
1

1

Lecture 13: Cache Basics and Cache
Performance

Memory hierarchy concept, cache
design fundamentals, set-associative
cache, cache performance, Alpha
21264 cache design

Adapted from UCB CS252 S01
2

A typical memory hierarchy today:

Here we focus on L1/L2/L3 caches and main
memory

What Is Memory Hierarchy

Proc/Regs

L1-Cache
L2-Cache

Memory

Disk, Tape, etc.

Bigger Faster

L3-Cache (optional)

3

1980: no cache in µproc; 1995 2-level cache on chip
(1989 first Intel µproc with a cache on chip)

Why Memory Hierarchy?

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

“Moore’s Law”

4

Generations of Microprocessors
Time of a full cache miss in instructions executed:

1st Alpha: 340 ns/5.0 ns = 68 clks x 2 or
136

2nd Alpha: 266 ns/3.3 ns = 80 clks x 4 or
320

3rd Alpha: 180 ns/1.7 ns =108 clks x 6 or
648

1/2X latency x 3X clock rate x 3X Instr/clock ⇒
4.5X

5

Area Costs of Caches
Processor % Area %Transistors

(cost) (power)
Intel 80386 0% 0%
Alpha 21164 37% 77%
StrongArm SA110 61% 94%
Pentium Pro 64% 88%

2 dies per package: Proc/I$/D$ + L2$
Itanium 92%
Caches store redundant data
only to close performance gap

6

What Is Exactly Cache?
Small, fast storage used to improve average access time
to slow memory; usually made by SRAM
Exploits locality: spatial and temporal
In computer architecture, almost everything is a cache!

Register file is the fastest place to cache variables
First-level cache a cache on second-level cache
Second-level cache a cache on memory
Memory a cache on disk (virtual memory)
TLB a cache on page table
Branch-prediction a cache on prediction information?
Branch-target buffer can be implemented as cache

Beyond architecture: file cache, browser cache, proxy
cache
Here we focus on L1 and L2 caches (L3 optional) as
buffers to main memory

2

7

Example: 1 KB Direct Mapped Cache
Assume a cache of 2N bytes, 2K blocks, block size of
2M bytes; N = M+K (#block times block size)

(32 - N)-bit cache tag, K-bit cache index, and M-bit cache
The cache stores tag, data, and valid bit for each
block

Cache index is used to select a block in SRAM (Recall BHT,
BTB)
Block tag is compared with the input tag
A word in the data block may be selected as the outputIndex

0
1
2
3

:

Cache Data
Byte 0

0431

:

Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:

31

Byte 1Byte 31

:

Byte 32Byte 33Byte 63

:

Byte 992Byte 1023 :
Cache Tag

Block offset
Ex: 0x00

9
Block address

8

For Questions About Cache Design
Block placement: Where can a block be placed?

Block identification: How to find a block in the
cache?

Block replacement: If a new block is to be
fetched, which of existing blocks to
replace? (if there are multiple choice)

Write policy: What happens on a write?

9

Where Can A Block Be Placed
What is a block: divide memory space into
blocks as cache is divided

A memory block is the basic unit to be cached
Direct mapped cache: there is only one place
in the cache to buffer a given memory block
N-way set associative cache: N places for a
given memory block

Like N direct mapped caches operating in parallel
Reducing miss rates with increased complexity,
cache access time, and power consumption

Fully associative cache: a memory block can
be put anywhere in the cache

10

Set Associative Cache
Example: Two-way set associative cache

Cache index selects a set of two blocks
The two tags in the set are compared to the input in
parallel
Data is selected based on the tag comparison

Set associative or direct mapped? Discuss later
Cache Data

Cache Block 0
Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

11

How to Find a Cached Block
Direct mapped cache: the stored tag for the
cache block matches the input tag

Fully associative cache: any of the stored N
tags matches the input tag

Set associative cache: any of the stored K
tags for the cache set matches the input
tag

Cache hit latency is decided by both tag
comparison and data access

12

Which Block to Replace?
Direct mapped cache: Not an issue
For set associative or fully associative*
cache:

Random: Select candidate blocks randomly from
the cache set
LRU (Least Recently Used): Replace the block
that has been unused for the longest time
FIFO (First In, First Out): Replace the oldest
block

Usually LRU performs the best, but hard
(and expensive) to implement

*Think fully associative cache as a set associative one with a
single set

3

13

What Happens on Writes
Where to write the data if the block is found in cache?

Write through: new data is written to both the cache
block and the lower-level memory

Help to maintain cache consistency
Write back: new data is written only to the cache block

Lower-level memory is updated when the block is
replaced
A dirty bit is used to indicate the necessity
Help to reduce memory traffic

What happens if the block is not found in cache?
Write allocate: Fetch the block into cache, then write
the data (usually combined with write back)
No-write allocate: Do not fetch the block into cache
(usually combined with write through)

14

Real Example: Alpha 21264 Caches

I-cache D-cache

64KB 2-way
associative
instruction cache
64KB 2-way
associative data
cache

15

Alpha 21264 Data Cache
D-cache: 64K 2-way

associative
Use 48-bit virtual
address to index cache,
use tag from physical
address
48-bit Virtual=>44-bit
address
512 block (9-bit blk
index)
Cache block size 64
bytes (6-bit offset)t
Tag has 44-(9+6)=29
bits
Writeback and write
allocated

(We will study virtual-
physical address
translation)

16

Calculate average memory access time (AMAT)

Example: hit time = 1 cycle, miss time = 100 cycle,
miss rate = 4%, than AMAT = 1+100*4% = 5

Calculate cache impact on processor
performance

Note cycles spent on cache hit is usually counted
into execution cycles

If clock cycle is identical, better AMAT
means better performance

Cache performance

penalty Missrate Miss hit time AMAT ×+=

CycleTime
nInstructio
Cycles StallMemory CPIIC timeCPU

 timeCyclecycles) stallMemory cyclesexecution (CPU timeCPU

execution ×

 +×=

×+=

17

Example: Evaluating Split Inst/Data Cache
Unified vs Split Inst/data cache (Harvard Architecture)

Example on page 406/407
Assume 36% data ops ⇒ 74% accesses from instructions
(1.0/1.36)
16KB I&D: Inst miss rate=0.4%, data miss rate=11.4%, overall
3.24%
32KB unified: Aggregate miss rate=3.18%

Which design is better?
hit time=1, miss time=100
Note that data hit has 1 stall for unified cache (only one port)

AMATHarvard=74%x(1+0.4%x100)+26%x(1+11.4%x100) = 4.24
AMATUnified=74%x(1+3.18%x100)+26%x(1+1+3.18%x100)= 4.44

ProcI-Cache-1
Proc

Unified
Cache-1

Unified
Cache-2

D-Cache-1
Proc

Unified
Cache-2

18

Disadvantage of Set Associative Cach
Compare n-way set associative with direct mapped cache:

Has n comparators vs. 1 comparator
Has Extra MUX delay for the data
Data comes after hit/miss decision and set selection

In a direct mapped cache, cache block is available before
hit/miss decision

Use the data assuming the access is a hit, recover if
found otherwise

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

4

19

Example: Evaluating Set Associative Cache

Suppose a processor with
1GHz speed, Ideal (no misses) CPI = 2.0
1.5 memory references per instruction

Two cache organization alternatives
Direct mapped, 1.4% miss rate, hit time 1 cycle, miss penalty
75ns
2-way set associative, 1.0% miss rate, increase cycle time by
1.25x, hit time 1 cycle, miss penalty 75ns

Performance evaluation by AMAT
Direct mapped: 1.0 + (0.014 x 75) = 2.05ns
2-way set associative: 1.0 x 1.25 + (0.10 x 75) = 2.00ns

Performance evaluation by CPU time
CPU Time 1 = IC x (2x1.0 + (1.5x0.014x75) = 3.58 IC
CPU Time 2 = IC x (2x1.0x1.25 + 1.5x0.010x75)=3.63IC

Better AMAT does not indicate better CPI time, since non-
memory instructions are penalized

20

Evaluating Cache Performance for Out-
of-order Processors
Recall AMAT = hit time + miss rate x miss penalty

Very difficult to define miss penalty to fit in this
simple model, in the context of OOO processors

Consider overlapping between computation and memory
accesses
Consider overlapping among memory accesses for more
than one misses

We may assume a certain percentage of overlapping
In practice, the degree of overlapping varies significantly
between
There are techniques to increase the overlapping, making
the cache performance even unpredictable

Cache hit time can also be overlapped
The increase of CPI is usually not counted in memory stall
time

21

Simple Example
Consider an OOO processors into the previous example

(slide 18)
Slow clock (1.25x base cycle time)
Direct mapped cache
Overlapping degree of 30%

Average miss penalty = 70% * 75ns = 52.5ns
AMAT = 1.0x1.25 + (0.014x52.5) = 1.99ns
CPU time = ICx(2x1.0x1.25+(1.5x0.014x52.5))=3.60xIC

Compare: 3.58 for in-order + direct mapped, 3.63 for in-
order + two-way associative

This is only a simplified example; ideal CPI could be
improved by OOO execution

