Lecture 10: Memory Dependence
Detection and Speculation

Memory correctness, dynamic
memory disambiguation, speculative
disambiguation, Alpha 21264 Example

Register and Memory Dependences

Store: SW Rt, A(Rs) LW Rt, A(Rs)

1. Calculate effective 1. Calculate effective
memory address = memory address =
dependent on Rs dependent on Rs

2. Werite to D-Cache = 2. Read D-Cache = could
dependent on Rt, and be memory-dependent
cannhot be speculative on pending writes!

Compare "ADD Rd, Rs, Rt" When is the memory
What is the difference? dependence known?

Memory Correctness and Performance

Correctness conditions:

¢ Only committed store instructions can
write fo memory

¢ Any load instruction receives its memory
operand from its parent (a store
instruction)

¢ At the end of execution, any memory word
receives the value of the last write

Performance: Exploit memory level parallelism

3

Load/store Buffer in Tomasulo

Original Tomasulo: i

Load/store address are pre-
calculated before scheduling

—

Reorder
Buffer

Loads are not dependent on
other instructions

Stores are dependent on
instructions producing the
store data

{ 1 1
‘ ‘ S-bu |- Lbuf | [Rs RS
@ Provide dynamic memory A R

disambiguation: check the I |

memory dependence
between stores and loads

Dynamic Scheduling with Integer
Instructions

Fetch Unit

Rename I
@ Integer units are

shared by load/store | Centralized RS 4
and ALU instructions

Centralized design
example:

—

Reorder
Buffer

Centralized reservation
stations usually include

the load buffer

What is the challenge data
in detecting memory
dependence?

Load/Store with Dynamic Execution

= Only committed store instructions can write o memory

= Use store buffer as a temporary place for write
instruction output

= Any memory word receives the value of the last write

= S'roze instructions write to memory in program
order

= Any memory word receives the value of the last write
= Memory level parallelism be exploited
= Non-speculative solution: load bypassing and load
forwarding
= Speculative solution: speculative load execution

Store Buffer Design Example

Store instruction:

Wait in RS until the base RS
address and data are
ready 2
Calculate address, move to E Froin RS
store buffer my] addr i

Move data directly to young
store buffer
= Arch.

« Wait for commit

If no exception/mis-predict ¥ H=— T states
5. Wait for memory port To D-Cache
6. Write to D-cache

Otherwise flushed before
writing D-cache

~[=|lolola
—

Memory Dependence

Any load instruction receives the memory
operand from its parent (a store
instruction)

@ If any previous store has not written the
D-cache, what to do?

@ TIf any previous store has not finished,
what to do?

Simﬁle Design: Delay all following loads; but
ow about performance?

Memory-level Parallelism

for (i=0;i<100;i++)

A[i] = A[i]*2;
Read
Loop:L.S F2, 0(R1)
MULT F2, F2, F4
Write|
SW F2, O0(R1)
ADD R1, R1, 4

BNE R1, R3,Loop Significant
improvement from
F4 store 2.0 sequential
reads/writes

Load Bypassing and Load Forwarding

Non-speculative solution

OO RS o reereseuen

Dynamic Disambiguation:
Match the load address with
all store addresses

Load bypassing: start cache
read if no match is found

Load forwarding: using store
buffer value if a match is
found

@ In-order execution

D-cache limitation: must wait until all
A previous store have finished

Store [I-FU I-FU
unit

match

In-order Execution Limitation

Example 1: Example 1: When is the
for (i=0;i<100;i++) SW result available,
A[i] = A[i]/2; and when can the next
load start?

Loop:L.S F2, 0(R1) ;)
DIV F2, F2, F4 Possible solution: start
store address
calculation early =
more complex design

SW F2, O(R1)
ADD R1, R1, 4
BNE R1, R3,Loop

Example 2: .
a->b->c = 100; Example2: Y\/hen «s"’rhe
d = x- address "a->b->c

available?

Speculative Load Execution

If no dependence predicted

@ Send loads out even if
dependence is unknown

Do address matching at
store commits

1 Match found: memory
dependence violation, flush
pipeline;

2. Otherwise: continue

[T RS

store-q l load-q V|

? Note: may still need load
forwarding (not shown)

Alpha 21264

Pipeline

Fatch Rename] Issue |Reg Read] Execute Mﬂmnryl
2 4 5 [+

(1] 1 3
—
Inleger Tnteger __l T l l
Integer lssus Reg, [J'LEneoon
sl L Cpeus File L} I e |
Renam: (20 (80) Level
entries Data Twio
Integer | | Wiligot Cache Cache
Reg Execution G4 KB and
File || “- Pl 2wy System
(80) E -Aru Interface
Floating-
Floating- Point FP Floasng-Foint Multiply

Regster

4 Point LR jemie B Reo.

Queus File | Floating boin A
15) ir2) Excution

1

Exgeution

Alpha 21264 Load/Store Queues

Inf |ssue queue | [fp issue queud
|})

dd Inf Inf Add FP FP
ALU ALU ALU AL ALU | [ALU

[znt RF(80)] [Tnt RF(80)||: | [FPRF(72)]
O e

£ F
; ¥ ¥ :
[Tt [[s-Q]AF]|
ry ¢
| Dual D-Cache |

32-entry load queue, 32-entry store queue

Load Bypassing, Forwarding, and RAW Detection

...mafch at commit

commit
ROBT Load/store?

—head 1) ood: WATT if

LQ head not

\ completed, then

r load-q s

load addr store addr

Tore-q \ move LQ head
committed Store: mark SQ

If match: head as
forward

completed, then
move SQ head

D-cache

If match: mark store-load trap
to flush pipeline (at commit)

Speculative Memory Disambiguation

PC

v
1024 1-bit _
entry table Renamed inst

e

int issue queue

To help predict memory dependence:
#® Whenever a load causes a violation, set stWait bit in the table

® When the load is fetched, get its stWait from the table, send
to issue queue with the load instruction

® A load waits there if its swWait is set and any previous store
exists

& The tale is cleared periodically

Architectural Memory States

Completed-

entries
L1-C
L2-Ci

E%Commiﬁed

states

ache
nche

L3-Cache: (optional)

| Memory |

l Disk, Tai

pe, etc. l

Memory request: search the hierarchy from top to

bottom

Summary of Superscalar Execution

@ Instruction flow techniques

Branch prediction, branch target prediction, and
instruction prefetch

#® Register data flow techniques

Register renaming, instruction scheduling, in-order
commit, mis-prediction recovery

@ Memory data flow techniques
Load/store units, memory consistency

Source: Shen & Lipasti reference book

