
Proceedings of the 8th International Symposium on High Performance Computer Architecture (HPCA-8), 2002

Fine-grain Priority Scheduling on Multi-channel Memory Systems

Zhichun Zhu Zhao Zhang Xiaodong Zhang

Department of Computer Science

College of William and Mary

{zzhu, zzhang, zhang}@cs.wm.edu

Abstract

Configurations of contemporary DRAM memory
systems become increasingly complex. A recent
study [5] shows that application performance is highly
sensitive to choices of configurations, and suggests that
tuning burst sizes and channel configurations be an ef-
fective way to optimize the DRAM performance for a
given memory-intensive workload. However, this ap-
proach is workload dependent. In this study we show
that, by utilizing fine-grain priority access scheduling,
we are able to find a workload independent configu-
ration that achieves optimal performance on a multi-
channel memory system. Our approach can well utilize
the available high concurrency and high bandwidth on
such memory systems, and effectively reduce the mem-
ory stall time of memory-intensive applications. Con-
ducting execution-driven simulation of a 4-way issue,
2 GHz processor, we show that the average performance
improvement for fifteen memory-intensive SPEC2000
programs by using an optimized fine-grain priority
scheduling is about 13% and 8% for a 2-channel and
a 4-channel Direct Rambus DRAM memory systems,
respectively, compared with gang scheduling. Com-
pared with burst scheduling, the average performance
improvement is 16% and 14% for the 2-channel and
4-channel memory systems, respectively.

1 Introduction

As the performance gap between processor and
DRAM memory continues to widen, the memory stall
time of a typical memory-intensive application is be-
coming a dominant portion of the total execution time.
On a multi-issue and multi-GHz processor, the latency
of a single DRAM access could be equivalent to the
time to execute hundreds of CPU instructions. Even
for applications with low cache miss rates, the mem-
ory stall time due to a small percentage of DRAM
accesses can easily exceed the CPU execution time.
It is highly desirable to reduce memory stall times of
memory-intensive applications.

Configurations of contemporary DRAM memory
systems become increasingly complex. Modern mem-
ory systems, such as Direct Rambus DRAM systems,
can support multiple memory channels, while each
channel can connect multiple devices (chips). Each
chip consists of multiple banks, where concurrent ac-
cesses to different banks can be pipelined. For memory-
intensive applications running on contemporary com-
puter systems, the occurrence of multiple outstanding
memory requests is frequent. Memory access schedul-
ing can reorder the sequence of concurrent accesses to
reduce access latency and improve memory bandwidth
utilization [12, 11, 7, 14, 15, 10]. In addition, a memory
request for a cache miss can be further split into sev-
eral sub-requests which can be processed separately.
Normally, a cache miss results in a cache line fill re-
quest that fetches more data than what is immediately
required to resume processor execution. This provides
an opportunity to improve performance by splitting the
request into multiple sub-requests with smaller sizes
and serving the critical ones (containing immediately
required data) first. On a multi-channel memory sys-
tem, such a scheduling method requires a number of
considerations, such as how to split a single reference,
how to assign sub-requests to channels, and how to
schedule concurrent accesses.

A recent study [5] finds that program performance
is highly sensitive to the DRAM system configuration,
and suggests that tuning burst (sub-block) sizes and
channel configurations be an effective way to optimize
the DRAM system performance for a given memory-
intensive workload. Specifically, they evaluate the per-
formance effect of sub-block size on burst ordering,
where each cache block is split into multiple sub-blocks
and critical sub-blocks are served before non-critical
ones. In their study, all sub-blocks from a cache line
are mapped to the same channel and the same page.
Thus, in order to exploit concurrency within a single
channel, the choice of sub-block size becomes a trade-
off between reducing latency of critical data access and



lowering system overhead. They find that different ap-
plications have optimal performance on different sub-
block sizes and the optimal sub-block sizes scale with
the channel width.

In this study we show that, by utilizing fine-grain
priority access scheduling, we are able to find a work-
load independent configuration that achieves optimal
performance on a multi-channel memory system. In or-
der to fully utilize the available bandwidth and concur-
rency, our approach splits a memory reference into sub-
blocks with minimal granularity, and maps sub-blocks
from a reference into different channels. All channels
can be used to process a single cache line fill request.
In order to increase the parallelism between proces-
sor execution and memory accesses, fine-grain priority
scheduling is exploited. Sub-blocks that contain the
desired data are marked as critical ones with higher
priorities and are returned earlier than non-critical sub-
blocks. This approach is similar to the method of “crit-
ical word first”, but it also allows critical sub-blocks
of one cache block to bypass non-critical sub-blocks
from other cache blocks. By combining with existing
DRAM scheduling policies, choosing the minimum sub-
block size allows faster access to critical data without
increasing the memory system overhead.

Figure 1 gives an example that shows the perfor-
mance potential of fine-grain priority scheduling. In
this example, a 4-channel memory system is process-
ing four cache misses concurrently. Each cache block
is split into eight sub-blocks, and the four critical sub-
blocks are mapped to different channels. With fine-
grain priority scheduling, all the critical sub-blocks fin-
ish earlier than non-critical sub-blocks, saving seven
time units in fetching all critical data. In this exam-
ple, the clustering of the four cache misses provides the
scheduling opportunity. Our study will show that the
cache miss clustering is frequent, i.e., the burstiness of
cache misses is high. As a result, the queuing delay
can be a major component of access time. Fine-grain
priority scheduling can reduce the memory stall time
by reducing the queuing delay of critical data.

In this study, we quantitatively investigate the miss
burstiness for memory-intensive applications from the
SPEC2000 benchmark suite on ILP processors with
multi-channel Direct Rambus DRAM systems. We
also analyze the combination of fine-grain priority
scheduling with other DRAM access scheduling tech-
niques, and compare the performance with that of gang
scheduling [8] and burst scheduling [5]. Our study pro-
vides the following performance results and findings.

• Fine-grain priority scheduling is effective in re-
ducing memory stall time and increasing IPC
(Instructions Per Cycle). Compared with gang

A5 B1 B5 C1 C5 D1 D5

A2 A6 B2 B6 C2 C6 D2 D6

A3 A7 B3 B7 C3 C7 D3 D7

A4 A8 B4 B8 C4 C8 D4 D8

A5 A1 B1 B5 C1 C5 D1 D5

B6 A2 A6 B2 C2 C6 D2 D6

C7 A3 A7 B3 B7 C3 D3 D7

D8 A4 A8 B4 B8 C4 C8 D4

A1

Channel Data packet

(a)

(b)

Finish time

Finish time
Saved time

Figure 1. The order of transferring sub-blocks on a
DRAM system with four memory channels: (a) with-
out priority scheduling and (b) using fine-grain pri-
ority scheduling. The letters A–D represent cache
blocks, each of which is split into eight sub-blocks.
The boxes with bold letters represent the critical sub-
blocks that contain the desired data.

scheduling that serves a single cache miss request
with multiple channels grouped together, the IPC
improvement is 13% on average (up to 34%) for fif-
teen selected SPEC2000 programs on a 2-channel
Direct Rambus DRAM memory system, and 8%
on average (up to 22%) on a 4-channel memory
system. Compared with burst scheduling that
serves multiple sub-requests of a single cache miss
with one channel but critical sub-requests first, the
average IPC improvement is 16% and 14% on the
2-channel and 4-channel memory systems, respec-
tively. The processor is 2 GHz and 4-way issue.

• Combined with other scheduling policies, fine-
grain priority scheduling is able to effectively uti-
lize the memory system resource. For six of the
programs, the 2-channel system with fine-grain
priority scheduling can achieve performance com-
parable to that on the 4-channel system with gang
scheduling or with burst scheduling.

• We suggest that a DRAM system configuration
and its optimization be emphasized on access
scheduling and DRAM mapping schemes. Tak-
ing this approach, we are able to find an optimal
memory configuration that is workload indepen-
dent.

We briefly introduce the background in the next sec-
tion. In Section 3, we discuss the issues in fine-grain
priority scheduling and its combination with other
DRAM scheduling policies. The design complexity of
fine-grain priority scheduling is discussed in Section 4.



The experimental methodology is described in Sec-
tion 5. The results are presented in Section 6. Finally,
we conclude our work in Section 7.

2 Memory System Considerations

2.1 Memory Access Scheduling

Contemporary DRAM memory systems can serve
multiple accesses concurrently. Memory access
scheduling can reduce access latency and improve
bandwidth utilization by re-arranging the order and
issue time of DRAM operations for a group of concur-
rent requests [12, 11, 7, 14, 15, 10]. At a given time,
a request may require one of the following operations,
depending on the state of the bank to be accessed.

• Precharge: when the row buffer contains valid but
not the desired data. This request is called a row
buffer miss.

• Row access: when the bank is already precharged.

• Column access: when the row buffer contains the
desired data. This request is called a row buffer
hit.

Different operations required by concurrent memory
requests may contend for the control bus, the data bus,
or the DRAM banks. The contentions can be resolved
by prioritizing the requests based on the request type
(read or write), the arrival time, or an explicit prior-
ity information [15]. For example, read-bypass-write
policy gives read requests higher priorities than write
requests, considering that read requests will block the
related load instructions. In-order scheduling gives the
oldest request the highest priority. This can be com-
bined with the read-bypass-write policy to prioritize
old read requests. Explicit priority scheduling assigns
an explicit priority to each request, giving the processor
the opportunity to specify critical requests.

When a bank is activated (the row buffer contains
valid data), it is possible that one request to the bank
requires a column access while another request asks for
a precharge. The column access is usually prioritized
over the precharge so as to improve the memory band-
width utilization [7, 15]. This policy is called hit-first
in this paper. Operations to different banks may con-
tend for the address bus and the data bus. To increase
parallelism at the DRAM side (thus increase the band-
width utilization), precharges can be prioritized over
row accesses, and row accesses can be prioritized over
column accesses.

Another scheduling issue is to decide the time to
precharge a bank when it has no pending requests.

There are two strategies: close page and open page.
The close page strategy issues the precharge immedi-
ately after the current column access finishes. The next
access to the bank will require a row activation and a
column access. In contrast, the open page strategy de-
lays the precharge to hope that the next access is a
row buffer hit, thus only the column access is needed.
However, if the next access is a row buffer miss, it will
require all the three operations. Which strategy per-
forms better depends on the row buffer hit rate.

2.2 Multi-channel Memory Systems

Multi-channel memory systems have been used with
high performance processors that require high band-
width DRAM memories. Each channel can be sched-
uled independently. Direct Rambus DRAM is such
a representative memory system. A Direct Rambus
DRAM system generally consists of multiple chan-
nels, where each channel supports 1.6 GB/s bandwidth.
Each channel has its own row control bus, column con-
trol bus, and two-byte wide data bus. The separa-
tion of row and column control buses eliminates the
contention in the address bus between row operations
(precharges and row activations) and column accesses.
The bus clock rate is 400 MHz and the data is trans-
fered on both edges of the clock. The row and col-
umn addresses/commands and the data are transfered
in packets, each taking four bus cycles. The minimal
data packet length is 16-byte. Each channel can con-
nect multiple devices (chips). Each device can have 32
banks and 33 half-page row buffers (this may be dif-
ferent according to the configuration). Those banks
may be operated independently, which provides high
concurrency at the bank level. The Intel Pentium 4
processor supports two channels, and the Compaq Al-
pha 21364 processor supports up to eight channels.

2.3 DRAM Mapping Scheme

DRAM mapping scheme determines how to map a
physical address to a location in the DRAM system.
The choice of DRAM mapping scheme directly affects
the row buffer hit rate and the memory system perfor-
mance [20].

A word in a Direct Rambus DRAM system is ad-
dressed by the channel index, the device index, the
bank index, the row address, and the column address.
The first mapping consideration is on how to map the
sub-blocks in a cache line onto multiple channels. We
use a method interleaving the sub-blocks onto all chan-
nels, which is the same as that used in [8]. This in-
terleaving scheme allows the aggregate bandwidth of
all channels to be used to transfer a single cache line



(assume the number of sub-blocks in a cache line is
no less than the number of channels). The mapping
scheme in [5] maps all cache lines in a DRAM page-
sized block on a single channel. The requests on dif-
ferent channels are scheduled independently. However,
this scheme cannot fully utilize the available bandwidth
of all channels for a single cache line fill request. In
addition, program access locality within the DRAM
page-sized block may cause unbalanced usage of mem-
ory channels. In contrast, our method groups chan-
nels together to serve each cache line fill request, but
schedules operations on each channel independently to
return critical sub-blocks earlier.

Another mapping consideration is on how to map
continuous addresses to multiple banks. Our approach
interleaves page-sized blocks onto banks using the
XOR-based page-interleaving scheme [20, 8]. It maps
a continuous DRAM page-sized block onto a DRAM
bank to exploit the locality in the row buffer, and XOR-
es two portions of address bits (conventional bank in-
dex and cache tag) to permute the mapping of pages to
banks. Consequently, accesses causing row buffer con-
flicts in the conventional page-interleaving scheme are
distributed to different banks without changing the lo-
cality in the row buffer. The studies in [20, 8] show that
the scheme can significantly improve the row buffer hit
rate.

3 Fine-grain Priority Scheduling

3.1 Granularity of Scheduling

Current ILP processors have the ability to gener-
ate multiple cache misses before stalling. This pro-
vides an opportunity for performance improvement by
scheduling the concurrent memory requests for those
cache misses. In general, only a portion of a cache line
contains the currently required data (although other
portions may be needed in the near future). The fine-
grain priority scheduling tries to exploit this opportu-
nity. It issues multiple DRAM requests for a single
cache miss, where each request fetches a sub-block of
the cache line. Sub-blocks that contain the desired
data are critical sub-blocks. The requests for critical
sub-blocks are given higher priority over those requests
for non-critical ones.

Each DRAM system has a limit on the minimal re-
quest length. Thus, the sub-block size should be no
less than that minimal length. Using smaller sub-
block size allows the current request to finish faster
and makes newly arrived requests to be issued earlier.
However, it is a concern that a small sub-block size
may reduce the burst length of DRAM accesses thus

increase the system overhead [5]. Nevertheless, we will
show that if fine-grain priority scheduling is combined
with other scheduling techniques and suitable mapping
schemes, the overhead will not exceed that of coarse-
grain scheduling on the Direct Rambus DRAM plat-
form. For this reason, we choose the smallest granular-
ity available for Direct Rambus DRAM system as the
sub-block size, which is 16-byte, in this study.

3.2 Scheduling Policies

In this paper, we discuss three scheduling policies:
fine-grain priority scheduling, gang scheduling, and
burst scheduling. Each term actually represents a com-
bination of several basic access scheduling policies, a
channel configuration, a DRAM mapping scheme, and
a choice of scheduling granularity. We assume a sched-
uler architecture similar to that presented in [15] (see
Section 4) is used to enforce the three policies.

• Pending requests on a DRAM bank are queued
in a bank scheduler. Each bank scheduler has an
arbiter to determine the next operation on the as-
sociated bank.

• Each independent channel has a channel scheduler,
which includes a row arbiter and a column arbiter.
The row arbiter selects a precharge or a row access
(if any) to use the row control bus. The column
arbiter selects which column access (if any) to use
the column control bus and the data bus.

All the three scheduling policies are combined with
four basic scheduling policies that are enforced in the
following order: read-bypass-write, hit-first, explicit
priority, and in-order. For example, a non-critical read
request that requires a column access is issued first
even when there is another critical read request that
requires a precharge to the same bank. The hit-first
policy is enforced before the explicit priority scheduling
so that fine-grain priority scheduling would not cause
severe row buffer thrashing when multiple requests are
mapped onto the same bank. In contrast, enforcing
only the explicit priority scheduling may cause more
precharges when bank conflicts occur.

There are three levels of explicit priorities for read
requests, namely critical priority, load priority, and
store priority, from highest to lowest. The critical pri-
ority is assigned to critical sub-blocks of read misses,
and load priority is assigned to non-critical sub-blocks
of read misses. The store priority is assigned to read
requests for write misses, as a write-back and write-
allocate L2 cache is used in this study.

In fine-grain priority scheduling, each L2 cache miss
results in multiple DRAM requests that are mapped to



multiple channels evenly; each DRAM request is associ-
ated with an explicit priority; and concurrent requests
are scheduled based on the policies discussed above.
It uses a fixed 16-byte as the sub-block size, which is
the smallest granularity with current Direct Rambus
technology. Each physical channel is configured as an
independent unit and has its own channel scheduler.
Instructions stalled for a critical sub-block are resumed
when the data of the sub-block is returned.

Gang scheduling uses the cache block size as the
burst size. All channel are grouped together as one
logical channel, and there is only one channel sched-
uler. Instructions stalled for a missed block are re-
sumed when the whole block is returned.

In burst scheduling, each L2 cache miss results in
multiple DRAM requests that are mapped to the same
independent channel; each DRAM request is associated
with an explicit priority. In this study, the sub-block
size is set to 32-byte. For a 2-channel system, each
physical channel is an independent channel. For a 4-
channel system, two physical channels are grouped to-
gether. There are two channel schedulers in both cases.

When a miss on a cache block happens, the sub-
block containing the desired data is marked critical.
Due to program locality, it is very likely that when the
requests of this miss are being processed, more misses
happen on other sub-blocks of the same cache block. In
this case, the sub-blocks containing the newly arrived
requests become critical ones and gain higher priority.
Both fine-grain priority scheduling and burst schedul-
ing will consider this change and update the priority
information dynamically.

The read-bypass-write and hit-first policies not only
improve the performance by themselves but also help
fine-grain priority scheduling avoid the potential in-
crease of system overhead. There is one case that the
system overhead may still increase. When the number
of banks is very small, the bank conflicts can be se-
vere thus fine-grain priority scheduling may cause more
precharges than burst scheduling. Fine-grain priority
scheduling always balances the utilization of multiple
channels, however, which scheduling performs better
will depend on application access patterns. In practice,
Direct Rambus memory systems have a sufficient num-
ber of banks to avoid severe bank conflicts. SDRAM
memory systems usually have large size row buffers
which lead to less precharges when the locality in row
buffer is good. In addition, large size SDRAM mem-
ory systems may also have enough number of banks
to avoid severe bank conflicts. The DRAM mapping
scheme used in our study produces high row buffer hit
rates. Thus, open page mode is used in our experi-
ments.

4 Complexity Analysis

4.1 Complexity inside Processor

Cache and Cache Controller One concern on
fine-grain priority scheduling is that it might change
L2 cache and/or its controller, because data returns
from the memory in a unit of sub-block instead of
cache block. Such a change is definitely undesirable.
Fortunately, there are existing mechanisms on high-
performance processors that can address this issue. For
example, the MIPS R10000 has a four-entry incoming
buffer that can accept returning data at any rate and at
any order [19]. Up to four outstanding read requests to
memory are supported, thus each outstanding request
is guaranteed to have one allocated incoming buffer en-
try. The Power-PC 604 has a similar line-fill buffer [16].
The incoming buffer can be used to merge out-of-order
returning sub-blocks with only trivial changes. Fu-
ture high-performance processors that support multi-
ple outstanding memory requests will likely to have
such kind of mechanisms.

Address Path to Memory Controller There will
be additional lines for transferring priority information.
Priority information can be transfered as a bitmap or
the position index of a sub-block. Using a bitmap re-
quires more additional lines, but allows priotizing mul-
tiple sub-blocks simultaneously, which helps the case
when multiple cache misses happen to the same cache
line at the same cycle.

Priority Updates The MSHR needs to send prior-
ity update to the memory controller when a read miss
happens on a non-prioritized sub-block of a cache block
that is already missed. A bitmap can be used with each
MSHR entry to memorize which sub-blocks have been
prioritized1.

4.2 Complexity in Memory Controller

The basic function of memory controller is to issue
DRAM operations (precharge, row activation, or col-
umn access) to DRAM banks under the DRAM tim-
ing constraints for DRAM access requests. With high-
performance processors and high-bandwidth memory
systems, the memory controller must have the access
scheduling ability to order DRAM operations for mul-
tiple outstanding requests. Without this ability, the
opportunity to exploit the memory access concurrency
allowed by the processor and the memory system will

1We assume that the MSHR implementation in [6] is used.



be wasted, and the performance penalty is unaccept-
able for memory-intensive applications.

A memory access scheduler architecture is proposed
in [15], which can enforce a number of scheduling poli-
cies. Fine-grain priority scheduling policy can be im-
plemented on that architecture. The scheduler archi-
tecture organizes incoming requests by DRAM banks.
Each bank has its own arbiter to determine its next op-
eration. A global arbiter determines which bank gets
the shared resources, such as the address bus and the
data bus. This scheduler architecture can be adapted
to work with Direct Rambus memory systems. Each
independent channel needs a channel scheduler, and
each channel scheduler needs two arbiters, one for row
control bus and the other for column control bus. Al-
though Direct Rambus memory systems can have a
large number of banks, the bank schedulers can be as-
signed to busy banks dynamically, thus only a limited
number of bank schedulers are needed.

With fine-grain priority scheduling on an n-channel
system, n channel schedulers are needed. In compari-
son, with gang scheduling, there is only one indepen-
dent channel thus one channel scheduler. On the other
hand, fine-grain priority scheduling does not compli-
cate the structure of each individual bank scheduler or
channel scheduler. Another change is that the memory
controller may split one memory reference request into
multiple requests onto those channels, and need to ac-
cept priority updates. In this aspect, burst scheduling
has almost the same complexity as fine-grain priority
scheduling.

5 Experimental Environment

We use SimpleScalar 3.0b [3] to simulate an out-of-
order execution processor. An event-driven simulation
of a multi-channel Direct Rambus DRAM system is
incorporated into the original simulator. Table 1 gives
the key parameters of the processor model.

Speed 2GHz, 4-way issue

RUU size 64

LSQ size 32

MSHR size 16

write buffer size 8

L1 cache 4-way 64KB inst./data, 2-cycle hit
latency, 64B cache line, write-back

L2 cache unified 4-way 1MB, 8-cycle hit
latency, 128B cache line, write-back

Table 1. Key processor parameters.

We use the parameters of 256 Mbit Direct Rambus
DRAM [13] as the parameters of DRAM memory sys-
tem simulated in our experiments. Table 2 describes

the key parameters of this DRAM. We configure the
simulated system as 2-channel and 4-channel systems,
where each channel has four devices.

Parameters Values

Precharge delay 8 bus cycles

Row access delay 8 bus cycles

Column access delay 8 bus cycles

Length of packets 16 bytes

Banks per device 32

Page size 2KB

Row buffer 33 half-page size

Table 2. Key parameters of the Direct Rambus
DRAM used in the simulation. The bus cycle time is
2.5 ns (400 MHz).

We use the pre-complied SPEC CPU2000 Alpha bi-
naries in [18]. Fifteen programs (five integer programs
and ten floating point ones) are selected, which have
relatively large memory access demands. For all the
applications, we fast-forward 4000M instructions and
collect program execution statistics on the next 200M
instructions.

6 Experimental Results

6.1 Burstiness in Miss Streams

We first measure the fraction of program execution
time with bursty memory accesses. Figure 2 shows the
fraction of program execution time with two or more
outstanding memory references on a 2-channel system
with gang scheduling for the selected SPEC2000 pro-
grams. We can see that the fraction of bursty phase is
highly application dependent, which ranges from about
6% to 90%.

Execution Time Fraction of Multiple Memory Accesses

0

10

20

30

40

50

60

70

80

90

100

16
8.w

up
wise

17
1.s

wim

17
2.m

gr
id

17
3.a

pp
lu

17
8.g

alg
el

17
9.a

rt

18
7.f

ac
ere

c

18
8.a

mmp

18
9.l

uc
as

30
1.a

ps
i

17
5.v

pr

17
6.g

cc

18
1.m

cf

25
6.b

zip
2

30
0.t

wolf

F
ra

ct
io

n 
(%

)

2-Channel Gang
Scheduling

Figure 2. Fractions of bursty phase in execution for
SPEC2000 programs.

Figure 3 further presents the distribution of the
number of concurrent accesses in the bursty phase. The
left figure contains programs with the fraction of bursty



0

0.2

0.4

0.6

0.8

1

1.2

2 4 8 16 32

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Number of Concurrent Accesses

179.art
181.mcf

171.swim
189.lucas
173.applu

301.apsi
187.facerec

178.galgel

0

0.2

0.4

0.6

0.8

1

1.2

2 4 8 16 32

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Number of Concurrent Accesses

172.mgrid
188.ammp

168.wupwise
176.gcc

300.twolf
256.bzip2

175.vpr

Figure 3. Distribution of the number of concurrent accesses.

phase higher than 40%; and the right one contains pro-
grams with the lower bursty phase fraction. Most pro-
grams have high burstiness in the bursty phase. In gen-
eral, programs with a higher fraction of bursty phase
tend to have higher probability on large number of con-
current accesses. For all the programs presented in
the left figure, more than 40% of bursty references are
grouped with at least three other references. Even for
some programs with a small bursty phase fraction, the
burstiness inside the bursty phase is still high. For
example, program 256.bzip2 only spends 6% of its ex-
ecution time in the bursty phase, however, more than
60% of concurrent accesses are clustered as groups with
at least eight references.

6.2 Potentials of Fine-grain Priority Scheduling

Fine-grain priority scheduling targets at reducing
the latency for critical sub-blocks by serving the critical
ones before the non-critical ones. However, if all sub-
blocks are critical, fine-grain priority scheduling will
not make any difference. To evaluate the potential of
fine-grain priority scheduling, we measure the percent-
age of critical sub-blocks in a cache line when the whole
cache line fill request completes. Our experiments indi-
cate that on the 2-channel system, for the fifteen pro-
grams, this percentage ranges from 15.3% to 57.7%.
On average, 33.8% of sub-blocks are critical ones. This
indicates that there is a large space left for fine-grain
scheduling to reorder requests based on their priorities.

Figure 4 shows the waiting time distribution of
critical sub-blocks and non-critical sub-blocks of read
misses. We can see that critical sub-blocks have much
shorter queuing delay than non-critical ones. Due to
space limitation, we use two programs 179.art and
256.bzip2 as examples here. Program 179.art has
very high bursty phase fraction (about 90%) and high
burstiness within the bursty phase. For this applica-
tion, the waiting time is a significant portion of the

total access time. Fine-grain priority scheduling effec-
tively reduces the waiting time for critical sub-blocks.
Compared with burst scheduling, the average waiting
time for critical sub-blocks reduces from 133 cycles to
104 cycles, and the average waiting time for non-critical
load sub-blocks reduces from 1157 cycles to 1070 cy-
cles. With fine-grain priority scheduling, 60% of criti-
cal sub-blocks have waiting time less than 36 cycles. In
comparison, with burst scheduling, 40% of critical sub-
blocks have waiting time longer than 80 cycles. Com-
pared with gang scheduling, the average waiting time
for critical sub-blocks reduces from 557 cycles to 104
cycles, but the average waiting time for non-critical
load sub-blocks increases from 557 cycles to 1070 cy-
cles. 256.bzip2 has low bursty phase fraction (only 6%)
but high burstiness in the bursty phase. Compared
with gang scheduling and burst scheduling, the aver-
age waiting time for critical sub-blocks is reduced from
42 cycles and 32 cycles, respectively, to 27 cycles.

Figure 5 shows the probability that multiple criti-
cal sub-blocks are mapped to the same channel under
fine-grain priority scheduling. We can see that for most
programs, fine-grain priority scheduling can evenly dis-
tribute critical requests to different channels. However,
for applications with high burstiness, it is still possible
that multiple critical requests are mapped to the same
channel. The existence of multiple critical requests
in the same channel indicates that fine-grain priority
scheduling can reduce the processor waiting time for
currently required data.

6.3 Performance Improvement of Fine-grain Pri-
ority Scheduling

Figure 6 presents the performance improvement of
fine-grain priority scheduling in terms of IPC for 2-
channel and 4-channel Direct Rambus DRAM systems.
In this figure, the base IPC of each application is the
IPC on a system with the perfect DRAM configuration



0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Waiting Time (cycles)

179.art
critical fine-grain

non-critical load fine-grain
gang

critical burst
non-critical load burst

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Waiting Time (cycles)

256.bzip2
critical fine-grain

non-critical load fine-grain
gang

critical burst
non-critical load burst

Figure 4. Waiting time distribution of critical and non-critical load sub-blocks.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Number of Critical Sectors per Channel

179.art
181.mcf

171.swim
189.lucas
173.applu

301.apsi
187.facerec

178.galgel

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Number of Critical Sectors per Channel

172.mgrid
188.ammp

168.wupwise
176.gcc

300.twolf
256.bzip2

175.vpr

Figure 5. Probabilities of multiple critical sub-blocks mapping to the same channel.

that has the latency of L2 cache hit and an infinite
bandwidth. The base IPC reflects the ideal perfor-
mance after eliminating the memory stall time.

Compared with gang scheduling, fine-grain priority
scheduling can increase the IPC by up to 34.2% for
the 2-channel DRAM system. For the fifteen selected
programs, the average IPC increase is 12.5%. Four pro-
grams (172.mgrid, 173.applu, 181.mcf, and 300.twolf)
have performance improvement higher than 15%. This
implies that fine-grain priority scheduling effectively
increases the parallelism between processor execution
and DRAM accesses by reducing the latency for critical
accesses.

Compared with burst scheduling, fine-grain priority
scheduling can increase the IPC by 16.3% on average
(up to 38.7%) for the 2-channel DRAM system. This
indicates that fine-grain priority scheduling can better
utilize the available concurrency of DRAM systems by
spreading requests evenly onto multiple channels.

Fine-grain priority scheduling is especially effective
for applications with a relative large memory stall por-
tion, modest memory bandwidth demand2, and high

2We use the memory bandwidth achieved by the application

burstiness in miss streams. For applications with small
memory bandwidth demand and relatively fewer cache
misses, the performance improvement from fine-grain
priority scheduling is modest. For example, the mem-
ory bandwidth demand of 256.bzip2 is only 0.8 GB/s,
the fraction of bursty phase is only 6%, and the number
of L2 cache misses per 100 instructions is only 0.11. For
this application, the memory stall time is not a signifi-
cant portion of the total execution time. The fine-grain
priority scheduling improves the performance modestly
by 4.6% and 3.1% compared with gang scheduling and
burst scheduling, respectively.

For applications with extremely high memory band-
width demands, such as 179.art, fine-grain prior-
ity scheduling improves performance modestly (6.0%)
compared with gang scheduling. This is not surpris-
ing. The bandwidth demand of the program is so
high (64.0 GB/s) compared with the available band-
width (3.2 GB/s). Returning critical data earlier does
not provide a large improvement in this case. Com-
pared with burst scheduling, the performance improve-

on the perfect DRAM system as the bandwidth demand of the
application.



0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

16
8.

w
up

w
is

e

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
8.

ga
lg

el

17
9.

ar
t

18
7.

fa
ce

re
c

18
8.

am
m

p

18
9.

lu
ca

s

30
1.

ap
si

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

25
6.

bz
ip

2

30
0.

tw
ol

f

IP
C

 (I
ns

tr
uc

ti
on

s 
pe

r 
C

yc
le

)
Base 2-Channel Fine-grain 2-Channel Gang 2-Channel Burst 4-Channel Fine-grain 4-Channel Gang 4-Channel Burst

Figure 6. IPC on 2-channel and 4-channel Direct Rambus DRAM systems.

ment is promising (13.2%). This indicates that fine-
grain priority scheduling can better utilize the available
bandwidth and concurrency by evenly distributing sub-
requests to multiple channels.

As the number of channels increases to four, the
congestion at the main memory system is reduced be-
cause of the increasing bandwidth and concurrency.
As expected, the speedup by using fine-grain priority
scheduling drops for most applications. For the fif-
teen programs, fine-grain priority scheduling increases
the IPC by 7.8% on average (up to 22.3%) compared
with gang scheduling. However, the speedup for some
programs with high memory bandwidth demands in-
creases. For example, the performance improvement
for 171.swim increases from 9.1% to 18.8% as the
number of channels doubles. It indicates that, when
the bandwidth pressure is alleviated for bandwidth-
bounded applications, the performance potential of
fine-grain priority scheduling increases. Compared
with burst scheduling, the average performance im-
provement of the fifteen programs is 13.9%.

It is interesting to observe that for six of the fifteen
programs, the performance on the 2-channel DRAM
system after applying fine-grain priority scheduling is
comparable or even better than that on the 4-channel
DRAM system with gang scheduling. For 168.wup-
wise, 176.gcc, and 256.bzip2, the IPC on the 2-channel
DRAM system with fine-grain priority scheduling is
within 3% lower than that on the 4-channel DRAM
system with gang scheduling. For 172.mgrid, 175.vpr,
and 300.twolf, the IPC on the 2-channel DRAM system
with fine-grain priority scheduling is higher than that
on the 4-channel DRAM system with gang scheduling
by up to 10%. Compared with burst scheduling on the

4-channel DRAM system, fine-grain priority schedul-
ing gains comparable or better performance on the 2-
channel DRAM system for these six programs.

Compared with the 2-channel system, the 4-channel
system not only doubles the available bandwidth, but
also doubles the number of memory chips. Fine-grain
priority scheduling can better utilize the existing re-
sources and achieve performance comparable to that
on a system with much higher cost. Of course, for
those applications whose performance is limited by the
available bandwidth, paying more cost to increase the
bandwidth is the most effective way to improve perfor-
mance.

For all applications on both the 2-channel and the 4-
channel systems, fine-grain priority scheduling always
achieves the best performance. In comparison, for gang
scheduling and burst scheduling, which one performs
better is application and configuration dependent.

7 Conclusion

Although careful tuning of DRAM parameters can
effectively improve memory performance, its workload
dependent feature may limit its usage in practice. In
order to address this limit, we present a workload in-
dependent approach by focusing on optimizing fine-
grain priority scheduling, and show its effectiveness us-
ing SPEC2000 benchmark programs. In addition to
supporting workload independent configurations, fine-
grain priority scheduling can increase the parallelism
between processor execution and DRAM memory ac-
cesses, and improve the resource utilization of the
memory system.

Hardware or software prefetching [17] is an effec-
tive approach to increase the parallelism between pro-



cessor execution and DRAM operations. Recently,
an increasing number of studies have been done on
precomputation-based prefetching techniques [1, 2, 4,
9, 21]. By using speculative execution threads to de-
tect future cache misses, those techniques not only in-
crease memory access concurrency but also provide pri-
ority information on the prefetched data. However, the
prefetch lookahead time is usually limited so that re-
turning critical data early is desirable. We believe fine-
grain priority scheduling can make an effective match
for those techniques.

Acknowledgment:

We thank the anonymous referees for their construc-
tive comments and insightful suggestions. This work is
supported in part by the National Science Foundation
under grants CCR-9812187, EIA-9977030, and CCR-
0098055. This work is also a part of an independent re-
search project sponsored by the National Science Foun-
dation for program directors and visiting scientists.

References

[1] M. M. Annavaram, J. M. Patel, and E. S. Davidson.
Data prefetching by dependence graph precomputa-
tion. In Proceedings of the 28th Annual International
Symposium on Computer Architecture, pages 52–61,
June 2001.

[2] R. Balasubramonian, S. Dwarkadas, and D. H. Al-
bonesi. Dynamically allocating processor resources be-
tween nearby and distant ILP. In Proceedings of the
28th Annual International Symposium on Computer
Architecture, pages 26–37, June 2001.

[3] D. C. Burger and T. M. Austin. The SimpleScalar Tool
Set, Version 2.0. Technical Report CS-TR-1997-1342,
University of Wisconsin, Madison, June 1997.

[4] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes,
Y.-F. Lee, D. Lavery, and J. P. Shen. Speculative
precomputation: Long-range prefetching of delinquent
loads. In Proceedings of the 28th Annual International
Symposium on Computer Architecture, pages 14–25,
June 2001.

[5] V. Cuppu and B. Jacob. Concurrency, latency, or
system overhead: Which has the largest impact on
uniprocessor DRAM-system performance? In Pro-
ceedings of the 28th Annual International Symposium
on Computer Architecture, pages 62–71, June 2001.

[6] K. I. Farkas, P. Chow, N. P. Jouppi, and
Z. Vranesic. Memory-system design considerations for
dynamically-scheduled processors. In Proceedings of
the 24th Annual International Symposium on Com-
puter Architecture, pages 133–143, June 1997.

[7] S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke,
J. H. Aylor, and W. A. Wulf. Access order and effec-
tive bandwidth for streams on a Direct Rambus mem-
ory. In Proceedings of the Fifth International Sym-

posium on High-Performance Computer Architecture,
pages 80–89, Jan. 1999.

[8] W. F. Lin, S. Reinhardt, and D. Burger. Reducing
DRAM latencies with an integrated memory hierar-
chy design. In Proceedings of the Seventh International
Symposium on High Performance Computer Architec-
ture, pages 301–312, Jan. 2001.

[9] C.-K. Luk. Tolerating memory latency through
software-controlled pre-execution in simultaneous
multithreading processors. In Proceedings of the 28th
Annual International Symposium on Computer Archi-
tecture, pages 40–51, June 2001.

[10] B. K. Mathew, S. A. McKee, J. B. Carter, and
A. Davis. Design of a parallel vector access unit for
SDRAM memory systems. In Proceedings of the Sixth
International Symposium on High-Performance Com-
puter Architecture, pages 39–48, Jan. 2000.

[11] S. A. McKee and W. A. Wulf. Access ordering
and memory-conscious cache utilization. In Proceed-
ings of the First International Symposium on High-
Performance Computer Architecture, pages 253–262,
Jan. 1995.

[12] S. A. Moyer. Access Ordering and Effective Memory
Bandwidth. PhD thesis, University of Virginia, De-
partment of Computer Science, Apr. 1993. Also as
TR CS-93-18.

[13] Rambus Inc. 256/288-Mbit Direct RDRAM (32 Split
Bank Architecture), 2000. http://www.rambus.com.

[14] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany,
A. López-Lagunas, P. R. Mattson, and J. D. Owens.
A bandwidth-efficient architecture for media process-
ing. In Proceedings of the 31st Annual ACM/IEEE
International Symposium on Microarchitecture, pages
3–13, Nov. 1998.

[15] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and
J. D. Owens. Memory access scheduling. In Proceed-
ings of the 27th Annual International Symposium on
Computer Architecture, pages 128–138, June 2000.

[16] S. P. Song, M. Denman, and J. Chang. The PowerPC-
604 RISC microprocessor. IEEE Micro, 14(5):8–17,
Oct. 1994.

[17] S. P. Vanderwiel and D. J. Lilja. Data prefetch mecha-
nisms. ACM Computing Surveys, 32(2):174–199, June
2000.

[18] C. Weaver. http://www.simplescalar.org. SPEC2000
binaries.

[19] K. C. Yeager. The MIPS R10000 superscalar mi-
croprocessor: Emphasizing concurrency and latency-
hiding techniques to efficiently run large, real-world
applications. IEEE Micro, 16(2):28–40, Apr. 1996.

[20] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based
page interleaving scheme to reduce row-buffer conflicts
and exploit data locality. In Proceedings of the 33rd
Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-33), pages 32–41, Dec. 2000.

[21] C. Zilles and G. Sohi. Execution-based prediction us-
ing speculative slices. In Proceedings of the 28th An-
nual International Symposium on Computer Architec-
ture, pages 2–13, June 2001.


