
22

As the speed gap between processor

and memory widens, data-intensive applica-

tions such as commercial workloads increase

demands on main memory systems. Conse-

quently, memory stall time—both latency

time and bandwidth time—can increase dra-

matically, significantly impeding the perfor-

mance of these applications. DRAM latency,

or the minimum time for a DRAM to physi-

cally read or write data, mainly determines

latency time. The data transfer rate through

the memory bus determines bandwidth time.

Burger, Goodman, and Kägi show that mem-

ory bandwidth is a major performance bot-

tleneck in memory systems.1 More recently,

Cuppu et al. indicate that with improvements

in bus technology, the most advanced mem-

ory systems, such as synchronous DRAM

(SDRAM), enhanced SDRAM, and Rambus

DRAM, have significantly reduced bandwidth

time.2 However, DRAM speed has improved

little. DRAM speed is a major factor in deter-

mining memory stall time, which significant-

ly affects the performance of data-intensive

applications such as commercial workloads.

In a cached DRAM, a small or on-memory

cache is added onto the DRAM core. The on-

memory cache exploits the locality that

appears on the main memory side. The

DRAM core can transfer a large block of data

to the on-memory cache in one DRAM cycle.

This data block can be several dozen times

larger than an L2 cache line. The on-memo-

ry cache takes advantage of the DRAM chip’s

high internal bandwidth, which can be as high

as a few hundred gigabytes per second.

Hsu and Smith classify cached DRAM

organizations into two groups: those where

the on-memory cache contains only a single

large line buffering an entire row of the mem-

ory array, and those where the on-memory

cache contains multiple regular data cache

lines organized as direct-mapped or set-asso-

ciative structures.3 In a third class combining

these two forms, the on-memory cache con-

tains multiple large cache lines buffering mul-

tiple rows of the memory array organized as

direct-mapped or set-associative structures.

Our work and other related studies belong to

this third class.4-5

Cached DRAM improves memory access

efficiency for technical workloads on a rela-

tively simple processor model with small data

caches (and in some cases, even without data

caches).4-7 In a modern computer system, the

CPU is a complex instruction-level parallelism

Zhao Zhang,
Zhichun Zhu, and
Xiaodong Zhang

College of

William and Mary

CACHED DRAM ADDS A SMALL CACHE ONTO A DRAM CHIP TO REDUCE

AVERAGE DRAM ACCESS LATENCY. THE AUTHORS COMPARE CACHED DRAM

WITH OTHER ADVANCED DRAM TECHNIQUES FOR REDUCING MEMORY

ACCESS LATENCY IN INSTRUCTION-LEVEL-PARALLELISM PROCESSORS.

0272-1732/01/$10.00 2001 IEEE

CACHED DRAM FOR ILP
PROCESSOR MEMORY ACCESS

LATENCY REDUCTION

(ILP) processor, and caches are hierarchical

and large. Thus, a cached DRAM’s architec-

tural context has dramatically changed and

evolved. Koganti and Kedem investigated the

performance potential of cached DRAM in

systems with ILP processors and found it

effective.4 To further investigate the ILP effects

and compare cached DRAM with other

advanced DRAM organizations and inter-

leaving techniques, we studied cached DRAM

in the context of processors with full ILP capa-

bilities and large data caches.

Conducting simulation-based experiments,

we compare cached DRAM with several com-

mercially available DRAM schemes. Our

results show that the cached DRAM outper-

forms other DRAM architectures for these

applications. Cached DRAM is not only effec-

tive with simple processors but also with mod-

ern ILP processors. Our focus is on further

investigating the ILP effects.

DRAM background
Basic DRAM structure is a memory cell

array, where each cell stores one bit of data as

the charge on a single capacitor. Compared

with static RAMs, DRAMs have several tech-

nical limitations.8 The DRAM simple cell

structure with one capacitor and one transis-

tor makes the row access latency longer than

that of SRAMs, which use multiple transis-

tors to facilitate a cell. Also, the original signals

in DRAM cells are destructive during read

operations. The signals must be written back

to the selected memory cells. In contrast, the

signals in SRAM cells restore themselves after

read operations. Finally, each DRAM cell

must be refreshed periodically to charge the

capacitor. In contrast, SRAMs hold their data

bits using flip-flop gate circuits, retaining

memory content as long as the power is on.

SRAMs are fast but expensive due to their

low density. DRAMs are relatively slow but

offer high density and low cost. Designers have

widely used DRAMs to construct the main

memory for most types of computer systems.

The only exceptions are some vector comput-

er systems that use SRAMs. All contemporary

workstations, multiprocessor servers, and PCs

use DRAMs for main memory modules and

SRAMs for cache construction.

DRAM access consists of row and column

access stages. During row access, a row (also

called a page) containing the desired data is

loaded into the row buffer. During column

access, data is read or written according to its

column address. Repeatedly accessing the data

in the same row buffer only requires column

access. However, if the next access goes to a

different row in the memory array, the

DRAM bank must be precharged before the

next access. Periodically reading and writing

back each row refreshes the DRAM bank. The

DRAM is not accessible during precharge or

refresh. The access time of a request is not a

constant. It depends on whether the access is

a page hit, if a precharge is needed, or if the

DRAM is being refreshed.

Several recent commercial DRAM variants

can reduce latency and/or improve the data

transfer rate.

• SDRAM. The data access operations are

synchronized with the processor under

an external clock. This variant supports

burst mode data access that reads or

writes continuously allocated data blocks

in the same row sequentially without idle

intervals. SDRAMs normally have two

or four independent data banks, provid-

ing an opportunity to overlap concurrent

data accesses.

• Enhanced SDRAM. A single-line SRAM

cache is integrated with each SDRAM

memory bank’s row buffer. If an access is

a hit to the buffer, the access time is

equivalent to that of accessing the fast

SRAM cache. ESDRAM can overlap

memory precharging and refreshing

operations with cache accesses.

• Rambus DRAM. A high-speed but nar-

row (1-byte wide) bus connects the

processor and multiple memory banks.

This bus is multiplexed for transferring

addresses and data. Both edges of the bus

clock signal transfer data to double the

data transfer rate. RDRAM memory

banks can be independently accessed in

a pipelining mode. Currently, RDRAMs

support 8 or 16 banks.

• Direct Rambus DRAM. This is an

improved version of RDRAM that pro-

vides a 1-byte wide address bus and a 2-

byte wide data bus. Currently, DRDRAMs

support 16 or 32 memory banks. Adjacent

banks share half-page row buffers.

23JULY–AUGUST 2001

Cached DRAM adds a small SRAM cache

onto the DRAM core. It takes advantage of

the huge internal bandwidth existing in the

DRAM core, so that the cache block can be as

large as a page. The processor usually has large

caches, but the cache block is much smaller

because of the limited bandwidth between the

processor and the main memory. In general,

a small cache with large block size can have a

comparable miss rate to a large cache with a

small block size.7 The cached DRAM has a

higher cache hit rate than other DRAM archi-

tectures because of its fully associative cache

organization. Figure 1 shows the general con-

cept of cached DRAM.

Contemporary processors aggressively

exploit ILP by using superscalar, out-of-order

execution, branch prediction, and nonblock-

ing caches. As a result, the processor may issue

multiple memory requests before the previ-

ous request is finished. Although the proces-

sor can keep running before the memory

requests are finished, its ability to tolerate long

memory latency is limited. Cached DRAM

can provide fast response for a single memo-

ry request, and pipeline multiple requests to

achieve high throughput.

Cached-DRAM operations
A cached DRAM is an integrated memory

unit consisting of an on-memory cache and a

DRAM core. Inside the cached DRAM, a

wide internal bus connects the on-memory

cache to the DRAM core.

The processor sends memory requests to

the memory controller when an L2 cache miss

happens. To take advantage of the low access

latency of the on-memory cache, the memo-

ry controller maintains the on-memory cache

tag and compares each tag with the tag por-

tion of the address for every memory request.

For each on-memory cache block, the mem-

ory controller also maintains the dirty flag,

which indicates whether the block has been

modified after it is loaded from the DRAM

core.

For on-memory cache, a memory request

is one of four types. In a read hit, the memo-

ry controller sends the on-memory cache a

read command along with the block index

and the column address via the address/com-

mand bus. This takes one bus cycle. The row

address is not needed because the DRAM core

is not accessed. The on-memory cache out-

puts the data in one bus cycle and sends it

back to the memory controller and processor

after another bus cycle. If the memory con-

troller receives consecutive memory requests

that are read hits, it processes them in a

pipelined mode.

A read miss takes two processing steps. First,

the row in the DRAM core that contains the

data is read and transferred to the on-memory

cache. Next, the data is read from the on-mem-

ory cache as if it were a read hit (a read miss can

be overlapped with read hits). For the first step,

the memory controller sends the DRAM a read

command along with the row address and the

replaced block index on the command/address

bus. This step activates the row access of the

DRAM core. The memory controller uses a

modified least recently used (LRU) policy to

find the block for a replacement.

A write hit employs a modified write-back

policy in which data is only written into the

on-memory cache. The memory controller

sends the write command along with the

block index and the column address onto the

address/command bus, and sends the data

onto the data bus. At the same time, the dirty

flag is set for that block on the memory con-

troller. The row address is not needed, because

the DRAM core is not accessed. The process-

ing of each write hit in a sequence can overlap

with one another and with the processing of

read requests.

In a write miss, the memory controller uses

the modified LRU policy to select a block for

a replacement. The write-allocate policy is

enhanced with two steps. The memory con-

troller sends the DRAM read command along

with the block index and the row address onto

the address/command bus. The row in the

DRAM core that contains the writing address

is first read from the DRAM core and trans-

ferred to the on-memory cache. The next step

writes the data into the on-memory cache,

operated as a write hit. These two steps can

overlap with other read or write requests.

Table 1 shows an example of pipelining

three continual read hits. Table 2 shows an

example of a read miss that is overlapped with

two read hits. The pipelining operations of

write hits and write misses are similar.

The replacement policy of on-memory

cache is a modified LRU policy that avoids

24

CACHED DRAM

IEEE MICRO

On-memory cache

DRAM core

Memory bus

CPU
L1 cache

L2 cache

Cache DRAM

Figure 1. The lower box
shows the cached DRAM
where an on-memory cache
connecting with the DRAM
core interfaces with the
memory bus.

choosing a dirty block for

replacement. If a dirty block

were chosen for replacement,

the block would have to be

written back into the DRAM

core first and would increase

the latency of the memory

request that causes the

replacement. To increase the

number of clean blocks avail-

able for replacement, the

memory controller will

schedule write-back requests

for the dirty cache blocks as

soon as the DRAM core is

not busy.

ILP processors do not stall

for a single L2 miss, so they

may issue more memory

requests when a previous

request is processing. An out-

standing read request may pre-

vent dependent instructions in

the instruction window from

being issued to execution

units, which is likely to reduce

the ILP or fill the instruction

window. On the other hand,

outstanding writes do not

influence ILP processors as

long as the write buffer is not

full. Therefore, the memory

controller should schedule read requests prior

to write requests.

Experimental environment
We used SPEC95 and TPC-C benchmarks

as the workloads, and SimpleScalar as the base

simulator.9 We used the PostgreSQL (version

6.5) database system to support the TPC-C

workload. This is the most advanced open

source database system for basic research.

Researchers and manufacturers extensively use

the SPEC95 benchmark to study processor,

memory system, and compiler performance.

This benchmark is representative of comput-

ing-intensive applications. We ran the com-

plete set of SPECint95 and SPECfp95 in our

experiment, using the precompiled SPEC95

programs in the SimpleScalar tool set.

TPC benchmarks represent commercial

workloads, which are widely used by com-

puter manufacturers and database providers

to test, evaluate, and demonstrate their prod-

ucts’ performance. TPC-C is an online trans-

action processing benchmark. It is a mixture

of read-only and update-intensive transactions

that simulate a complex computing environ-

ment where a population of terminal opera-

tors execute transactions against a database.

Simulations and architecture parameters
The SimpleScalar tool set is a group of sim-

ulators for studying interactions between

application programs and computer architec-

ture. In particular, the sim-outorder simula-

tor emulates typical ILP processors with the

features of out-of-order execution, branch pre-

diction, and nonblocking cache. It produces

comprehensive statistics of the program exe-

cution. We have modified sim-outorder to

include cached DRAM and other types of

DRAM architecture simulations. In addition

to the on-memory cache, we emulated the

25JULY–AUGUST 2001

Table 1. Example of pipelining three continual read hits (R1, R2, and R3).*

 Bus cycle
Location 0 1 2 3 4 5 6 7 8
Address/command bus R1 R2 R3

Cached DRAM data D1 D1 D2 D2 D3 D3

Processor data D1 D1 D2 D2 D3 D3

*An R1 on the address/command bus indicates that the first read’s block index and column

address are sent on the address/command bus. A D1 on the cached DRAM data indicates that a

block of data for the first read is available in the cached DRAM. A D1 on the processor data

means that a block of data for the first read is available for the processor. R2 and R3 correspond to

the second and third read commands/addresses. D2 and D3 correspond to the data items for the

second and third reads.

Table 2. Example of pipelining a read miss (R1) and two read hits (R2 and R3).*

 Bus cycle
Location 0 1 2 3 4 5 6 7 8 9
Address/command bus R1 R2 R1 R3

Cached DRAM data D2 D2 D1 D1 D3 D3

Processor data D2 D2 D1 D1 D3 D3

*The first R1 in the address/command bus indicates that the DRAM read command, the row

address, and the block index are sent on the address/command bus. The second R1 indicates that

a cache read command, the column address, and the block index are sent; R2 and R3 are signals of

the two read hits on the bus. D1, D2, and D3 on the cached DRAM data indicate that the data

for the reads are available on the cached DRAM. D1, D2, and D3 on the processor data mean the

data for these reads are available for the processor.

memory controller and a bus with contention.

We also considered DRAM precharge,

DRAM refresh, and processor/bus synchro-

nization in the simulation.

We used sim-outorder to configure an

eight-way processor, set the load/store queue

size to 32, and set the register update unit size

to 64 in the simulation. The processor allows

up to eight outstanding memory requests, and

the memory controller accepts up to eight

concurrent memory requests. Table 3 gives

other architectural parameters of our simula-

tion. We used the processor and data bus para-

meters in a Compaq Workstation XP1000.

The on-memory cache access time is the same

as that in Hart’s paper.7 The on-memory cache

hit time is the sum of the time for transferring

the command/address to the cached DRAM

(one bus cycle), the on-memory cache access

time, and the time for the first chunk of data

to be sent back (one bus cycle). The on-

memory cache miss time is the sum of the

time for transferring the command/address to

the cached DRAM, the DRAM precharge

time if the accessed memory bank needs

precharge, the DRAM row access time, the

time to transfer a row from the DRAM core

to the on-memory cache (one bus cycle), the

on-memory cache access time, and the time

for the first chunk of data to be sent back.

The RDRAM connects to the processor by

a 1-byte-wide, high-speed bus. The DRDRAM

connects by a 1-byte-wide address bus and a 2-

byte-wide data bus, and the bus speed is 400

MHz. Data is transferred on both edges of the

block signal. For single-channel DRDRAM,

the effective bandwidth is 1.6 Gbytes/s, which

is not as large as the 2.6 Gbytes/s bandwidth

of the bus used in our simulation. To make a

fair comparison, we simulate the internal struc-

ture of the RDRAM and the DRDRAM, but

set their bus simulation the same as other

DRAMs. We will show that the advantage of

cached DRAM is on its on-memory cache

structure, not on its bus connection. In fact,

the cached DRAM could also be connected to

the processor by a high-speed, narrow bus.

Overall performance comparison
We measured the memory access portion

of cycles per instruction (CPI) of the TPC-C

workload and all the SPEC95 programs. To

show the memory stall portion in each bench-

mark program, we used a method similar to

the one that both Burger and Cuppu pre-

sented.1-2 We simulated a system with an infi-

nitely large L2 cache to eliminate all memory

accesses. The application execution time on

this system is called the base execution time.

We also simulated a system with a perfect

memory bus as wide as the L2 cache line,

which separates the portion of the memory

stall caused by the limited bandwidth. The

CPI has three portions: the base or number

of cycles spent for CPU operations and cache

accesses; the latency or number of cycles spent

accessing main memory; and the bandwidth

or number of cycles lost due to the limited bus

bandwidth. The memory access portion of the

CPI is the sum of the latency and bandwidth

portions.

We compared the cached DRAM with four

DRAM architectures: SDRAM, ESDRAM,

RDRAM, and DRDRAM. We used the

TPC-C workload and eight SPECfp95 pro-

grams: tomcatv, swim, su2cor, hydro2d,

mgrid, applu, turb3d, and wave5. We found

that the memory access portions of the CPI

of all SPECint95 programs and the two other

SPECfp95 programs are very small. As a

result, the programs’ performances are not

sensitive to the improvement of the main

memory system. Although the memory access

time reduction from using cached DRAM is

26

CACHED DRAM

IEEE MICRO

Table 3. Architectural parameters of our simulation.

Structure Parameter
CPU clock rate 500 MHz

L1 instruction cache 32 Kbytes, two-way, 32-byte block

L1 data cache 32 Kbytes, two-way, 32-byte block

L1 cache hit time 6 ns

L2 cache 2 Mbytes, two-way, 64-byte block

L2 cache hit time 24 ns

Memory bus width 32 bytes

Memory bus clock rate 83 MHz

On-memory cache block number 1 to 128

On-memory cache block size 2 to 8 Kbytes

On-memory cache associativity One- to full-way

On-memory cache access time 12 ns

On-memory cache hit time 36 ns

On-memory cache miss time 84 ns

DRAM precharge time 36 ns

DRAM row access time 36 ns

DRAM column access time 24 ns

also significant on those programs, the total

execution time reductions are not significant.

On-memory cache organizations
We investigated the effects of changing the

cache size and the cache associativity on the

performance of the TPC-C workload and

the eight selected SPECfp95 programs. Our

experiments show that a small cache block

size is not effective for the on-memory cache.

The miss rates for TPC-C workload on a

fully associative on-memory cache of 32

Kbytes with cache block sizes of 128 bytes,

256 bytes, and 512 bytes are 62, 36, and 22

percent. On the other hand, a small block

number is also not effective for the on-mem-

ory cache. The miss rate for su2cor on a fully

associative on-memory cache having four

blocks of 4 Kbytes is as high as 80 percent.

When the number of cache blocks increases

to eight, the miss rate is still more than 40

percent. Only after the number of cache

blocks increases to 16 is the miss rate effec-

tively reduced to 5 percent. The experiments

also show that the advantage of full associa-

tivity is significant. Direct-mapped, on-

memory caches, even with many blocks, have

high miss rates. This finding is important

because most commercial DRAMs use the

direct-mapped structure. Our study confirms

the results reported in Koganti.4 Because

increasing the block size and number of

blocks increases the on-memory cache’s space

requirement on the memory chip, there is a

trade-off between performance and cost. A

fully associative on-memory cache of 16 × 4

Kbytes is very effective for all workloads. The

on-memory cache miss rates of the TPC-C

workload and six of the SPECfp95 programs

are below 5 percent, and the miss rates of the

two other SPECfp95 programs are below 20

percent. Therefore, we used this on-memo-

ry cache configuration in the following

experiments.

Cached DRAM and SDRAM
Figure 2 presents the CPIs and their decom-

positions for the TPC-C workload and the

eight SPECfp95 programs on both the cached

DRAM and the SDRAM. CPI reductions

using the cached DRAM range from 10 to 39

percent. The effectiveness of the cached

DRAM for reducing CPI is mainly deter-

mined by the percentage of memory access

portion in each program’s total CPI, which

Table 4 (next page) lists. We show that CPI

reduction by the cached DRAM mainly

comes from reducing the latency portion of

the CPIs; the bandwidth portion of CPIs is

almost unchanged in each program.

27JULY–AUGUST 2001

0.00

0.20

0.40

0.60

0.80

1.00
S

D
R

A
M

C
D

R
A

M

S
D

R
A

M

C
D

R
A

M

S
D

R
A

M

C
D

R
A

M

S
D

R
A

M

C
D

R
A

M

S
D

R
A

M

C
D

R
A

M

S
D

R
A

M

C
D

R
A

M

S
D

R
A

M

C
D

R
A

M

S
D

R
A

M

C
D

R
A

M

S
D

R
A

M

C
D

R
A

M

TPC-C tomcatv swim su2cor hydro2d mgrid applu turb3d wave5

C
yc

le
s

pe
r

in
st

ru
ct

io
n

Bandwidth
Latency
Base

Figure 2. Cycles per instruction for the TPC-C workload and selected SPECfp95 programs.

Table 5 presents reductions of CPI latency

portions by using cached DRAM. For all

selected SPECfp95 programs, cached DRAM

reduces CPI latency portions by more than

71 percent. The reduction rate for the TPC-

C workload is 62 percent. The program laten-

cy reduction rates are mainly determined by

hit rates to the on-memory cache in the

cached DRAM and to the row buffer in the

SDRAM. For example, the on-memory cache

hit rate of the cached DRAM for the TPC-C

workload is 93 percent, while the row-buffer

hit rate of the SDRAM is 50 percent. For

tomcatv, the on-memory hit rate of the

cached DRAM is 98 percent, whereas the

row-buffer hit rate of the SDRAM is as low

as 8 percent.

Cached DRAM and other DRAM architectures
Figure 3 shows the CPIs memory access

portions of the TPC-C workload and five

selected SPECfp95 programs on the cached

DRAM and DRAM variants. Cached DRAM

outperforms other DRAMs significantly on

all programs. ESDRAM performs better than

RDRAM and DRDRAM because of the low

latency in accessing the on-memory cache.

The cached DRAM outperforms the

ESDRAM because the large number of blocks

and the fully associative structure in the

cached DRAM make the hit rate very high.

RDRAM and DRDRAM support high

bandwidth by overlapping accesses among dif-

ferent banks. However, this is not very help-

ful in reducing access latency. Although both

RDRAM and DRDRAM have many row

buffers, the hit rates are still low because of

the direct-mapped structure. In contrast,

when the number of accesses to the DRAM

core is very low, the cached DRAM acts

almost as an SRAM main memory, providing

both low latency and high bandwidth. As a

result, the performance differences between

the cached DRAM and the other DRAM

architectures are large.

Our study shows that the performance of

some programs on RDRAM or DRDRAM

can differ significantly for the programs shown

in Figure 3. The worst performance is for

mgrid, and the best is applu. Both DRAMs

perform better for programs that have many

concurrent memory requests, because these

DRAMs can effectively overlap this type of

memory access. Figure 4 compares the distri-

butions of concurrent memory requests by

28

CACHED DRAM

IEEE MICRO

Table 4. Memory access portion in CPI
(cycles per instruction).

Program Memory portion percentage
TPC-C 27

tomcatv 39

swim 47

su2cor 21

hydro2d 52

mgrid 37

applu 35

turb3d 20

wave5 15

Table 5. Reduction rate of the latency
portion of cycles per instruction from

using cached DRAM.

Program Reduction rate percentage
TPC-C 62

tomcatv 84

swim 83

su2cor 75

hydro2d 83

mgrid 79

applu 87

turb3d 71

wave5 72

0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 m
em

or
y

st
al

l

TPC-C tomcatv swim hydro2d mgrid applu

SDRAM

CDRAM

ESDRAM

RDRAM

DRDRAM

Figure 3. Comparison of memory stall times. The performance values are nor-
malized to the memory access portion of cycles per instruction in the SDRAM
configuration.

mgrid and applu on the SDRAM when the

memory system is busy. Our experiments

show that the memory access concurrency

degree of applu is much higher than that of

mgrid. For example, 27 percent of memory

accesses in applu have a concurrency degree

of 8, and the percentages of the memory

accesses with concurrency degrees of 3 to 7

range from 5 to 13 percent. In contrast, the

majority of memory accesses in mgrid have

concurrency degrees of 1 (48 percent of the

total memory accesses) or 2 (29 percent of the

total memory accesses). This explains why

RDRAM and the DRDRAM are more effec-

tive for applu than mgrid, although both pro-

grams have comparable memory access

portions in their CPIs, as shown in Table 4.

Increasing the ILP degree
Commercial computer architectures exten-

sively use wide-issue processors. When the ILP

degree increases, the processor increases

demand on the main memory system. Thus,

it is important to understand how cached

DRAM performs as ILP degrees change. We

compared the performance of cached DRAM

and SDRAM with four-, eight-, and 16-way-

issue processors.

Figure 5 shows CPI as the ILP degree

changes. The CPI’s base portion decreases

proportionally for all programs as the ILP

degree increases. This means that, with an

ideal main memory system, the performance

always improves as the ILP degree increases.

Our experiments show that the CPIs of three

programs on the 16-way issue processor with

the SDRAM are slightly higher than those of

the eight-way issue processor with the SDRAM.

The performance degradation mainly comes

from the heavy demand to the main memory

system. This heavy demand causes congestion

at the main memory system, and increases the

29JULY–AUGUST 2001

0

5

10

15

20

25

30

35

40

45

50 50

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of requests Number of requests

C
on

cu
rr

en
cy

 d
is

tr
ib

ut
io

n
(p

er
ce

nt
ag

e)
0

5

10

15

20

25

30

35

40

45

C
on

cu
rr

en
cy

 d
is

tr
ib

ut
io

n
(p

er
ce

nt
ag

e)

(a) (b)

Figure 4. Distribution of the number of concurrent memory requests on the
SDRAM system when the memory is busy: The mgrid (a) program has a
much lower concurrency than that of applu (b).

0.00

0.20

0.60

0.40

0.80

1.00

1.20

TPC-C tomcatv swim hydro2d mgrid applu

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
pe

r
in

st
ru

ct
io

n Bandwidth
Latency
Base

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M

S
D

R
A

M
C

D
R

A
M S

D
R

A
M

C
D

R
A

M

ILP4 ILP8 ILP16 ILP4 ILP8 ILP16 ILP4 ILP8 ILP16 ILP4 ILP8 ILP16 ILP4 ILP8 ILP16 ILP4 ILP8 ILP16

Figure 5. Cycles per instruction and their decompositions for the TPC-C workload and five SPECfp95 programs as the ILP
degree changes.

memory access latency due to queuing effects.

Consequently, the rate of instructions retiring

from the instruction window decreases, reduc-

ing the speed of new instructions entering the

instruction window. For example, the instruc-

tion dispatch rate on the 16-way issue processor

is 30 percent less than that of the eight-way issue

processor for hydro2d. The average time that

an instruction stays in the instruction window

is 43 processor cycles for the eight-way issue

processor, but increases to 88 processor cycles

for the 16-way issue processor.

In contrast, the cached DRAM performs

consistently well as the ILP degree increases.

Because the on-memory cache hit rate is high,

the cached DRAM can support high-band-

width and low-latency accesses. Thus, con-

gestion at the memory system is not as severe

as on SDRAM. The memory stall time does

not increase as the ILP degree increases from

8 to 16.

The processor’s inability to effectively tol-

erating long memory access latency caused by

SDRAM will eventually offset the benefit of

reducing computing time due to the ILP

degree increase. In contrast, cached DRAM

effectiveness will increase as the ILP increas-

es to a much higher degree.

Exploiting row buffer locality
Researchers have made efforts to exploit the

locality in row buffers to reduce DRAM access

latency and improve DRAM bandwidth uti-

lization. For example, most contemporary

DRAMs support both the open and close

page modes. In the open page mode, data in

the row buffer is kept valid after the current

access finishes, and only the column access is

necessary for the next access as long as the data

is in the row buffer (a row buffer hit). The

effectiveness of open page mode depends

mainly on the hit rate to the row buffers. The

structure of the row buffer is comparable to

that of a direct-mapped cached DRAM.

Contemporary DRAM chips support

increasingly more memory banks and row

buffers. However, the row buffer hit rate is still

low. Studies have shown that the low hit rate

is directly related to the memory-interleaving

scheme—that is, how physical memory

addresses are mapped onto DRAM banks.10-11

To exploit row buffer locality, the memory

space is usually interleaved page by page; this

is known as page interleaving. All conven-

tional interleaving schemes use an address bit

portion as the bank index to determine to

which bank the address is mapped. The bank

index used by the page-interleaving scheme is

a portion of the address bits used for cache set

index. Because of this connection between

memory accesses and cache accesses, cache

conflict misses will result in row buffer con-

flicts, and write backs will compete with cur-

rent reads for the same row buffer.10

A permutation-based interleaving scheme

uses two portions of address bits to generate

new bank indices. One portion is the bank

index used in the conventional page-inter-

leaving scheme, and the other portion comes

from the address bits used for cache tags.11-12

Using these two portions as inputs, an XOR

operator outputs a new bank index for an

address mapping. It is still a page-interleaving

scheme, but the portion from tags permutes

the mapping of pages to banks. Consequent-

ly, accesses causing row buffer conflicts in the

conventional page-interleaving scheme are

distributed to different banks without chang-

ing the locality in the row buffer. The results

show that the scheme can significantly

improve the row buffer hit rate.10-11

Because cached DRAM and the permuta-

tion-based interleaving scheme share the same

objective of reducing conflicts in the on-mem-

ory cache or row buffers, it is necessary to com-

pare their performance potential. Cached

DRAM usually uses full or high associativity.

The permutation-based interleaving scheme

uses a special mapping to reduce row buffer

conflicts without changing the direct-mapped

structure. The cached DRAM approach has

several advantages over the permutation-based

interleaving scheme. Accesses to the on-mem-

ory cache are faster than accesses to the row

buffer. Due to its high associativity, the on-

memory cache hit rate is higher than the row

buffer hit rate under the permutation-based

scheme. The on-memory cache can be

accessed independently with the DRAM core.

Even if a DRAM bank is in precharge or in a

row access, its cached data in the SRAM can be

accessed simultaneously. In contrast, the data

in the row buffer is lost as soon as the precharge

starts. Finally, the cached DRAM organization

allows more on-memory cache blocks than the

number of banks, which is beneficial to

30

CACHED DRAM

IEEE MICRO

DRAM systems with a limited number of

banks. However, the permutation-based inter-

leaving scheme requires little additional cost

and does not require any change in the DRAM

chip. In contrast, cached DRAM requires an

additional chip area for the SRAM cache and

additional circuits for cache management.

Figure 6 compares the performance

improvements between cached DRAM and

the permutation-based interleaving scheme

over SDRAM systems, using the identical

simulation configuration as Table 3 with the

following differences: The cached DRAM has

16 × 4 Kbytes of on-memory cache, whereas

the permutation-based interleaving scheme is

used for 32 banks and 32- × 2-Kbyte row

buffers. We show that cached DRAM reduces

the CPI by 23 percent on average, while the

average CPI reduction by the permutation-

based scheme is 10 percent.

Our study provides three new findings:

cached DRAM consistently improves

performance as the ILP degree increases; con-

temporary DRAM schemes do not exploit

memory access locality as effectively as cached

DRAM; and compared with a highly effective

permutation-based DRAM interleaving tech-

nique, cached DRAM still substantially

improves performance.

Acknowledgments
We thank Jean-Loup Baer and Wayne

Wong at the University of Washington for

reading a preliminary version of this article

and for their insightful and constructive com-

ments and discussions. We also thank our col-

league Stefan A. Kubricht for reading this arti-

cle and providing comments and corrections.

Finally, we thank the anonymous referees for

their constructive comments on our work.

This work is supported in part by the Nation-

al Science Foundation under grants CCR-

9812187, EIA-9977030, and CCR-0098055;

the Air Force Office of Scientific Research

under grant AFOSR-95-1-0215; and Sun

Microsystems under grant EDUE-NAFO-

980405.

References
1. D. Burger, J.R. Goodman, and A. Kägi,

“Memory Bandwidth Limitations of Future

Microprocessors,” Proc. 23rd Ann. Int’l

Symp. Computer Architecture, IEEE CS

Press, Los Alamitos, Calif., 1996, pp. 78-89.

2. V. Cuppu et al., “A Performance Compari-

son of Contemporary DRAM Architectures,”

Proc. 26th Ann. Int’l Symp. Computer Archi-

tecture, IEEE CS Press, Los Alamitos, Calif.,

1999, pp. 222-233.

3. W.-C. Hsu and J.E. Smith, “Performance of

Cached DRAM Organizations in Vector

Supercomputers,” Proc. 20th Ann. Int’l

Symp. Computer Architecture, IEEE CS

Press, Los Alamitos, Calif., 1993, pp. 327-336.

4. R.P. Koganti, and G. Kedem, WCDRAM: A

Fully Associative Integrated Cached-DRAM

with Wide Cache Lines, tech. report CS-

1997-03, Dept. of Computer Science, Duke

Univ., Durham, N.C., 1997.

5. W. Wong and J.-L. Baer, DRAM On-Chip

Caching, tech. report UW CSE 97-03-04,

31JULY–AUGUST 2001

0

5

10

15

20

25

30

35

40

C
P

I r
ed

uc
tio

n
(p

er
ce

nt
ag

e)

TPC-C tomcatv swim su2cor hydro2d mgrid applu turb3d wave5

Cached DRAM

Permutation-based
page interleaving

Figure 6. Cycles per instruction reduction for cached DRAM and XOR-based interleaving
scheme.

Dept. of Computer Science and Engineer-

ing, Univ. of Washington, 1997.

6. H. Hidaka et al., “The Cache DRAM Archi-

tecture: A DRAM with an On-Chip Cache

Memory,” IEEE Micro, vol. 10, no. 2, Mar.

1990, pp. 14-25.

7. C.A. Hart, “CDRAM in a Unified Memory

Architecture,” Proc. 39th Int’l Computer

Conf. (COMPCON 94), IEEE CS Press, Los

Alamitos, Calif., 1994, pp. 261-266.

8. Y. Katayama, “Trends in Semiconductor

Memories,” IEEE Micro, Vol. 17, No. 6,

Nov./Dec. 1997, pp. 10-17.

9. D.C. Burger and T.M. Austin, The Sim-

pleScalar Tool Set, Version 2.0, tech. report

CS-TR-1997-1342, Dept. of Computer Sci-

ences, Univ. of Wisconsin, Madison, 1997.

10. Z. Zhang, Z. Zhu, and X. Zhang, “A Permu-

tation-Based Page Interleaving Scheme to

Reduce Row-Buffer Conflicts and Exploit

Data Locality,” Proc. 33rd Ann. IEEE/ACM

Int’l Symp. Microarchitecture (MICRO-33),

IEEE CS Press, Los Alamitos, Calif., 2000,

pp. 32-41.

11. W.-F. Lin, S. Reinhardt, and D.C. Burger,

“Reducing DRAM Latencies with an Inte-

grated Memory Hierarchy Design,” Proc. 7th

Int’l Symp. High-Performance Computer

Architecture (HPCA-7), IEEE CS Press, Los

Alamitos, Calif., 2001, pp. 301-312.

Zhao Zhang is a PhD candidate in computer

science at the College of William and Mary.

His research interests include computer archi-

tecture and parallel systems. He has a BS and

MS in computer science from Huazhong Uni-

versity of Science and Technology, China. He

is a student member of the IEEE and the ACM.

Zhichun Zhu is a PhD candidate in comput-

er science at the College of William and Mary.

Her research interests include computer archi-

tecture and computer system performance

evaluation. She has a BS in computer science

from Huazhong University of Science and

Technology, China. She is a student member

of the IEEE and the ACM.

Xiaodong Zhang is a professor of computer

science at the College of William and Mary.

He is also the program director of the

Advanced Computational Research Program

at the National Science Foundation, Wash-

ington, D.C. His research interests include

parallel and distributed systems, computer

system performance evaluation, computer

architecture, and scientific computing. He has

a BS in electrical engineering from Beijing

Polytechnic University, China, and an MS and

PhD in computer science from the Universi-

ty of Colorado at Boulder. He is an associate

editor of the IEEE Transactions on Parallel and

Distributed Systems and has chaired the IEEE

Computer Society Technical Committee on

Supercomputing Applications. He is a senior

member of the IEEE.

Direct questions and comments about this

article to Xiaodong Zhang, Dept. of Com-

puter Science, College of William and Mary,

Williamsburg, VA 23187-8795; zhang@cs.

wm.edu.

32

CACHED DRAM

IEEE MICRO

you@computer.org
FREE!

All IEEE Computer Society
members can obtain a free,

portable email
alias@computer.org. Select
your own user name and
initiate your account. The

address you choose is yours
for as long as you are a

member. If you change jobs
or Internet service providers,
just update your information

with us, and the society
automatically forwards all

your mail.

Sign up today at
http://computer.org

