
1

1
Adapted from UCB CS252 S01, Revised by Zhao Zhang in ISU CPRE 585 F04

Lecture 15: Application-level Cache
Optimizations

Adapted from UCB CS252 S01
2

Reducing Misses by Compiler Optimizing
Memory Layout or Access Pattern

McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software
Instructions

Reorder procedures in memory so as to reduce conflict misses
Profiling to look at conflicts

Data
Merging Arrays: improve spatial locality by single array of
compound elements vs. 2 arrays
Loop Interchange: change nesting of loops to access data in order
stored in memory
Loop Fusion: Combine 2 independent loops that have same looping
and some variables overlap
Blocking: Improve temporal locality by accessing “blocks” of data
repeatedly vs. going down whole columns or rows

3

Merging Arrays Example
/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {
int val;
int key;

};
struct merge merged_array[SIZE];

Reducing potential conflicts between val & key;
Improve spatial locality

4

Loop Interchange Example
/* Before */
for (k = 0; k < 100; k = k+1)
for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)
x[i][j] = 2 * x[i][j];

/* After */
for (k = 0; k < 100; k = k+1)
for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)
x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through memory
every 100 words; improved spatial locality

5

Loop Fusion Example
/* Before */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access;
improve temporal locality

6

Blocking Example: Dense Matrix Multipication
/* Before */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

Two Inner Loops:
Read all NxN elements of z[]
Read N elements of 1 row of y[] repeatedly
Write N elements of 1 row of x[]

Capacity Misses a function of N & Cache Size:
2N3 + N2 => (assuming no conflict; otherwise …)

Idea: compute on BxB submatrix that fits

2

7

Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

B called Blocking Factor
Capacity Misses from 2N3 + N2 to N3/B+2N2

But may suffer from conflict misses

8

Reducing Conflict Misses by Blocking

Blocking Factor

0

0.05

0.1

0 50 100 150

Fully Associative Cache

Direct Mapped Cache

Conflict misses in caches not FA vs. Blocking size
• Choose the best blocking factor

9

Reducing Conflict Misses by
Copying or Padding

Copying: If some date cause severe cache
conflict misses, copy them to another region
[Gatlin et al. HPCA’99]

Padding: Insert padding space to change the
mapping of the data onto cache [zhang et al.
SC’99]

Automated approaches: let compiler
chooses the best method after analysis

10

OS Methods in Reducing L2 Cache
Conflicts
Conflicts are caused by “bad” mapping; can mapping be

changed?
Note L2 cache is usually physically indexed!

OS Approaches: change the mapping between virtual
memory and physical memory

Dynamically detected memory pages that cause severe
conflict misses
Change the physical page of those pages so that they are
not mapped onto the same sets in cache
Needs hardware support (cache miss lookaside buffer)

[bershad et al, ISCA’94]

11

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to
Reduce Cache Misses (by hand)

12

Reducing Misses by Software Prefetching
Data

Data Prefetch
Load data into register (HP PA-RISC loads)
Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
Special prefetching instructions cannot cause faults; a form of
speculative execution

Prefetching comes in two flavors:
Binding prefetch: Requests load directly into register.

Must be correct address and register!
Non-Binding prefetch: Load into cache.

Can be incorrect. Frees HW/SW to guess!
Issuing Prefetch Instructions takes time

Is cost of prefetch issues < savings in reduced misses?
Higher superscalar reduces difficulty of issue bandwidth

3

13

Cache Optimization Summary
Technique MP MR HT Complexity
Multilevel cache + 2
Critical work first + 2
Read first + 1
Merging write buffer + 1
Victim caches + + 2
Larger block - + 0
Larger cache + - 1
Higher associativity + - 1
Way prediction + 2
Pseudoassociative + 2
Compiler techniques + 0

m
is

s
ra

te
m

is
s

pe
na

lty

14

Cache Optimization Summary

Technique MP MR HT Complexity
Nonblocking caches + 3
Hardware prefetching + 2/3
Software prefetching + + 3
Small and simple cache - + 0
Avoiding address translation + 2
Pipeline cache access + 1
Trace cache + 3hi

t t
im

e
m

is
s

pe
na

lty

