
1

1

Lecture 7: Speculative Execution and 
Recovery

Branch prediction and speculative 
execution, precise interrupt, reorder 
buffer

2

Control Dependencies
Every instruction is control dependent on 
some set of branches
if p1
S1;

if p2
S2;

S1 is control dependent on p1, and S2 is 
control dependent on p2 but not on p1.

control dependencies must be preserved to 
preserve program order

3

Control Dependence Ignored

If CPU stalls on branches, how much would 
CPI increase?

Control dependence need not be preserved 
in the whole execution

willing to execute instructions that should not 
have been executed, thereby violating the 
control dependences, if can do so without 
affecting correctness of the program 

Two properties critical to program 
correctness are data flow and exception 
behavior

4

Branch Prediction and Speculative Execution

Speculation is to run 
instructions on 
prediction – predictions 
could be wrong.

Branch prediction: 
cannot be avoided, could 
be very accurate

Mis-prediction is less 
frequent event – but 
can we ignore?

Example:
for (i=0; i<1000; i++)

C[i] = A[i]+B[i];

Branch prediction: 
predict the execution 
as accurate as possible 
(frequent cases)

Speculative execution 
recovery: if prediction 
is wrong, roll the 
execution back

5

Exception Behavior
Preserving exception behavior -- exceptions 
must be raised exactly as in sequential 
execution 

Same sequences
No “extra” exceptions

Example:
DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0(R2)

L1:
Problem with moving LW before BEQZ?

Again, a dynamic execution must look like a 
sequential execution, any time when it is 
stopped

6

Precise Interrupts

Tomasulo had:

In-order issue, out-of-order execution, 
and out-of-order completion

Need to “fix” the out-of-order 
completion aspect so that we can find 
precise breakpoint in instruction 
stream.



2

7

Branch Prediction vs. Precise Interrupt

Mis-prediction is 
“exception” on the 
branch inst

Execution “branches 
out” on exceptions

Every instruction is 
“predicted” not to 
take the “branch” to 
interrupt handler

Same technique for 
handling both issue: 

in-order completion or 
commit: change 
register/memory 
only in program 
order (sequential)

How does it ensure 
the correctness?

8

The Hardware: Reorder Buffer
If inst write results in program 
order, reg/memory always get 
the correct values

Reorder buffer (ROB) – reorder 
out-of-order inst to program 
order at the time of writing 
reg/memory (commit)

If some inst goes wrong, handle 
it at the time of commit – just 
flush inst afterwards

Inst cannot write reg/memory 
immediately after execution, so 
ROB also buffer the results

No such a place in Tomasulo original

Reorder
BufferDecode

FU1 FU2

RS RS

Fetch Unit

Rename

L-bufS-buf

DM

Regfile

IM

9

Four Steps of Speculative 
Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
If reservation station and reorder buffer slot free, issue instr & 
send operands & reorder buffer no. for destination (this stage 
sometimes called “dispatch”)

2. Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch 
CDB for result; when both in reservation station, execute; 
checks RAW (sometimes called “issue”)

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update 
register with result (or store to memory) and remove instr from 
reorder buffer. Mispredicted branch flushes reorder buffer 
(sometimes called “graduation”)

10

Reorder Buffer Details
Holds branch valid and exception 
bits

Flush pipeline when any bit is set
How do the architectural states 
look like after the flushing?

Holds dest, result and PC
Write results to dest at the 
time of commit
Which PC to hold?
A ready bit (not shown) 
indicates if the 

Supplies operands between 
execution complete and commit 

Reorder Buffer

D
es

t
re

g
Re

su
lt

Ex
ce

pt
io
ns

?

Pr
og

ra
m
 C

ou
nt

er

Br
an

ch
 o

r 
L/

W
?

Re
ad

y?

11

Speculative Execution Recovery
Flush the pipeline on 

mis-prediction
MIPS 5-stage 
pipeline used 
flushing on taken 
branches

Where is the flush 
signal from?
When to flush?
Which components 
are flushed?

Reorder
BufferDecode

FU1 FU2

RS RS

Fetch Unit

Rename

L-bufS-buf

DM

Regfile

IM

12

Changes to Other Components
Use ROB index as tag

Why not RS index any more?
Why is ROB index a valid choice?

Renaming table maps architecture registers to ROB 
index if the register is renamed
Reservation stations now use ROB index for tracking 
dependence and for wakeup
Again tag (now ROB index) and data are broadcast 
on CDB at writeback
Inst may receive values from reg/mem, data 
broadcasting, or ROB



3

13

Code Example
Loop: LD R2, 0(R1)

DADDIU R2, R2, #1
SD R2, 0(R1)
DADDIU R1, R1, #4
BNE R2, R3, Loop

How would this code be executed?

………………

………………

54321LD

CommitWrite
results

Memory
read

ExecIssueInst

14

Summary
Reservations stations: implicit register renaming to larger set of 
registers + buffering source operands

Prevents registers as bottleneck
Avoids WAR, WAW hazards of Scoreboard

Not limited to basic blocks when compared to static scheduling 
(integer units gets ahead, beyond branches)
Today, helps cache misses as well

Don’t stall for L1 Data cache miss (insufficient ILP for L2 miss?)
Can support memory-level parallelism

Lasting Contributions
Dynamic scheduling
Register renaming
Load/store disambiguation (discuss later)

360/91 descendants are Pentium III; PowerPC 604; MIPS 
R10000; HP-PA 8000; Alpha 21264

15

Dynamic Scheduling: The Only Choice?
Most high-performance processors today are 
dynamically scheduled superscalar processors

With deeper and n-way issue pipeline
Other alternatives to exploit instruction-level 
parallelism

Statically scheduled superscalar
VLIW

Mixed effort: EPIC – Explicit Parallel Instruction 
Computing

Example: Intel Itanium processors

Why is dynamic scheduling so popular today?
Technology trends: increasing transistor budget, deeper 
pipeline, wide issue


