Lecture 9: Branch Prediction

Basic idea, saturating counter, BHT,
BTB, return address prediction,
correlating prediction

Reducing Branch Penalty

Branch penalty in dynamically scheduled processors:
wasted cycles due to pipeline flushing on mis-
predicted branches

Reduce branch penalty:

1. Predict branch/jump instructions AND branch
direction (taken or not taken

2. Predict branch/jump target address (for taken
branches)

3. Speculatively execute instructions along the
predicted path

What to Use and What to Predict

Available info:

= Current predicted PC pred_PC
= Past branch history PC -
(direction and target)
What to predict:
= Conditional branch inst: .
branch direction and M Predictors
target address
= Jump inst: target
address
= Procedure call/return:
target address
MG)/ need instruction pre- PC&Inst predinfo feedback PC

decoded

Mis-prediction Detections and Feedbacks

Detections:
@ At the end of decoding
= Target address known at

predictors

decoding, and not match
= Flush fetch stage
#® At commit (most cases)

= Wrong branch direction or
target address not match

= Flush the whole pipeline
(at EXE: MIPS R10000)

RENAME
REB/ROB

Feedbacks:

@ Any fime a mis-prediction is
detected

@ At a branch's commit

(at EXE: called speculative update)

[COMMIT |

Branch Direction Prediction

& Predict branch direction: taken or not taken
(T/NT)

; taken BNE R1, R2, L1
Not taken L1

Static prediction: compilers decide the direction

Dynamic prediction: hardware decides the
direction using dynamic information

1-bit Branch-Prediction Buffer

2-bit Branch-Prediction Buffer

Correlating Branch Prediction Buffer

Tournament Branch Predictor

and more ...

L

Predictor for a Single Branch

General Form

1. Access 2. Predict
PC Output T/NT
3. Feedback T/NT

1-bit prediction
~ Fggdback

Predict Taken “_ > Predict Taken

Branch History Table of 1-bit Predictor

BHT also Called Branch
Prediction Buffer in

textbook K-bit N

Can use only one 1-bit Branc
redictor, but accuracy is address

ow
@ BHT: use a table of simple ok

predictors, indexed by bits

from PC
% Similar to direct mapped

cache — Prediction

#® More entries, more cost,
but less conflicts, higher
accuracy

® BHT can contain complex

predictors

1-bit BHT Weakness

@ Example: in a loop, 1-bit BHT will cause
2 mispredictions
®Consider a loop of 9 iterations before exit:
for (.){
for (i=0; i<9; i++)
a[i] = a[i] * 2.0;
}
= End of loop case, when it exits instead of looping
as before

= First time through loop on nex’ time through
code, when it predicts ex/t instead of looping

= Only 80% accuracy even if loop 90% of the time

2-bit Saturating Counter

@ Solution: 2-bit scheme where change prediction only if
get misprediction fwice: (Figure 3.7, p. 249)

NT
Predict Taken @:@ Predict Taken

NT

NT
Predict Not / Predict Not
Taken) Taken

NT

@ Blue: stop, not taken
@ Gray: go, Taken
® Adds /iysteresis to decision making process

Branch Target Buffer

@ Branch Target Buffer (BTB): Address of branch index to
get prediction AND branch address (if taken)
= Note: must check for branch match now, since can't use wrong
branch address
@ Example: BTB combined with BHT
Branch PC Predicted PC

Ho134

UOLLINULSUI JO Dd

o . Extra
Yes: instruction is prediction state
No: b h ot branch and use bits
. o: branch no predicted PC as
predicted, proceed normally next PC
(Next PC = PC+4) 10

Return Addresses Prediction

@ Register indirect branch hard to predict
address
= Many callers, one callee
= Jump to multiple return addresses from a single

address (no PC-target correlation)

@ SPEC89 85% such branches for procedure
return

Since stack discipline for procedures, save
return address in small buffer that acts like
a stack: 8 to 16 entries has small miss rate

Correlating Branches

Code example showing Assemble code
the potential

If (d==0) BNEZ R1, L1
d=1; DADDIU R1,RO0, #1
If (d==1) Ll: DADDIU R3,RI1, #-1

BNEZ R3, L2
L2:

Observation: if BNEZ1 is not taken, then BNEZ2
is taken

Correlating Branch Predictor

Idea: taken/not taken of

recently executed

branches is related to -

behavior of next branch 1-bits per branch

(as well as the history of local predictors

that branch behaviorg

= Then behavior of
recent branches
selects between, say, 2
predictions of next
branch, updating just
that prediction

= (1,1) predictor: 1-bit
global, 1-bit local

Branch address (4 bits)
—_— 1

—l Prediction

MDDDDDL (0
I

1-bit global
branch history
(0 = not taken)

Correlating Branch Predictor

General form: (m, n)

predictor

= m bits for global
history, n bits for local

Branch address (4 bits)

2-bits per branch
local predictors
oy

history ' 0 B28g
= Records correlation H =208
between m+1 branches = % % % o
« Simple implementation: [B 5 BT Prediction
global history can be g5 =299
store in a shift =9 9299
register
= Example: (2,2)
pr‘edicfor‘, 2-bit g,ObGI, 2-bit global
2-bit local branch history

(01 = not taken then taken)

Accuracy of Different Schemes

(Figure 3.15, p. 206)
20%

g

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

&

10%

Frequency of Mispredictions

nasa7 mad00 tomcat doducd spice fpppp gec espresso eqntott

4,096 entries: 2-bits per entry M Unlimited entries: 2-bits/entry M 1,024 enties (2,2)

15

Estimate Branch Penalty

EX: BHT correct rate
is 95%, BTB hit
rate is 95%

Average miss penalty
is 15 cycles

How much is the
branch penalty?

Accuracy of Return Address Predictor

ot e
40% L o-fpppp |
5% 0 espl A
_g 30% ‘\ -+ doduc
g - -*li
-3’3 el T\ N - tomeatv
= prmin \\ \
10%
5% NN e
————
1 2 4 8 16

Number of entries in the retum stack

© 2003 Elgevier Sclence (USA). All rights reserved. 17

