Lecture 12: Limits of ILP and Pentium Processors

ILP limits, Study strategy, Results, P-III and Pentium 4 processors

LICB CS252 S0

Limits to ILP

- Conflicting studies of amount
 - Benchmarks (vectorized Fortran FP vs. integer C programs)
 - Hardware sophistication
 - Compiler sophistication
- How much ILP is available using existing mechanisms with increasing HW budgets?
- Do we need to invent new HW/SW mechanisms to keep on processor performance curve?
 - Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints

2

- Intel SSE2: 128 bit, including 2 64-bit FP per clock
- Motorola AltaVec: 128 bit ints and FPs
- Supersparc Multimedia ops, etc.

Limits to LLP Finitial HW Model here; MIPS compilers. Assumptions for ideal/perfect machine to start: 1. Register renaming - infinite virtual registers => all register WAW & WAR hazards are avoided 2. Branch prediction - perfect; no mispredictions 3. Jump prediction - perfect; no mispredicted 2. & 3 => machine with perfect speculation & an unbounded buffer of instructions available 4. Memory-address alias analysis - addresses are moved before a store provided addresses not equal Miso: unlimited number of instructions issued/clock cycle; perfect caches; 1 cycle latency for all instructions (FP *,/);

1

Hz 552/MHz //256K 512K/1M mstr 4 issue ages 7/9 stages XPs 56 instr 36 56 total Hoit 2K × 2-bit	450MHz 32K/64K 4 issue 7/8 stages 32 instr	1.0GHz 16K/16K/256K 3 x86 instr	1.5GHz 12K/8K/256K	400MHz	490MHz	
/256K 512K/1M nstr 4 issue ages 7/9 stages 28 56 instr 36 56 total 1-bit 2K ×2-bit	32K/64K 4 issue 7/8 stages 32 instr	16K/16K/256K 3 x86 instr	12K/8K/256K			900MH2
nstr 4 issue ages 7/9 stages 26 56 instr 36 56 total I-bit 2K × 2-bit	4 issue 7/8 stages 32 instr	3 x86 instr		32K/32K	16K/16K	32K/64K
ages 7/9 stages 26 56 instr 36 56 total 1-bit 2K × 2-bit	7/8 stages 32 instr		3 x ROPs	4 issue	4 issue	4 issue
XPs 56 instr 36 56 total 1-bit 2K x 2-bit	32 instr	12/14 stages	22/24 stages	6 stages	6/9 stages	14/15 stage
6 56 total I-bit 2K × 2-bit		40 ROPs	126 ROPs	48 instr	None	None
l-bit 2K x 2-bit	16 int/24 fp	40 total	128 total	32/32	None	None
	2K×2-bit	≫= 512	4K×2-bit	2K×2-bit	512 x 2-bit	16K × 2-bit
120 unified	128/128	321/64D	1281/65D	64 unified	641/64D	128I/512D
B/s 1.54GB/s	1.6GB/s	1.06GB/s	3.2GB/s	539 MB/s	1.9GB/s	4.8GB/s
462 LGA-544	SCC-1088	PGA-370	PGA-423	CPGA-527	CLGA-787	1368 FC-LG
GM 0.25µ.2M	0.22µ 6m	0.18µ 6M	0.18µ 6M	0.25µ 4M	0.29µ 6M	0.18µ 7M
im ¹ 477mm ¹	163mm ³	106mm ²	217mm ²	204mm ²	126 mm ²	210mm ²
lion 130 million	23 million	24 million	42 million	7.2 million	3.8 million	29 million
\$330	\$110	\$39	\$110	\$125	\$70	\$145
V 60W*	36W*	30W	55W(TDP)	25W*	20W*	65W
0 3000	4Q00	2000	4Q00	2000	3Q0	4Q00
s330 60w 3000 4 instruc	\$110 36W* 4Q00	539 30W 2000 (many C	5110 55W(TDP) 4Q00 PUs)	\$125 25W* 2000	\$70 20W* 3Q0	
e registe	ers: 12	8 (Penti	um 4)			
4K x 9 (A	Inha 2	1264R)	16Kx2) (Ulti	n TTT)
10 2 0	ipila E		, 10100	. (0111	u TTT	,
w Size (OOO):	126 int	ruction	is (Pel	nt 4)	
		100 1111	i de lioi			
	e registe K x 9 (A w Size ((e registers: 12 IK x 9 (Alpha 2 w Size (000):	e registers: 128 (Penti IK × 9 (Alpha 21264B) w Size (000): 126 int	Fregisters: 128 (Pentium 4) IK × 9 (Alpha 21264B), 16K×2 w Size (000): 126 intruction	e registers: 126 (Pentium 4) IK × 9 (Alpha 21264B), 16K×2 (Ulti w Size (000): 126 intructions (Pel 22/24 stasse (Pentium 4)	e registers: 126 (rentium 4) IK x 9 (Alpha 21264B), 16Kx2 (Ultra III w Size (000): 126 intructions (Pent. 4) 0 22(24 stasse (Partium 4)

Processor	Alpha 212648	AMD	HP PA-R600	IBM Power 3-II	Intel	Intel	MIPS R12000	Sun Liltra-II	Sun Ultra-III
System or Motherboard	Alpha E540 Model 6	AMD GA-7ZM	HP9000	RS/6000 44P-170	Dell Prec. 430	Intel	SGI 2200	Sun Enterpris 450	Sun Blade 100
Clock Rate	833MHz	1.2CHz	552MHz	450MHz	1GHz	- SGHI	400MHz	480MHz	900MHz
External Cache	BMB	None	None	BMD	None	None	EM0	8///0	8MD
164.gzip	392	n/a	376	230	545	553	226	165	349
175.vpr	452	n/a	421	285	354	298	384	212	383
176.gcc	617	n/a	577	350	401	588	313	232	500
181.mcf	441	n/a	384	498	276	473	563	356	474
186.crafty	694	n/a	472	304	523	497	334	175	439
197.parser	360	e/a	361	171	362	472	283	211	412
252.eon	645	n/a	395	280	615	650	360	209	465
253.peribmk	526	n/a	406	215	614	703	246	247	457
254.gap	365	eva.	229	256	443	708	204	171	300
255.vortex	673	n/a	764	312	717	735	294	304	581
256.bzip2	560	n/a	349	258	396	420	334	237	500
300.twolf	658	n/a	479	414	3941	2X 4031	6X451	243	473
SPECInt_base2000	518	n/a	417	286	454	524	320	225	438
168.wupside	529	360	340	360	416	759	280	284	497
171.swim	1,156	506	761	279	493	1,244	300	285	752
172.mgrid	580	272	462	319	274	558	231	226	377
173.applu	424	298	563	327	280	641	237	150	221
177.mesa	713	302	300	330	541	553	289	273	469
178.galgel	558	468	569	429	335	537	585	735	1,266
179.art	1,540	213	419	969	410	514	995	920	990
183.equake	281	236	347	560	249	739	222	149	211
187.facerec	822	411	258	257	307	451	411	459	718
188.ammp	488	221	376	326	294	366	373	313	421
189.lucas	731	237	370	284	349	764	259	205	204
191.fma3d	528	365	302	340	297	427	192	207	302
200.sixtrack	340	256	285	234	120	257	199	159	273
301.aspi	553	278	523	349	3711.	X 427	252	189	340
SPECfp base2000	590	304	400	356	329	640	310	274	427

Conclusion

- 1985-2000: 1000X performance
 - Moore's Law transistors/chip => Moore's Law for Performance/MPU
- Hennessy: industry been following a roadmap of ideas known in 1985 to exploit Instruction Level Parallelism and (real) Moore's Law to get 1.55X/year
 - Caches, Pipelining, Superscalar, Branch Prediction, Out-of-order execution, ...
- ILP limits: To make performance progress in future need to have explicit parallelism from programmer vs. implicit parallelism of ILP exploited by compiler, HW?

13

- Otherwise drop to old rate of 1.3X per year?
- Less than 1.3X because of processor-memory performance gap?
- Impact on you: if you care about performance, better think about explicitly parallel algorithms vs. rely on ILP?

Dynamic Scheduling in P6 (Pentium Pro, II, III)

Q: How pipeline 1 to 17 byte 80x86 instructions?

- P6 doesn't pipeline 80x86 instructions
- P6 decode unit translates the Intel instructions into 72-bit micro-operations (~ MIPS)
- Sends micro-operations to reorder buffer & reservation stations
- Many instructions translate to 1 to 4 micro-operations
- Complex 80x86 instructions are executed by a conventional microprogram (8K x 72 bits) that issues long sequences of micro-operations

14

14 clocks in total pipeline (~ 3 state machines)

Dynamic Scheduling in P6 80x86 microops Parameter Max. instructions issued/clock 3 6 5 Max. instr. complete exec./clock Max, instr. commited/clock 3 Window (Instrs in reorder buffer) 40 Number of reservations stations 20 Number of rename registers 40 No. integer functional units (FUs) 2 No. floating point FUs 1 No. SIMD FL Pt. FUS No. memory Fus 1 load + 1 store 15

Pentium 4

- Still translate from 80x86 to micro-ops
- P4 has better branch predictor, more FUs
- Instruction Cache holds micro-operations vs. 80x86 instructions
 - no decode stages of 80x86 on cache hit
 - called "trace cache" (TC)
- Faster memory bus: 400 MHz v. 133 MHz
- Caches
 - Pentium III: L1I 16KB, L1D 16KB, L2 256 KB
 - Pentium 4: L1I 12K uops, L1D 8 KB, L2 256 KB
 - Block size: PIII 32B v. P4 128B; 128 v. 256 bits/clock

27

- Clock rates:
 - Pentium III 1 GHz v. Pentium IV 1.5 GHz

Pentium 4 features
Multimedia instructions 128 bits wide vs. 64 bits wide => 144 new instructions
When used by programs?
Faster Floating Point: execute 2 64-bit FP Per clock
Memory FU: 1 128-bit load, 1 128-store /clock to MMX regs
Using RAMBUS DRAM
Bandwidth faster, latency same as SDRAM
Cost 2X-3X vs. SDRAM
ALUs operate at 2X clock rate for many ops
Pipeline doesn't stall at this clock rate: uops replay
Rename registers: 40 vs. 128; Window: 40 v. 126
BTB: 512 vs. 4096 entries (Intel: 1/3 improvement)

28

Basic Pentium 4 Pipeline											
TC Nxt IP	TC F	etch I	Drive	Alloc	F	Renam	ie C)ueue	Scho	t	
Schd Sch	nd Dis	o Disp	Re	g Re	g	Ex	Flag	s Br C	hk D	rive	
1-2 trace cache next instruction pointer3-4 fetch uops from Trace Cache					10-12 write uops into scheduler 13-14 move up to 6 uops to FU						
5 drive up	15	15-16 read registers									
6 alloc res	17	17 FU execution									
reg,) 7-8 rename logic reg to 128 physical reg 9 put renamed uops into queue					18 computer flags e.g. for branch instructions 19 check branch output						
					with branch prediction 20 drive branch check result to frontend						

Benchmarks: Pentium 4 v. PIII v. Althon SPECbase2000 Int, P4@1.5 GHz: 524, PIII@1GHz: 454, AMD Althon@1.2Ghz:? FP, P4@1.5 GHz: 549, PIII@1GHz: 329, AMD Althon@1.2Ghz:304 WorldBench 2000 benchmark (business) PC World magazine, Nov. 20, 2000 (bigger is better) P4: 164, PIII: 167, AMD Althon: 180 Quake 3 Arena: P4 172, Althon 151 SYSmark 2000 composite: P4 209, Althon 221 Office productivity: P4 197, Althon 209 ♦ S.F. Chronicle 11/20/00: "... the challenge for AMD now will be to argue that frequency is not the most important thing-- precisely the position Intel has argued while its Pentium III lagged behind the Athlon in clock speed." 32