
1

1
Adapted from UCB CS252 S01, Revised by Zhao Zhang in IASTATE CPRE 585, 2004

Lecture 14: Hardware Approaches
for Cache Optimizations

Cache performance metrics, reduce
miss rates, improve hit time, reduce
miss penalty

Adapted from UCB CS252 S01
2

Cache Performance Metrics
Cache miss rate: number of cache misses
divided by number of accesses

Cache hit time: the time between sending
address and data returning from cache

Cache miss latency: the time between
sending address and data returning from
next-level cache/memory
Cache miss penalty: the extra processor
stall caused by next-level cache/memory
access

3

Calculate cache impact on processor
performance

Calculate average memory access time (AMAT)

Note: Load and store are different!

Cache Performance Metrics

penalty Missrate Miss Hit time AMAT ×+=

()
Penalty MissRate MissFrequencyInst Memory CPI

Time CycleCPICPIIC timeCPU
mem_stal

mem_stallexecution

××=
×+×=

4

Cache Performance for OOO Processors
Very difficult to define miss penalty to fit
in this simple model, in the context of OOO
processors

Consider overlapping between computation and
memory accesses
Consider overlapping among memory accesses for
more than one misses

We may assume a certain percentage of
overlapping

In practice, the degree of overlapping varies
significantly between
There are techniques to increase the overlapping,
making the cache performance even
unpredictable

5

Cache Optimizations
Total cache size: Determines chip area and number of

transistors

Performance factors:
Miss rate, miss penalty, and hit time

Organization:
Set Associativity and block size
Multi-level organizations
Auxiliary structures, e.g., to predict future accesses
Main memory and memory interface design
Many more …

Software Approaches
Optimize memory access patterns
Software prefetching
Many more …

6

Improving Cache Performance
3. Reducing miss penalty

or miss rates via
parallelism

Reduce miss penalty or
miss rate by parallelism
Non-blocking caches
Hardware prefetching
Compiler prefetching

4. Reducing cache hit
time

Small and simple caches
Avoiding address
translation
Pipelined cache access
Trace caches

1. Reducing miss rates
Larger block size
larger cache size
higher associativity
way prediction
Pseudoassociativity
compiler optimization

2. Reducing miss penalty
Multilevel caches
critical word first
read miss first
merging write buffers
victim caches

2

7

Classifying cache misses
Classifying misses by causes (3Cs)

Compulsory—To bring blocks into cache for the first time.
Also called cold start misses or first reference misses.
(Misses in even an Infinite Cache)
Capacity—Cache is not large enough such that some blocks
are discarded and later retrieved.
(Misses in Fully Associative Size X Cache)
Conflict—For set associative or direct mapped caches,
blcoks can be discarded and later retrieved if too many
blocks map to its set. Also called collision misses or
interference misses.
(Misses in N-way Associative, Size X Cache)

More recent, 4th “C”:
Coherence - Misses caused by cache coherence. To be
discussed in multiprocessor

8

Cache Organization
Cache size, block size, and set

associativity
Other terms: cache set number, cache

blocks per set, and cache block size

How do they affect miss rate?
Recall 3Cs: Compulsory, Capacity, Conflict
cache misses?

How about miss penalty?
How about cache hit time?

9

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate
(SPEC92)

Conflict

Compulsory vanishingly
small

10

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

2:1 Cache Rule

Conflict

miss rate 1-way associative cache size X
= miss rate 2-way associative cache size X/2

11

3Cs Relative Miss Rate

Cache Size (KB)

0%

20%

40%

60%

80%

100%

1 2 4 8

16 32 64

12
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Flaws: for fixed block size
Good: insight => invention

12

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

Larger Block Size?

3

13

Higher Associativity?
2:1 Cache Rule:

Miss Rate DM cache size N Miss Rate 2-way
cache size N/2

Beware: Execution time is only final measure!
Will Clock Cycle time increase?
Hill [1988] suggested hit time for 2-way vs. 1-way
external cache +10%,
internal + 2%

Jouppi’s Cacti model: estimate cache access time by
block number, block size, associativity, and
technology

Note cache access time also increases with cache size!

14

Example: Avg. Memory Access Time vs.
Miss Rate
Example: assume CCT = 1.10 for 2-way, 1.12 for
4-way, 1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

15

Pseudo-Associativity
How to combine fast hit time of Direct Mapped and have
the lower conflict misses of 2-way SA cache?
Divide cache: on a miss, check other half of cache to see
if there, if so have a pseudo-hit (slow hit)

Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
Better for caches not tied directly to processor (L2)
Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time

16

Victim Cache

How to combine fast hit
time of direct mapped
yet still avoid conflict
misses?
Add buffer to place data
discarded from cache
Jouppi [1990]: 4-entry
victim cache removed 20%
to 95% of conflicts for a 4
KB direct mapped data
cache
Used in Alpha, HP
machines

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

17

Multi-level Cache
Add a second-level cache

L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1
Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2
AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 × Miss

PenaltyL2)

Definitions:
Local miss rate— misses in this cache divided by the total number
of memory accesses to this cache (Miss rateL2)
Global miss rate—misses in this cache divided by the total number
of memory accesses generated by the CPU (Miss RateL1 x Miss
RateL2)
Global miss rate is what matters to overall performance
Local miss rate is factor in evaluating the effectiveness of L2
cache

18

Local vs. Global Miss Rates
Example:

For 1000 inst., 40
misses in L1, 20 misses
in L2
L1 hit 1 cycle, L2 hit 10
cycles, miss 100
1.5 memory references
per instruction

Ask: Local miss rate,
AMAT, stall cycles per
instruction, and those
without L2 cache

With L2 cache
Local miss rate = 50%
AMAT=1+4%X(10+50%X
100)=3.4
Average Memory Stalls per
Instruction=(3.4-1.0)x1.5=3.6

Without L2 cache
AMAT=1+4%X100=5
Average Memory Stalls per
Inst=(5-1.0)x1.5=6

Assume ideal CPI=1.0,
performance
improvement =
(6+1)/(3.6+1)=52%

4

19

Comparing Local and Global Miss
Rates

First-level cache:
split 64K+64K 2-
way
Second-level
cache: 4K to 4M
In practice:
caches are
inclusive

Global miss rate approaches single cache miss rate
provided that the second-level cache is much larger
than the first-level cache
Global miss rate is what matters

20

Compare Execution Times

Performance is not sensitive to L2 latency
Larger cache size makes a big difference

L1 configuration as
in the last slide
L2 cache 256K-8M,
2-way
Normalized to 8M
cache with 1-cycle
latency

21

Early Restart and Critical Word
First

Don’t wait for full block to be loaded before restarting
CPU

Early restart—As soon as the requested word of the block
arrives, send it to the CPU and let the CPU continue execution
Critical Word First—Request the missed word first from
memory and send it to the CPU as soon as it arrives; let the
CPU continue execution while filling the rest of the words in
the block. Also called wrapped fetch and requested word first

Generally useful only in large blocks (relative to
bandwidth)
Good spatial locality may reduce the benefits of early
restart, as the next sequential word may be needed
anyway

block

