
1

1

Lecture 9: Branch Prediction

Basic idea, saturating counter, BHT,
BTB, return address prediction,
correlating prediction

2

Reducing Branch Penalty
Branch penalty in dynamically scheduled processors:

wasted cycles due to pipeline flushing on mis-
predicted branches

Reduce branch penalty:

1. Predict branch/jump instructions AND branch
direction (taken or not taken)

2. Predict branch/jump target address (for taken
branches)

3. Speculatively execute instructions along the
predicted path

3

What to Use and What to Predict
Available info:

Current predicted PC
Past branch history
(direction and target)

What to predict:
Conditional branch inst:
branch direction and
target address
Jump inst: target
address
Procedure call/return:
target address

May need instruction pre-
decoded

IM

PC

Predictors

PC

pred_PC

pred info feedbackPC & Inst

4

Mis-prediction Detections and Feedbacks
Detections:

At the end of decoding
Target address known at
decoding, and not match
Flush fetch stage

At commit (most cases)
Wrong branch direction or
target address not match
Flush the whole pipeline

(at EXE: MIPS R10000)

Feedbacks:
Any time a mis-prediction is
detected
At a branch’s commit

(at EXE: called speculative update)

FETCH

RENAME

SCHD

REB/ROB

COMMIT

WB

EXE

predictors

5

Branch Direction Prediction
Predict branch direction: taken or not taken
(T/NT)

Static prediction: compilers decide the direction
Dynamic prediction: hardware decides the
direction using dynamic information

1. 1-bit Branch-Prediction Buffer
2. 2-bit Branch-Prediction Buffer
3. Correlating Branch Prediction Buffer
4. Tournament Branch Predictor
5. and more …

Not taken

taken BNE R1, R2, L1
…

L1: …

6

Predictor for a Single Branch

state 2. Predict
Output T/NT

1. Access

3. Feedback T/NT

T

Predict Taken Predict Taken1 0
T

NT

General Form

1-bit prediction

NT

PC

Feedback

2

7

Branch History Table of 1-bit Predictor
BHT also Called Branch

Prediction Buffer in
textbook
Can use only one 1-bit
predictor, but accuracy is
low
BHT: use a table of simple
predictors, indexed by bits
from PC
Similar to direct mapped
cache
More entries, more cost,
but less conflicts, higher
accuracy
BHT can contain complex
predictors

PredictionPrediction

K-bit
Branch
address

2k

8

1-bit BHT Weakness
Example: in a loop, 1-bit BHT will cause
2 mispredictions
Consider a loop of 9 iterations before exit:
for (…){

for (i=0; i<9; i++)
a[i] = a[i] * 2.0;

}
End of loop case, when it exits instead of looping
as before
First time through loop on next time through
code, when it predicts exit instead of looping
Only 80% accuracy even if loop 90% of the time

9

Solution: 2-bit scheme where change prediction only if
get misprediction twice: (Figure 3.7, p. 249)

Blue: stop, not taken
Gray: go, taken
Adds hysteresis to decision making process

2-bit Saturating Counter

T

T

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
Taken

11 10

01 00
T

NT

T

NT

NT

10

Branch Target Buffer
Branch Target Buffer (BTB): Address of branch index to
get prediction AND branch address (if taken)

Note: must check for branch match now, since can’t use wrong
branch address

Example: BTB combined with BHT
Branch PC Predicted PC

=?

PC of instruction
FET

CH

Extra
prediction state

bits
Yes: instruction is
branch and use
predicted PC as
next PC

No: branch not
predicted, proceed normally

(Next PC = PC+4)

11

Return Addresses Prediction
Register indirect branch hard to predict
address

Many callers, one callee
Jump to multiple return addresses from a single
address (no PC-target correlation)

SPEC89 85% such branches for procedure
return
Since stack discipline for procedures, save
return address in small buffer that acts like
a stack: 8 to 16 entries has small miss rate

12

Correlating Branches
Code example showing

the potential

If (d==0)
d=1;

If (d==1)
…

Assemble code

BNEZ R1, L1
DADDIU R1,R0,#1

L1: DADDIU R3,R1,#-1
BNEZ R3, L2

L2:
…

Observation: if BNEZ1 is not taken, then BNEZ2
is taken

3

13

Correlating Branch Predictor
Idea: taken/not taken of
recently executed
branches is related to
behavior of next branch
(as well as the history of
that branch behavior)

Then behavior of
recent branches
selects between, say, 2
predictions of next
branch, updating just
that prediction
(1,1) predictor: 1-bit
global, 1-bit local

Branch address (4 bits)

1-bits per branch
local predictors

PredictionPrediction

1-bit global
branch history
(0 = not taken)

14

Correlating Branch Predictor
General form: (m, n)
predictor

m bits for global
history, n bits for local
history
Records correlation
between m+1 branches
Simple implementation:
global history can be
store in a shift
register
Example: (2,2)
predictor, 2-bit global,
2-bit local

Branch address (4 bits)

2-bits per branch
local predictors

PredictionPrediction

2-bit global
branch history

(01 = not taken then taken)

15

0%

1%

5%

6% 6%

11%

4%

6%

5%

1%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

nasa7 matrix300 tomcatv doducd spice fpppp gcc espresso eqntott li

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes
(Figure 3.15, p. 206)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

16

Estimate Branch Penalty
EX: BHT correct rate

is 95%, BTB hit
rate is 95%

Average miss penalty
is 15 cycles

How much is the
branch penalty?

17

Accuracy of Return Address Predictor

