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Adapted from UCB CS252 S01, Revised by Zhao Zhang in IASTATE CPRE 585, 2004

Lecture 14: Hardware Approaches 
for Cache Optimizations

Cache performance metrics, reduce 
miss rates, improve hit time, reduce 
miss penalty

Adapted from UCB CS252 S01
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Cache Performance Metrics
Cache miss rate: number of cache misses 
divided by number of accesses

Cache hit time: the time between sending 
address and data returning from cache

Cache miss latency: the time between 
sending address and data returning from 
next-level cache/memory
Cache miss penalty: the extra processor 
stall caused by next-level cache/memory 
access
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Calculate cache impact on processor 
performance

Calculate average memory access time (AMAT)

Note: Load and store are different!

Cache Performance Metrics
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Cache Performance for OOO Processors
Very difficult to define miss penalty to fit 
in this simple model, in the context of OOO 
processors

Consider overlapping between computation and 
memory accesses
Consider overlapping among memory accesses for 
more than one misses

We may assume a certain percentage of 
overlapping

In practice, the degree of overlapping varies 
significantly between
There are techniques to increase the overlapping, 
making the cache performance even 
unpredictable 
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Cache Optimizations
Total cache size: Determines chip area and number of 

transistors

Performance factors:
Miss rate, miss penalty, and hit time

Organization: 
Set Associativity and block size
Multi-level organizations
Auxiliary structures, e.g., to predict future accesses
Main memory and memory interface design
Many more …

Software Approaches
Optimize memory access patterns
Software prefetching
Many more …
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Improving Cache Performance
3. Reducing miss penalty 

or miss rates via 
parallelism

Reduce miss penalty or 
miss rate by parallelism
Non-blocking caches
Hardware prefetching
Compiler prefetching

4. Reducing cache hit 
time

Small and simple caches
Avoiding address 
translation
Pipelined cache access
Trace caches

1. Reducing miss rates
Larger block size
larger cache size
higher associativity
way prediction
Pseudoassociativity
compiler optimization

2. Reducing miss penalty
Multilevel caches
critical word first
read miss first
merging write buffers
victim caches
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Classifying cache misses
Classifying misses by causes (3Cs)

Compulsory—To bring blocks into cache for the first time. 
Also called cold start misses or first reference misses.
(Misses in even an Infinite Cache)
Capacity—Cache is not large enough such that some blocks 
are discarded and later retrieved.
(Misses in Fully Associative Size X Cache)
Conflict—For set associative or direct mapped caches, 
blcoks can be discarded and later retrieved if too many 
blocks map to its set. Also called collision misses or 
interference misses.
(Misses in N-way Associative, Size X Cache)

More recent, 4th “C”:
Coherence - Misses caused by cache coherence. To be 
discussed in multiprocessor
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Cache Organization
Cache size, block size, and set 

associativity
Other terms: cache set number, cache 

blocks per set, and cache block size

How do they affect miss rate? 
Recall 3Cs: Compulsory, Capacity, Conflict 
cache misses?

How about miss penalty?
How about cache hit time? 
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Conflict

Compulsory vanishingly
small
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2:1 Cache Rule

Conflict

miss rate 1-way associative cache size X 
= miss rate 2-way associative cache size X/2
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3Cs Relative Miss Rate
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Flaws: for fixed block size
Good: insight => invention
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Higher Associativity?
2:1 Cache Rule: 

Miss Rate DM cache size N  Miss Rate 2-way 
cache size N/2

Beware: Execution time is only final measure!
Will Clock Cycle time increase?
Hill [1988] suggested hit time for 2-way vs. 1-way 
external cache +10%, 
internal + 2%

Jouppi’s Cacti model: estimate cache access time by 
block number, block size, associativity, and 
technology

Note cache access time also increases with cache size!
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Example: Avg. Memory Access Time vs. 
Miss Rate
Example: assume CCT = 1.10 for 2-way, 1.12 for 
4-way, 1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)
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Pseudo-Associativity
How to combine fast hit time of Direct Mapped and have 
the lower conflict misses of 2-way SA cache?
Divide cache: on a miss, check other half of cache to see 
if there, if so have a pseudo-hit (slow hit)

Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
Better for caches not tied directly to  processor (L2)
Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time
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Victim Cache

How to combine fast hit 
time of direct mapped 
yet still avoid conflict 
misses? 
Add buffer to place data 
discarded from cache
Jouppi [1990]: 4-entry 
victim cache removed 20% 
to 95% of conflicts for a 4 
KB direct mapped data 
cache
Used in Alpha, HP 
machines

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator
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Multi-level Cache
Add a second-level cache

L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1
Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2
AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 × Miss 

PenaltyL2)

Definitions:
Local miss rate— misses in this cache divided by the total number 
of memory accesses to this cache (Miss rateL2)
Global miss rate—misses in this cache divided by the total number 
of memory accesses generated by the CPU (Miss RateL1 x Miss 
RateL2) 
Global miss rate is what matters to overall performance
Local miss rate is factor in evaluating the effectiveness of L2 
cache
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Local vs. Global Miss Rates
Example:

For 1000 inst., 40 
misses in L1, 20 misses 
in L2
L1 hit 1 cycle, L2 hit 10 
cycles, miss 100
1.5 memory references 
per instruction

Ask: Local miss rate, 
AMAT, stall cycles per 
instruction, and those 
without L2 cache

With L2 cache
Local miss rate = 50%
AMAT=1+4%X(10+50%X
100)=3.4
Average Memory Stalls per 
Instruction=(3.4-1.0)x1.5=3.6

Without L2 cache
AMAT=1+4%X100=5
Average Memory Stalls per 
Inst=(5-1.0)x1.5=6

Assume ideal CPI=1.0, 
performance 
improvement = 
(6+1)/(3.6+1)=52%
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Comparing Local and Global Miss 
Rates

First-level cache: 
split 64K+64K 2-
way
Second-level 
cache: 4K to 4M
In practice: 
caches are 
inclusive

Global miss rate approaches single cache miss rate 
provided that the second-level cache is much larger 
than the first-level cache
Global miss rate is what matters
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Compare Execution Times

Performance is not sensitive to L2 latency
Larger cache size makes a big difference

L1 configuration as 
in the last slide
L2 cache 256K-8M, 
2-way
Normalized to 8M 
cache with 1-cycle 
latency
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Early Restart and Critical Word 
First

Don’t wait for full block to be loaded before restarting 
CPU

Early restart—As soon as the requested word of the block 
arrives, send it to the CPU and let the CPU continue execution
Critical Word First—Request the missed word first from 
memory and send it to the CPU as soon as it arrives; let the 
CPU continue execution while filling the rest of the words in 
the block. Also called wrapped fetch and requested word  first

Generally useful only in large blocks (relative to 
bandwidth)
Good spatial locality may reduce the benefits of early 
restart, as the next sequential word may be needed 
anyway

block


