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Lecture 19/20: Shared Memory 
SMP and Cache Coherence

Adapted from UCB CS252 S01
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Parallel Computers
Definition: “A parallel computer is a collection of 
processiong elements that cooperate and 
communicate to solve large problems fast.”

Almasi and Gottlieb, Highly Parallel Computing ,1989
Questions about parallel computers:

How large a collection?
How powerful are processing elements?
How do they cooperate and communicate?
How are data transmitted? 
What type of interconnection?
What are HW and SW primitives for programmer?
Does it translate into performance?
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Parallel Processors “Religion”
The dream of computer architects since 1950s: 
replicate processors to add performance vs. 
design a faster processor
Led to innovative organization tied to particular 
programming models since “uniprocessors can’t 
keep going”

e.g., uniprocessors must stop getting faster due to 
limit of speed of light: 1972, … , 1989
Borders religious fervor: you must believe!
Fervor damped some when 1990s companies went out 
of business: Thinking Machines, Kendall Square, ...

“Pull” of opportunity of scalable performance, 
not the “push” of uniprocessor performance 
plateau?
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What Level of Parallelism?
Bit level parallelism: 1970 to ~1985

4 bits, 8 bit, 16 bit, 32 bit microprocessors
Instruction level parallelism (ILP): 
~1985 through today

Pipelining
Superscalar
VLIW
Out-of-Order execution
Limits to benefits of ILP?

Process Level or Thread level parallelism; 
mainstream for general purpose computing?

Servers are parallel
High-end desktop dual processor PC soon?
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Why Multiprocessors?
1. Microprocessors as the fastest CPUs

• Collecting several much easier than redesigning 1
2. Complexity of current microprocessors

• Do we have enough ideas to sustain 1.5X/yr?
• Can we deliver such complexity on schedule?

3. Slow (but steady) improvement in parallel 
software (scientific apps, databases, OS)

4. Emergence of embedded and server markets 
driving microprocessors in addition to desktops
• Embedded functional parallelism, producer/consumer 

model
• Server figure of merit is tasks per hour vs. latency
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Parallel Processing Introduction
Long term goal of the field: scale number processors to 
size of budget, desired performance
Machines today: Sun Enterprise 10000 (8/00)

64 400 MHz UltraSPARC® II CPUs,64 GB SDRAM memory, 868 
18GB disk,tape 
$4,720,800 total 
64 CPUs 15%, 64 GB DRAM 11%, disks 55%, cabinet 16%  
($10,800 per processor or ~0.2% per processor)

Machines today: Dell Workstation 220 (2/01)
866 MHz Intel Pentium® III (in Minitower)
0.125 GB RDRAM memory, 1 10GB disk, 12X CD, 17” monitor, 
nVIDIA GeForce 2 GTS,32MB DDR Graphics card, 1yr service
$1,600; for extra processor, add $350 (~20%)
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Where is Supercomputing heading?
1997, 500 fastest machines in the world: 
319 MPPs, 73 bus-based shared memory (SMP), 106 
parallel vector processors (PVP)

2000, 381 of 500 fastest: 144 IBM SP (~cluster), 121 
Sun (bus SMP), 62 SGI (NUMA SMP), 54 Cray (NUMA 
SMP)

Parallel computer architecture : a hardware/ software approach, 
David E. Culler, Jaswinder Pal Singh, with Anoop Gupta. San 
Francisco : Morgan Kaufmann, c1999.

http://www.top500.org/
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Popular Flynn Categories for 
Parallel Computers

SISD (Single Instruction Single Data)
Uniprocessors

MISD (Multiple Instruction Single Data)
multiple processors on a single data stream

SIMD (Single Instruction Multiple Data)
Early Examples: Illiac-IV, CM-2
Phrase reused by Intel marketing for media instructions ~ vector

MIMD (Multiple Instruction Multiple Data)
Examples: Sun Enterprise 5000, Cray T3D,  SGI Origin

Flexible
Use off-the-shelf micros

MIMD current winner: Concentrate on major design emphasis <= 128
processor MIMD machines
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Major MIMD Styles
1. Centralized shared memory ("Uniform Memory 

Access" time or "Shared Memory Processor")

2. Decentralized memory (memory module with 
CPU) 

Shared Memory with "Non Uniform Memory Access" 
time (NUMA)
Message passing "multicomputer" with separate 
address space per processor
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Parallel Architecture
Parallel Architecture extends traditional 
computer architecture with a communication 
architecture

abstractions (HW/SW interface)
organizational structure to realize abstraction 
efficiently
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Parallel Framework
Layers:

Programming Model:
Multiprogramming : lots of jobs, no communication
Shared address space: communicate via memory
Message passing: send and recieve messages
Data Parallel: one operation, multiple data sets

Communication Abstraction:
Shared address space: e.g., load, store, etc => multiprocessors
Message passing: e.g., send, recieve library calls
Debate over this topic (ease of programming, scaling) 

May mix shared address space and message passing at 
different layers
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Shared Address/Memory Processor Model

Each processor can name every physical location in the 
machine
Each process can name all data it shares with other 
processes
Data transfer via load and store
Data size: byte, word, ... or cache blocks
Uses virtual memory to map virtual to local or remote 
physical
Memory hierarchy model applies: now communication 
moves data to local processor cache (as load moves data 
from memory to cache)

Latency, BW, scalability when communicate?
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Shared-Memory Programming Examples
struct alloc_t { int first; int last } alloc[MAX_THR];
pthread_t tid[MAX_THR];
main()
{

…
for (int i=0; i<num_thr; i++) {

alloc[i].first = i*N/num_thr;
alloc[i].last = (i!=num_thr)?((i+1)*(N/num_thr)-1):N;
pthread_create(&tid[i]/*thread id pointer*/, 

NLLL/*detach method*/, dmm_func/*thread function*/, 
(void *)&alloc[i]/*parameters*/);

}
for (i=0; i<num_thr; i++) {

pthread_join(tid[i]/*thread id*/, NULL/*return value*/);
}

}

dmm_func(struct alloc_t *alloc) {
for (int i=alloc->first; i<alloc->last; i++)

for (int k=0; k<N; k++)
for (int j=0; j<N; j++)
Z[i][j] += X[i][k]*Y[k][j];  

} 14

Shared Address/Memory 
Multiprocessor Model

Communicate via Load and Store
Oldest and most popular model

Based on timesharing: processes on multiple 
processors vs. sharing single processor
process: a virtual address space 

and > 1 thread of control
ALL threads of a process share a process address 
space
Example: Pthread

Writes to shared address space by one thread 
are visible to reads of other threads
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SMP Interconnect
Processors to Memory AND to I/O
Bus based: all memory locations equal access 
time so SMP = “Symmetric MP”

Sharing limited BW as add processors, I/O

P P P P

Cache Cache Cache Cache

Main memory I/O system
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Advantages of Shared-memory Model
Ease of programming when communication 
patterns are complex or vary dynamically during 
execution

Lower communication overhead, good utilization 
of communication bandwidth for small data 
items, no expensive I/O operations

Hardware-controlled caching to reduce remote 
commutations when remote data is cached

17

Message Passing Model
Whole computers (CPU, memory, I/O devices), explicit 
send/receive as explicit I/O operations

Send specifies local buffer + receiving process on 
remote computer

Receive specifies sending process on remote computer + 
local buffer to place data

Send+receive => memory-memory copy, where each each 
supplies local address
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Advantages of Message-Passing 
Communication

The hardware can be much simpler and is usually 
standard

Explicit communication => simpler to understand, help 
make effort to reduce communication cost

Synchronization is naturally associated with 
sending/receiving messages

Easier to use sender-initiated communication, which may 
have some advantages in performance

Important, but will not be discussed in details
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Three Types of Parallel Applications
Commercial Workload

TPC-C, TPC-D, Altavista (Web search engine)

Multiprogramming and OS Workload

Scientific/Technical Applications
FFT Kernel: 1D complex number FFT
LU Kernel: dense matrix factorization
Barnes App: Barnes-Hut n-body algorithm, galaxy 
evolution
Ocean App: Gauss-Seidel multigrid technique to solve 
a set of elliptical partial differential eq.s’
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Amdahl’s Law and Parallel Computers
Amdahl’s Law: speedup is limited by the fraction 
of the portions that can be parallelized

Speedup ≤ 1 / (1-f), where f is the fraction of 
sequential computation

How large can be f if we want 80X speedup from 
100 processors?

1 / (f+(1-f)/100) = 80
f = 0.25% !
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What Does Coherency Mean?
Informally:

“Any read must return the most recent write”
Too strict and too difficult to implement

Better:
“Any write must eventually be seen by a read”
All writes are seen in proper order (“serialization”)

Two rules to ensure this:
“If P writes x and P1 reads it, P’s write will be seen by P1 if the 
read and write are sufficiently far apart”
Writes to a single location are serialized: seen in one order

Latest write will be seen
Otherwise could see writes in illogical order
(could see older value after a newer value)

Cache coherency in multiprocessors: How does a 
processor know changes in the caches of other 
processors? How do other processors know changes in 
this cache?
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Potential HW Coherency Solutions
Snooping Solution (Snoopy Bus):

Send all requests for data to all processors
Processors snoop to see if they have a copy and respond 
accordingly 
Requires broadcast, since caching information is at processors
Works well with bus (natural broadcast medium)
Dominates for small scale machines (most of the market)

Directory-Based Schemes (discuss later)
Keep track of what is being shared in 1 centralized place 
(logically)
Distributed memory => distributed directory for scalability
(avoids bottlenecks)
Send point-to-point requests to processors via network
Scales better than Snooping
Actually existed BEFORE Snooping-based schemes

23

Basic Snoopy Protocols
Write Invalidate Protocol:

Multiple readers, single writer
Write to shared data:  an invalidate is sent to all 
caches which snoop and invalidate any copies
Read Miss: 

Write-through: memory is always up-to-date
Write-back: snoop in caches to find most recent copy

Write Broadcast Protocol (typically with write 
through):

Write to shared data: broadcast on bus, processors 
snoop, and update any copies
Read miss: memory is always up-to-date

Write serialization: bus serializes requests!
Bus is single point of arbitration
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Basic Snoopy Protocols
Write Invalidate versus Broadcast:

Invalidate requires one transaction per write-run
Invalidate uses spatial locality: one transaction per 
block
Broadcast has lower latency between write and read
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An Example Snoopy Protocol
Invalidation protocol, write-back cache
Each block of memory is in one state:

Clean in all caches and up-to-date in memory (Shared)
OR Dirty in exactly one cache (Exclusive)
OR Not in any caches

Each cache block is in one state (track these):
Shared : block can be read
OR Exclusive : cache has only copy, its writeable, and 
dirty
OR Invalid : block contains no data

Read misses: cause all caches to snoop bus
Writes to clean line are treated as misses
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Snoopy-Cache State Machine-I 
State machine
for CPU requests
for each 
cache block Invalid

Shared
(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State
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Snoopy-Cache State Machine-II
State machine
for bus requests
for each 

cache block
Appendix I gives 
details of bus 
requests

Invalid Shared
(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)
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Place read miss
on bus

Snoopy-Cache State Machine-III 
State machine
for CPU requests
for each 
cache block and
for bus requests
for each 

cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss 
for this block

Write Back
Block; (abort
memory access)
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 !=  A2
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Implementation Complications
Write Races:

Cannot update cache until bus is obtained
Otherwise, another processor may get bus first, 
and then write the same cache block!

Two step process:
Arbitrate for bus 
Place miss on bus and complete operation

If miss occurs to block while waiting for bus, 
handle miss (invalidate may be needed) and then 
restart.
Split transaction bus:

Bus transaction is not atomic: 
can have multiple outstanding transactions for a block
Multiple misses can interleave, 
allowing two caches to grab block in the Exclusive state
Must track and prevent multiple misses for one block

Must support interventions and invalidations
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Implementing Snooping Caches
Multiple processors must be on bus, access to 
both addresses and data
Add a few new commands to perform coherency, 
in addition to read and write
Processors continuously snoop on address bus

If address matches tag, either invalidate or update
Since every bus transaction checks cache tags, 
could interfere with CPU just to check: 

solution 1: duplicate set of tags for L1 caches just to 
allow checks in parallel with CPU
solution 2: L2 cache already duplicate, provided L2 
obeys inclusion with L1 cache
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Implementing Snooping Caches
Bus serializes writes, getting bus ensures no one 
else can perform memory operation
On a miss in a write back cache, may have the 
desired copy and its dirty, so must reply
Add extra state bit to cache to determine 
shared or not
Add 4th state (MESI)

Modfied (private,!=Memory)
eXclusive (private,=Memory)
Shared (shared,=Memory)
Invalid
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MESI Highlights
From local processor P’s viewpoint, for each cache 

block
Modified: Only P has a copy and the copy has 
been modifed; must respond to any read/write 
request
Exclusive-clean: Only P has a copy and the copy 
is clear; no need to inform others about my 
changes
Shared: Some other machines else may have 
copy; have to inform others about P’s changes
Invalid: The block has been invalidated (possibly 
on the request of someone else)
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MESI Highlights
Actions:

Have read misses on a block: send read 
request onto bus
Have write misses on a block: send write 
request onto bus
Receive bus read request: transit the 
block to shared state
Receive bus write request: transit the 
block to invalid state
Must write back data when transiting 
from modified state


