been validated
to the Alpha 21264 processor [6]. We have extended the
simulator to support the simultaneous multithreading and
deepened its pipeline stages. Each active thread has its own
PC. The active threads share the bandwidth at each pipeline
stage, as well as caches, execution units, issue queues, and
physical registers. In the front end, we implement four
fetch policies, ICOUNT [29], fetch stall [28], DG [7], and
DWarn [3]. Detailed discussions on those fetch policies are
in Section 5.1.

In order to study the effects of different memory system
configurations, we also extend the memory simulator. Multi-
channel DDR SDRAM and Direct Rambus DRAM systems
are simulated. The memory simulator is implemented us-
ing an event-driven framework that allows the modeling of
the memory access reordering. The simulator keeps track
of the states of each DRAM channel, chip, and bank, as
well as all pending requests. Based on the current mem-
ory states, memory operations are issued according to the
employed scheduling policies. The details of the memory
bus are also simulated; and memory accesses are pipelined
whenever possible. Table 1 presents the major simulator pa-
rameters.

4.2 Workloads

The SMT workloads used in our study are mixtures of
SPEC2000 applications [26]. There are hundreds of possi-
ble ways to mix the 26 SPEC2000 applications together. To
meet the space limit but still show representative results, we
construct the SMT workloads based on applications’ ILP de-
grees and memory access demands using approaches similar
to those used in [28, 3].

Figure 1 presents the CPI breakdown of all the 26 ap-
plications running independently on the 2-channel DDR

Table 1: Simulator parameters.

Processor speed 3 GHz
Fetch width 8 instructions
Baseline fetch policy DWarn.2.8
Pipeline depth 11
Functional units 6 IntALU, 6 IntMult,

2 FPALU, 2 FPMult
Issue width 8 Int, 4 FP
Issue queue size 64 Int, 32 FP
Reorder buffer size 256/thread
Physical register num 384 Int, 384 FP
Load/store queue size 64 LQ, 64 SQ
Branch predictor Hybrid, 4K global + 1K local

(32-entry RAS/thread)
Branch Target Buffer 1K-entry, 4-way
Branch mispredict penalty 9 cycles

L1 caches 64KB instruction/64KB data,
2-way, 64B line, 1-cycle latency

L2 cache 512KB, 2-way, 64B line,
10-cycle latency

L3 cache 4MB, 4-way, 64B line,
20-cycle latency

TLB size 128-entry ITLB/128-entry DTLB
MSHR entries 16/cache
Prefetch MSHR entries 4/cache

Memory channels 2/4/8
Memory BW/channel 200 MHz, DDR, 16B width
Memory banks 4 banks/chip
DRAM access latency 15ns row, 15ns column,

15ns precharge

SDRAM system with parameters listed above. For each
application, its CPI value is divided into four portions:�������	��
��

,
��������

,
��������

, and
�����	�����

, which corre-
spond to the execution time spending on the processor core
(including L1 caches), L2 cache, L3 cache, and main mem-
ory, respectively. Applications are sorted by their

����� �����
values in Figure 1.

Using approaches similar to those used in [2, 5], the CPI
value of each application is broken down as follows. We
first run an application on four systems and collect its corre-
sponding average cycles per instruction:� �����
�����������

: on the system with the 2-channel DDR
SDRAM main memory;

� ����� �	���
: on the same system but with an infinitely

large L3 cache;
� �������	���

: on the system with an infinitely large L2
cache; and

� ����� �	��
��
: on the system with infinitely large L1 in-

struction and data caches.
The differences between the CPI values achieved by those
systems represent the performance loss caused by introduc-

Figure 1: CPI breakdown of SPEC2000 applications. The appli-
cations are sorted by the increasing order of their ����� "!# val-
ues. ������$&%�')(corresponds to the cycles spending on the proces-
sor execution and L1 cache accesses; while �����	*,+ , ������*,- , and
������ "!. correspond to the cycles due to accesses to the L2 cache,
L3 cache, and main memory, respectively.

ing each level of realistic implementations in the memory
hierarchy:� ����� �����0/ �����
�����������21 ����� �	���

: corresponding to
main memory accesses;

� ����� �3�4/ ����� �	����1 ����� �	���
: corresponding to L3

cache accesses;
� ������3� / �������	��� 1 �������	��
��

: corresponds to L2
cache accesses; and

� �������	�&
��
: corresponding to the processor core execu-

tion and L1 cache accesses.
Applications with small

����� �	��
��
and

����� �����
values

are categorized as “ILP” applications; while applications
with large

����������
values are categorized as “MEM” ap-

plications. In general, applications in the left part of Fig-
ure 1 belong to the “ILP” category; and those in the right
part belong to the “MEM” category. Table 2 presents the
workloads used for 2-, 4-, or 8-thread configurations. The
“ILP” workloads consist of only “ILP” applications; and the
“MEM” workloads consist of only “MEM” applications2.
The “MIX” workloads consist of half “ILP” applications and
half “MEM” applications.

To control the simulation time while still getting the ac-
curate behavior of applications, each application is fastfor-
warded and then executed for 100 million instructions as
suggested by SimPoint [23]. Caches are warmed up dur-
ing the fastforwarding. Note that those 100 million instruc-
tions are representative clips of SPEC2000 program execu-
tions using the Alpha binary code.

2Application mcf is included in the 2-thread MEM workload because it
has the highest overall 5"687 value and a high 5"687� "!# portion.

Table 2: Workload mixes.
2-thread ILP bzip2, gzip

MIX gzip, mcf
MEM mcf, ammp

4-thread ILP bzip2, gzip, sixtrack, eon
MIX gzip, mcf, bzip2, ammp
MEM mcf, ammp, swim, lucas

8-thread ILP gzip, bzip2, sixtrack, eon,
mesa, galgel, crafty, wupwise

MIX gzip, mcf, bzip2, ammp,
sixtrack, swim, eon, lucas

MEM mcf, ammp, swim, lucas,
equake, applu, vpr, facerec

Multiple metrics have been proposed to measure the per-
formance of SMT processors; for example, the weighted
speedup [28], harmonic mean of relative IPCs [15, 7], and
throughput [3]. We follow the work in [28] and use the
weighted speedup in this paper.

5 Memory System Performance Analysis
In this section, we report and analyze the memory system

performance with different numbers of hardware threads. If
not mentioned specifically, the memory hierarchy consists
of a 512 KB L2 cache, a 4 MB L3 cache, and a 2-channel
DDR SDRAM memory system.

5.1 Performance Loss Due to DRAM Accesses

Previous studies have shown that instruction fetch poli-
cies are critical to the performance of SMT processors and
affect how processor resources are allocated among threads.
Figure 2 shows the weighted speedup of four representative
fetch policies on a system with the 2-channel DDR SDRAM
system. The ICOUNT fetch policy [29] assigns the high-
est priority to the thread that has the fewest instructions
in the decode stage, rename stage, and instruction queue;
and fetches instructions from up to two threads each cy-
cle, where each thread can provide up to eight instructions
(called ICOUNT.2.8 in [29]). It achieves much better perfor-
mance than the simple policy that fetches instructions from
threads in a round-robin way. The three other policies are
proposed to avoid under-utilizing processor resources be-
cause of long-latency memory accesses. The Fetch stall
policy [28] stops fetching from threads that have L2 cache
misses but keeps at least one thread eligible of fetching in-
structions. The DG policy blocks fetching from threads that
are experiencing data cache misses [7]. Instead of stopping
fetching from threads with outstanding data cache misses,
the DWarn policy just lowers the fetch priority of those
threads [3]. Threads are divided into two groups. Those
without outstanding data cache misses have higher fetch pri-
orities than those with misses. Within each group, threads
are prioritized using the ICOUNT policy.

Figure 2 shows that for the ILP workloads, the four poli-

Figure 2: Performance comparisons of four fetch policies on an
SMT system with the 2-channel DDR SDRAM system.

cies work comparably to each other. However, for work-
loads consist of memory-intensive applications and contain
a large number of threads, such as 8-MEM and 8-MIX, the
three policies (DG, DWarn, and Fetch stall) that alleviate
processor resource clogs due to long-latency memory ac-
cesses achieve much better performance than the ICOUNT.
Our intention here is not to compare the effectiveness of
different fetch policies, but to study the impact of memory
system optimizations for SMT systems. In terms of han-
dling long-latency memory accesses, the three policies (DG,
DWarn, and Fetch Stall) work comparably for the workload
and system setup in our study. On average, the DWarn pol-
icy works slightly better than others. This result may change
when the workload and system setup vary. Due to the space
limit, we only use the DWarn policy for the subsequent dis-
cussions.

Figure 3 shows the performance loss on the SMT sys-
tem due to main memory accesses under two fetch poli-
cies, ICOUNT and DWarn. The system with an infinitely
large L3 cache and using the ICOUNT fetch policy is used
as a reference. We can see that for 2-thread and 4-thread
configurations, the performance losses due to main mem-
ory accesses under these two fetch policies are comparable.
However, for 8-thread MEM (8-MEM in short) and 8-thread
MIX (8-MIX) workloads, the DWarn policy gains much
better performance than the ICOUNT policy. For 8-MEM
and 8-MIX workloads, the system with the ICOUNT pol-
icy and 2-channel DDR SDRAM memory achieves 21.7%
and 39.6% performance of that on the base system, respec-
tively. In comparison, the system with the DWarn policy
and 2-channel memory achieves 34.0% and 93.1% perfor-
mance of that on the base system, respectively. The reason is
that when a larger number of threads exist and the workload
contains memory-intensive applications, the DWarn policy
can alleviate clogs on processor resources caused by mem-
ory accesses. This is especially true when memory-intensive
applications are mixed with compute-intensive ones. For in-

Figure 3: Weighted speedup of two fetch policies (ICOUNT and
DWarn) on the SMT system with the 2-channel DDR SDRAM
memory (“2-channel DRAM”) compared to that on the system with
an infinitely large L3 cache (“Infinite L3”).

stances, when running the 8-MIX workload with the DWarn
policy, during 92.2% of execution cycles the processor can
issue at least one integer instruction. This percentage drops
sharply to 43.8% when the ICOUNT policy is applied.

As expected, for ILP workloads, main memory accesses
only cause negligible performance losses, especially for
those with small numbers of threads. For the 2-thread and
4-thread ILP workloads, on average, every 100 instructions
only generate 0.01 and 0.02 main memory accesses, respec-
tively. When the number of threads increases to eight, the
cache contentions increase sharply, but the total number of
L3 misses is still quite low. The 8-ILP workload generates
0.13 main memory accesses per 100 instructions on average.
Even for this workload, the performance only decreases by
3.7% for the SMT system using the DWarn policy, when the
L3 cache size reduces from infinitely large to 4 MB and a re-
alistic 2-channel memory system is included. Since the main
memory system performance has little impact on ILP work-
loads, we will focus our subsequent discussions of memory
system optimizations on MEM and MIX workloads.

For MIX workloads, long-latency main memory accesses
from those memory-intensive applications can overlap with
CPU executions of the compute-intensive ones. The perfor-
mance loss due to DRAM accesses is moderate. For the 2-
MIX, 4-MIX, and 8-MIX workloads, the performance losses
are 9.8%, 6.6%, and 6.7%, respectively.

For MEM workloads, main memory accesses cause se-
vere performance loss. There are two-sided effects on the
performance loss as the number of threads increases. More
active threads cause more contentions on caches. On the
other hand, as the number of threads increases, the newly
added applications to the workload mix are less memory-
intensive than those existing ones. On average, 2-thread,
4-thread, and 8-thread MEM workloads generate 3.6, 2.6,
and 1.5 main memory accesses for every 100 instructions.

Figure 4: Distributions of the number of outstanding memory re-
quests when the DRAM system is busy.

Those main memory accesses cause the weighted speedup
to drop by 73.4%, 83.3%, and 69.7% compared to that on
the system with the infinitely large L3 cache. This indi-
cates that if multiple memory-intensive threads are running
together, the main memory system is the performance bot-
tleneck, even after applying fetch policies that can alleviate
resource clogs due to long-latency memory accesses. For
SMT systems, there is still plenty of space left for memory
system optimizations.

5.2 Memory Access Concurrency

Previous studies have shown that it is common that a
single-threaded processor may issue multiple memory ac-
cesses to the main memory system in a short time pe-
riod [18, 17, 13, 21, 22, 16, 34]. The SMT technique affects
this phenomenon in two opposite directions. The existence
of multiple threads may increase the memory access con-
currency due to multiple memory accessing streams. On the
other hand, fetch policies that handle long-latency memory
accesses, such as the DWarn policy, lower the fetch priorities
of threads with outstanding cache misses and may reduce
the memory access concurrency as a side effect. Figure 4
shows the distribution of the number of outstanding mem-
ory requests in the 2-channel DDR SDRAM system when
the memory system is busy. We can see that for SMT work-
loads, even after applying the DWarn policy, multiple mem-
ory requests still group together in most cases. Even for the
workload with the lowest memory access concurrency, 2-
ILP, 64.6% of memory requests are clustered with at least
one more request. For the memory-intensive workloads,
such as 4-MEM and 8-MEM, almost all memory requests
happen in groups.

The trends in the distribution of the number of outstand-
ing memory requests are quite predictable. For workloads
consisting of the same number of threads, the MEM work-
load has the highest probabilities to make large numbers of
concurrent memory requests. For instance, the probability

Figure 5: Distribution of the number of threads that generate out-
standing memory requests when multiple requests are presented to
the DRAM system.

that more than eight requests are presented to the DRAM
system when it is serving at least one request is 95.3% for
the 4-MEM workload. In comparison, for the 4-ILP and 4-
MIX workloads, this probability drops sharply to 3.8% and
15.0%, respectively. Another trend is that when the number
of threads increases, it is more likely to see a larger number
of concurrent memory requests. As an example, when the
number of threads doubles from two to four then to eight, the
probability that the MEM workloads make more than six-
teen concurrent requests to the DRAM system jumps from
4.2% to 53.7%, then to 60.7%.

The above results indicate that it is common that SMT
processors make multiple main memory requests concur-
rently. Thus, the memory optimization techniques that
are proposed for single-threaded processors and utilize the
memory access concurrency should still be able to improve
the performance of SMT systems. We will analyze their per-
formance impact in details in subsequent sections. Before
that, let us see whether those concurrent requests are gener-
ated by multiple threads or just a single one.

Figure 5 presents the probability that 9 threads (e.g. 9
can take one or two for 2-thread workloads) generate all
the requests when multiple memory requests exist. As dis-
cussed above, compared to the MIX and MEM workloads,
the ILP workloads are less likely to have concurrent mem-
ory requests. Even when multiple requests happen closely,
it is very likely that they are generated by a single thread;
the probability ranges from 94.1% for 2-ILP to 57.4% for
8-ILP. However, for MEM workloads, those concurrent re-
quests are generated by most threads. For example, with
probabilities of 76.4% and 79.0%, those multiple requests
are generated by all the threads for 2-MEM and 4-MEM
workloads, respectively. For the 8-MEM workload, con-
current requests come from at least seven threads with the
probability of 74.3%.

In summary, for SMT workloads, even after applying the

Figure 6: Performance comparisons as the number of memory
channels increases.

DWarn policy, the memory access concurrency is still quite
high. In addition, the concurrent accesses normally come
from multiple threads. This indicates that for those appli-
cations, thread-aware memory optimization techniques may
gain some performance by reordering the multiple requests
coming from different threads. We will discuss their perfor-
mance potential in Section 5.5 in details.

5.3 Memory Channel Configurations

Increasing the number of memory channels effectively
improves the memory bandwidth. Memory channels may
be ganged (clustered) in several ways to achieve the best
performance [4]. Figure 6 presents the performance as the
number of memory channels increases from two to four and
eight, when each channel can serve one request indepen-
dently. The data are normalized to that on the 2-channel
system for each workload.

The results confirm that the memory bandwidth is a ma-
jor performance bottleneck for workloads consisting of mul-
tiple memory-intensive applications. In general, increasing
the memory bandwidth is more effective in improving the
performance for workloads with a larger number of threads.
For 2-MEM, 4-MEM, and 8-MEM workloads, quadrupling
memory channels from two to eight can achieve weighted
speedup of 73.7%, 153.8%, and 151.1%, respectively. As
shown in Figure 4, 2-MEM, 4-MEM, and 8-MEM work-
loads issues more than eight memory requests in short time
period with probabilities of 32.8%, 95.1%, and 99.8%, re-
spectively. Thus, for those workloads, doubling and quadru-
pling memory channels enable more requests to be served
concurrently and thus improve the overall performance. In-
creasing the memory bandwidth is less effective in improv-
ing the performance for MIX workloads, since they are less
bandwidth-bounded. Quadrupling memory channels can
gain the overall performance improvement by 5.6% (for 2-
MIX) to 23.7% (for 4-MIX). For 2-ILP and 4-ILP work-
loads, since the 2-channel system has already achieved the
performance within 1% losses compared with the infinitely

Figure 7: Performance comparisons of clustering physical memory
channels to logical ones. “2C-1G” stands for two physical channels
where each channel is also a logical one; while “4C-2G” means
four physical channels where every two of them are clustered as
one logical channel.

large L3 cache, increasing the memory bandwidth has negli-
gible impact on them. For the 8-ILP workload, the 8-channel
system can narrow the performance loss to 1.0% from the
3.7% loss on the 2-channel system.

Multiple physical channels can be ganged together as a
logical channel to serve one memory access. A wider log-
ical channel can shorten the bus transfer time for a single
memory request; however, it also reduces the number of
requests that can be served concurrently and enlarges the
queueing delay and the overall latency if multiple requests
happen together. When multiple physical memory channels
exist, they can be clustered in several ways to form logical
channels. For example, an 8-channel memory system can be
configured to have eight independent logical channels (8C-
1G), or four independent channels (8C-2G), or two indepen-
dent channels (8C-4G)3. Previous studies have shown that
the memory system performance is sensitive to how chan-
nels are organized for single-threaded processors [4]. Fig-
ure 7 compares the performance of different channel organi-
zations for MEM and MIX workloads4.

We can see that for MEM and MIX workloads, their per-
formance is quite sensitive to how multiple channels are or-
ganized. For instance, when the 2-channel system gangs
both channels as a single logical channel, the performance
of 2-MEM decreases by 33.6%, compared with configuring
each channel independently. When the number of threads
increases, the performance gap between different channel
organizations is even wider. For the 4-MEM workload, the
8C-4G organization only achieves 52.8% of the performance
of the 8C-1G organization. Thus, we need to be careful in

3Because the L3 cache line is 64B wide and each physical channel is
16B wide, it does not make sense to gang eight channels together.

4Since the performance of ILP workloads is not sensitive to memory
channel configurations as shown in Figure 6, ILP workloads are not in-
cluded here.

Figure 8: Comparisons of row buffer miss rates under two different
mapping schemes (page and XOR) on the 2-channel DDR SDRAM
system.

configuring multi-channel memory systems. For the SMT
workloads presented here, it is always beneficial to let each
physical channel be an independent logical channel. For
the workloads of high memory access concurrency, serving
multiple requests concurrently is more important than reduc-
ing the bus transfer time of a single request.

5.4 Mapping Schemes

As discussed in Section 2, DRAM row buffer hits have
significantly shorter latencies than row buffer misses, thus
improving the row buffer hit rate is effective in reducing the
memory stall time. Previous studies have shown that DRAM
mapping schemes have significant impacts on row buffer
miss rates for single-threaded processors [32, 33, 8]. SMT
processors may cause extra contentions in accessing mem-
ory banks, thus may increase row buffer miss rates. Figure 8
compares row buffer miss rates under two DRAM mapping
schemes on the 2-channel DDR SDRAM system.

The page mapping scheme assigns DRAM pages to mem-
ory banks in a round-robin way; while the XOR-based map-
ping scheme permutes DRAM pages to memory banks by
using the exclusive-OR of the bank index and a portion of
address bits from the cache set index [33, 8]. From the fig-
ure, we can see that in general, as the number of threads
increases, the row buffer miss rate also increases. This is be-
cause the number of active accessing streams (from differ-
ent threads) increases. The XOR-based mapping scheme re-
duces the row buffer miss rate moderately compared with the
page mapping scheme. For example, the row buffer miss rate
is reduced from 40.1% to 33.4% for 2-MIX workload. Note
that the row buffer miss rates do not always increase with
the degree of multithreading. For example, the miss rates
for 4-MIX are slightly lower than those of 2-MIX, while 8-
MIX has the highest miss rates. One of the programs used
in those MIX workloads is mcf, which is more memory in-
tensive than any other program. In 4-MIX, the additional
programs dilutes the memory access intensity, resulting in

Figure 9: Comparisons of row buffer miss rates under two different
mapping schemes (page and XOR) on the 2-channel Direct Ram-
bus DRAM system.

the slightly lower miss rates. In 8-MIX, however, the factor
of memory contentions significantly increases the row buffer
miss rates. The row buffer miss rates are still quite high for
workloads with large numbers of memory-intensive applica-
tions even after applying the XOR-based mapping scheme,
because the DDR SDRAM system used in our study only
has a small number of independent banks (eight for the 2-
channel system). As we discussed earlier, MEM and MIX
workloads generate more than eight concurrent requests dur-
ing most of their execution times.

The DDR SDRAM system normally has a small num-
ber of memory banks. In comparison, the Direct Rambus
DRAM system has a large number of internal memory banks
(32 banks per chip) and consists of a narrow but high-speed
bus. Next, we will show the impact of mapping schemes on a
2-channel Direct Rambus DRAM system. Figure 9 presents
the row buffer miss rates on such a system under the page
and XOR-based mapping schemes. The XOR-based scheme
effectively reduces the row buffer miss rate. For example,
the row buffer miss rate of the 4-MEM workload is reduced
from 48.8% to 32.2%. Compared with the results in this
figure with those in Figure 8, we can see that as the num-
ber of independent banks increases, the XOR-based map-
ping scheme has more opportunities to permute concurrent
accesses and achieves lower row buffer miss rates.

Compared with the results on single-threaded systems re-
ported in previous studies, the XOR-based mapping scheme
is less effective for SMT systems in reducing row-buffer
miss rates. For SMT workloads, the mapping scheme should
take row buffer conflicts from multiple threads into consid-
erations. Further researches on DRAM hardware mapping
schemes or OS manipulations of memory allocations (for
example, using the page coloring) may help reduce the con-
flicts from multiple threads.

Figure 10: Performance comparisons of thread-aware schedul-
ing schemes (Request-based, ROB-based, and IQ-based) with the
schemes that treat accesses from different threads the same (FCFS,
Hit-first, and Age-based).

5.5 Effectiveness of Thread-aware Memory Opti-
mizations

In previous discussions, the memory system performs op-
timizations on accesses from different threads as if they were
generated by a single thread. Our experiments have shown
that contemporary memory optimization techniques work
well under this simple assumption. Next, we will discuss
whether additional performance can be gained by consider-
ing the running states of each thread.

The reference point (FCFS) in Figure 10 refers to the 2-
channel DDR SDRAM system that serves memory requests
according to their arrival orders but allows read operations
to bypass writes. The “Hit-first” corresponds to the system
that exploits the optimization techniques for single-threaded
systems, such as the hit-first, exclusive-OR mapping, and
open page mode. The “Aged-based” scheme prompts the
oldest request when more than eight outstanding requests
are presented to the memory. As discussed in Section 3, the
request-based scheme assigns the highest priority to the ac-
cesses generated by the thread which has the fewest pending
memory requests. The ROB-based scheme serves first the
requests from the thread which occupies the most reorder
buffer entries. The IQ-based scheme assigns the highest pri-
ority to the requests generated by the thread that occupies
the most integer issue queue entries5.

Figure 10 indicates that those scheduling policies are the
most effective for MEM workloads. The hit-first scheme im-
proves the performance by up to 3.2% (for 4-MEM), com-
pared with a simple FCFS policy. The age-based scheme
gets slightly worse performance than the hit-first scheme on
most workloads. The three thread-aware scheduling poli-

5For the workloads and systems used in our study, the integer issue
queue has higher occupant ratio than the floating-point issue queue.

cies can further gain some performance. The request-based
scheme can improve the performance by 29.8% for 2-MEM,
but only 7.4% for 4-MEM, and 3.5% for 8-MEM. The rea-
son is that for 4-MEM and 8-MEM workloads, the dif-
ference of the number of concurrent outstanding requests
among different threads is not as large as for 2-MEM work-
load. The ROB-based scheme can improve the performance
by 14.0% for 2-MEM, 2.6% for 4-MEM, and 2.5% for 8-
MEM, respectively. The IQ-based scheme achieves speedup
of 25.9% for 2-MEM, 22.0% for 4-MEM, and 1.8% for 8-
MEM, respectively. The thread-aware scheduling schemes
are the most effective for workloads that consist of appli-
cations with diverse memory demands. Overall, the above
results indicate that when multiple memory-intensive appli-
cations are running together, comprehensively considering
the processor status and the memory system status is mean-
ingful to improving the memory performance of SMT sys-
tems.

Although our observations are based on the DWarn in-
struction fetch policy, they may also be applied generally to
fetch polices that stop fetching for threads with outstanding
cache misses, e.g. the fetch stall policy [28]. A good amount
of memory concurrency still exists for that policy, because
memory requests are generated from all threads and at least
one thread is kept active when all threads have outstanding
cache misses. Nevertheless, the access scheduling may favor
the DWarn policy because it makes more memory requests
available for scheduling.

6 Related Work
The related studies can be divided into two categories:

those improving the DRAM throughput or reducing the
memory access latency for single-threaded processors, and
those on the design, evaluation, and optimization of SMT
processors. To our best knowledge, there is no existing study
on DRAM memory optimizations for SMT processors. In
addition, studies on memory systems for SMPs (Symmetric
MultiProcessors) have a different focus.

The performance of the DRAM system is characterized
by its latency and effective bandwidth. The memory band-
width has been improved steadily and rapidly. The fre-
quency of memory bus has increased dramatically in the last
decade, and the use of the DDR technique further doubles
the memory bandwidth. Buses as wide as 256 bits or even
wider have been used in high-end workstations. The Direct
Rambus DRAM uses narrow buses and increases the data
transfer rate to 800 MHz and beyond.

Most approaches to reducing the DRAM access latency
utilize the spatial locality in memory access streams and the
huge bandwidth inside DRAM chips. Hidaka et al. [11]
studied and prototyped a cached DRAM that integrates con-
ventional SRAM caches into DRAM chips. The Enhanced
DRAM includes a large SRAM block per bank to cache
a whole DRAM page per access, and the Virtual Channel
DRAM uses multiple such blocks of smaller sizes. The

XOR-based DRAM address mapping schemes improve the
hit rate to the existing DRAM row buffers and reduce the
latency without the cost of adding SRAM caches [33, 8].

The memory bandwidth may not be fully utilized due to
the limited concurrency, bus overhead, and bank conflicts.
Nevertheless, the degree of concurrency in memory accesses
from superscalar processors is increasing with the aggres-
sive exploitation of ILP and the use of non-blocking caches.
The access scheduling [18, 17, 13, 21, 22, 16, 34] has been
shown to be effective for streaming applications as well as
conventional memory-intensive applications. The system
overhead from read/write turnarounds can be reduced by us-
ing write buffers [24]. Another overhead from the timing
asymmetry of read and write operations may be removed by
changing the write timing [4].

The simultaneous multithreading [12, 30, 9] increases the
processor throughput by issuing instructions from more than
one thread at a single cycle. It overcomes the ILP limits in-
herent in applications. Tullsen et al. [30] examined the per-
formance potential of SMT technique and demonstrated that
it may outperform the wide-issue superscalar design and the
fine-grain multithreading, and perform comparably with the
chip-level multiprocessing (CMP). A following study [29]
examines the SMT performance bottleneck using a more re-
alistic processor model and evaluates the performance of dif-
ferent instruction fetch policies. The instruction fetch policy
is critical to the SMT performance and affects how processor
resources are allocated among threads. A number of revised
policies [28, 3, 7] have been proposed to handle long-latency
memory accesses.

It has been confirmed that the SMT technique is effec-
tive for OS-intensive commercial workloads as well [14]. In
particular, the cache interference between threads may be
reduced by using a virtual-physical address mapping called
bin hopping, which maps virtual pages to physical pages
sequentially. A similar mapping is used in our simulation.
The OS performance for SMT processors has been studied
in [20]. The symbiotic job scheduling [25] in OS increases
the system throughput by co-scheduling groups of threads
that cooperate better than others. Thus, memory-intensive
programs may be scheduled with compute-intensive ones.
The performance of Intel Hyperthreading P4 processor has
been analyzed in [27] using mixes of SPEC programs.

The SMT and SMP are similar from the viewpoint of
DRAM system designs. Surprisingly, there have been
few studies on the SMP performance for multiprogram-
ming workloads – the focus is on the memory consistency,
cache coherence, and synchronization for parallel work-
loads. Main memory systems are evaluated in that con-
text. For SMT processors, the cache sharing in parallel pro-
grams is usually beneficial, and well-designed synchroniza-
tions can be very efficient [31]. Thus, the memory access be-
havior of parallel programs will be closer to multiprogram-
ming workloads on SMT processors than on SMP systems.
To our best knowledge, there is no thorough study of main

memory system performance for multiprogramming work-
loads on SMPs built with contemporary superscalar proces-
sors. Thus, little is known or can be applied in answering
our questions.

7 Conclusion
In this study, we have thoroughly evaluated contempo-

rary multi-channel DRAM systems for SMT systems and
searched for new DRAM optimization techniques. We
find that the employment of SMT techniques has somewhat
changed the context of DRAM optimizations but does not
make them obsolete. The DRAM channel organization be-
comes a more important factor; the memory access schedul-
ing is more effective when considering the states of each
thread; but exploiting the DRAM row buffer locality be-
comes less effective. In general, for mixes of programs with
light or moderate memory demands, the SMT technique can
effectively hide the organizational variants of DRAM sys-
tems. However, for workloads with intensive memory de-
mands, DRAM optimizations make a larger difference than
on single-threaded systems. Since the use of SMT tech-
niques increases the pressure on cache memories, the latter
situation becomes more common. Further performance im-
provement may come from the cooperation between fetch
policies and the memory scheduling or between the hard-
ware and the software.

Acknowledgment:
We would like to thank the anonymous referees for their
constructive criticism and insightful suggestions which
helped us improve the paper.

References
[1] L. A. Barroso, K. Gharachorloo, R. McNamara,

A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese. Piranha: a scalable architecture based on
single-chip multiprocessing. In Proceedings of the 27th
Annual International Symposium on Computer Architecture,
pages 282–293, 2000.

[2] D. Burger, J. R. Goodman, and A. Kägi. Memory bandwidth
limitations of future microprocessors. In :	; %�< Annual Inter-
national Symposium on Computer Architecture, pages 78–
89, 1996.

[3] F. J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero.
Dcache warn: an I-Fetch policy to increase SMT efficiency.
In Proceedings of the 18th International Parallel and Dis-
tributed Processing Symposium, 2004.

[4] V. Cuppu and B. Jacob. Concurrency, latency, or system
overhead: Which has the largest impact on uniprocessor
DRAM-system performance? In Proceedings of the 28th
Annual International Symposium on Computer Architecture,
pages 62–71, 2001.

[5] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A perfor-
mance comparison of contemporary DRAM architectures. In
Proceedings of the 26th Annual International Symposium on
Computer Architecture (ISCA’99), pages 222–233, 1999.

[6] R. Desikan, D. Burger, and S. W. Keckler. Measuring exper-
imental error in microprocessor simulation. In Proceedings

of the 28th Annual International Symposium on Computer
Architecture, pages 266–277, 2001.

[7] A. El-Moursy and D. H. Albonesi. Front-end policies for
improved issue efficiency in SMT processors. In Proceedings
of the Ninth International Symposium on High-Performance
Computer Architecture, pages 31–41, 2003.

[8] W. fen Lin, S. K. Reinhardt, and D. Burger. Reducing
DRAM latencies with an integrated memory hierarchy de-
sign. In Proceedings of the Seventh International Sym-
posium on High-Performance Computer Architecure, pages
301–312, 2001.

[9] M. Gulati and N. Bagherzadeh. Performance study of a mul-
tithreaded superscalar microprocessor. In Proceedings of the
2nd International Symposium on High-Performance Com-
puter Architecture, pages 291–302, 1996.

[10] L. Hammond, B. A. Nayfeh, and K. Olukotun. A single-chip
multiprocessor. Computer, 30(9):79–85, Sept. 1997.

[11] H. Hidaka, Y. Matsuda, M. Asakura, and K. Fujishima. The
cache DRAM architecture: a DRAM with an on-chip cache
memory. IEEE Micro, 10(2):14–25, Apr. 1990.

[12] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki,
A. Nishimura, Y. Nakase, and T. Nishizawa. An elementary
processor architecture with simultaneous instruction issuing
from multiple threads. In Proceedings of the 19th Annual
International Symposium on Computer Architecture, pages
136–145, Gold Coast, Australia, May 1992.

[13] S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke, J. H.
Aylor, and W. A. Wulf. Access order and effective bandwidth
for streams on a Direct Rambus memory. In Proceedings
of the Fifth International Symposium on High-Performance
Computer Architecture, pages 80–89, Jan. 1999.

[14] J. Lo, L. Barroso, S. Eggers, K. Gharachorloo, H. Levy, and
S. Parekh. An analysis of database workload performance
on simultaneous multithreaded processors. In Proceedings
of the 25th Annual International Symposium on Computer
Architecture (ISCA-98), pages 39–51, June 27–July 1 1998.

[15] K. Luo, J. Gummaraju, and M. Franklin. Balancing though-
put and fairness in SMT processors. In International Sym-
posium on Performance Analysis of Systems and Software,
pages 164–171, 2001.

[16] B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis. De-
sign of a parallel vector access unit for SDRAM memory sys-
tems. In Proceedings of the Sixth International Symposium
on High-Performance Computer Architecture, pages 39–48,
Jan. 2000.

[17] S. A. McKee and W. A. Wulf. Access ordering and memory-
conscious cache utilization. In Proceedings of the First In-
ternational Symposium on High-Performance Computer Ar-
chitecture, pages 253–262, Jan. 1995.

[18] S. A. Moyer. Access Ordering and Effective Memory Band-
width. PhD thesis, University of Virginia, Department of
Computer Science, Apr. 1993. Also as TR CS-93-18.

[19] V. S. Pai and S. Adve. Code transformations to improve
memory parallelism. In Proceedings of the 32nd Annual
International Symposium on Microarchitecture, pages 147–
155, 1999.

[20] J. Redstone, H. Levy, and S. Eggers. An analysis of operating
system behavior on a simultaneous multithreaded architec-
ture. In Proceedings of the 9th International Conference on
Architectural Support for Programming Language and Op-
erating Systems, pages 245–256, Nov. 2000.

[21] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. López-
Lagunas, P. R. Mattson, and J. D. Owens. A bandwidth-
efficient architecture for media processing. In Proceedings
of the 31st Annual ACM/IEEE International Symposium on
Microarchitecture, pages 3–13, Nov. 1998.

[22] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens. Memory access scheduling. In Proceedings of the
27th Annual International Symposium on Computer Archi-
tecture, pages 128–138, 2000.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
Proceedings of the Tenth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 45–57, 2002.

[24] K. Skadron and D. W. Clark. Design issues and tradeoffs for
write buffers. In Proceedings of the Third International Sym-
posium on High Performance Computer Architecture (HPCA
’97), pages 144–155, Feb. 1997.

[25] A. Snavely, D. Tullsen, and G. Voelker. Symbiotic job-
scheduling with priorities for a simultaneous multithreading
processor. In Proceedings of the 2002 International Confer-
ence on Measurement and Modeling of Computer Systems
(SIGMETRICS-02), pages 66–76, June 2002.

[26] Standard Performance Evaluation Corporation. SPEC
CPU2000. http://www.spec.org.

[27] N. Tuck and D. M. Tullsen. Initial observations of the simul-
taneous multithreading Pentium 4 processor. In Proceedings
of the 12th International Conference on Parallel Architec-
tures and Compilation Techniques, pages 26–35, 2003.

[28] D. M. Tullsen and J. A. Brown. Handling long-latency loads
in a simultaneous multithreading processor. In Proceedings
of the 34th Annual International Symposium on Microarchi-
tecture, pages 318–327, Austin, Texas, Dec. 2001.

[29] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting choice: Instruction fetch
and issue on an implementable simultaneous multithreading
processor. In Proceedings of the 23rd Annual International
Symposium on Computer Architecture, pages 191–202, 1996.

[30] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Proc.
of the 22nd Annual International Symposium on Computer
Architecture, pages 392–403, 1995.

[31] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy. Sup-
porting fine-grained synchronization on a simultaneous mul-
tithreading processor. In Proceedings of the Fifth Interna-
tional Symposium on High-Performance Computer Architec-
ture, pages 54–58, Jan. 1999.

[32] W. Wong and J.-L. Baer. DRAM on-chip caching. Technical
Report UW CSE 97-03-04, University of Washington, Feb.
1997.

[33] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based page
interleaving scheme to reduce row-buffer conflicts and ex-
ploit data locality. In Proceedings of the 33rd Annual In-
ternational Symposium on Microarchitecture, pages 32–41,
2000.

[34] Z. Zhu, Z. Zhang, and X. Zhang. Fine-grain priority schedul-
ing on multi-channel memory systems. In Proceedings the
Eighth International Symposium on High-Performance Com-
puter Architecture, pages 107–116, 2002.

