
1

1

Lecture 10: Memory Dependence 
Detection and Speculation

Memory correctness, dynamic 
memory disambiguation, speculative 
disambiguation, Alpha 21264 Example

2

Register and Memory Dependences
Store: SW Rt, A(Rs)
1. Calculate effective 

memory address ⇒
dependent on Rs

2. Write to D-Cache ⇒
dependent on Rt, and 
cannot be speculative

Compare “ADD Rd, Rs, Rt”
What is the difference?

LW Rt, A(Rs)
1. Calculate effective 

memory address ⇒
dependent on Rs

2. Read D-Cache ⇒ could 
be memory-dependent 
on pending writes!

When is the memory 
dependence known?

3

Memory Correctness and Performance

Correctness conditions:
Only committed store instructions can 
write to memory
Any load instruction receives its memory 
operand from its parent (a store 
instruction)
At the end of execution, any memory word 
receives the value of the last write

Performance: Exploit memory level parallelism

4

Load/store Buffer in Tomasulo
Original Tomasulo: 
Load/store address are pre-
calculated before scheduling

Loads are not dependent on 
other instructions

Stores are dependent on 
instructions producing the 
store data

Provide dynamic memory 
disambiguation: check the 
memory dependence 
between stores and loads

Reorder
BufferDecode

FU1 FU2

RS RS

Fetch Unit

Rename

L-bufS-buf

DM

Regfile

IM

5

Dynamic Scheduling with Integer 
Instructions
Centralized design 

example:

Centralized reservation 
stations usually include 
the load buffer

Integer units are 
shared by load/store 
and ALU instructions

What is the challenge 
in detecting memory 
dependence?

Reorder
BufferDecode

FU FU

Fetch Unit

Rename

I-Fu

Regfile

IM

Centralized RS

D-Cache

I-FU

addrS-bufdata

data

addr

6

Load/Store with Dynamic Execution
Only committed store instructions can write to memory

⇒ Use store buffer as a temporary place for write 
instruction output

Any memory word receives the value of the last write
⇒ Store instructions write to memory in program 

order

Any memory word receives the value of the last write
Memory level parallelism be exploited

⇒ Non-speculative solution: load bypassing and load 
forwarding

⇒ Speculative solution: speculative load execution



2

7

Store Buffer Design Example
Store instruction:

Wait in RS until the base 
address and data are 
ready
Calculate address, move to 
store buffer
Move data directly to 
store buffer
Wait for commit

If no exception/mis-predict
5. Wait for memory port
6. Write to D-cache

Otherwise flushed before 
writing D-cache

I-FU

addr

RS

data

From RS

0
Ry

1
0
C

0
-
-

1
1

To D-Cache
old

young

Arch. 
states

8

Memory Dependence
Any load instruction receives the memory 

operand from its parent (a store 
instruction)

If any previous store has not written the 
D-cache, what to do?

If any previous store has not finished, 
what to do?

Simple Design: Delay all following loads; but 
how about performance?

9

Significant 
improvement from 
sequential 
reads/writes

Memory-level Parallelism
for (i=0;i<100;i++)
A[i] = A[i]*2;

Loop:L.S F2, 0(R1)
MULT F2, F2, F4
SW F2, 0(R1)
ADD R1, R1, 4
BNE R1, R3,Loop

F4 store 2.0

Read

Write

Read

Write

Read

Write

10

Load Bypassing and Load Forwarding
Non-speculative solution

Dynamic Disambiguation: 
Match the load address with 
all store addresses
Load bypassing: start cache 
read if no match is found
Load forwarding: using store 
buffer value if a match is 
found
In-order execution 
limitation: must wait until all 
previous store have finished

I-FU

D-cache

RS

Store
unit

I-FU

match

11

In-order Execution Limitation
Example 1: When is the 

SW result available, 
and when can the next 
load start?

Possible solution: start 
store address 
calculation early ⇒
more complex design

Example2: When is the 
address “a->b->c” 
available?

Example 1:
for (i=0;i<100;i++)
A[i] = A[i]/2;

Loop:L.S F2, 0(R1)
DIV F2, F2, F4
SW F2, 0(R1)
ADD R1, R1, 4
BNE R1, R3,Loop

Example 2:
a->b->c = 100;
d = x;

12

Speculative Load Execution
If no dependence predicted

Send loads out even if 
dependence is unknown
Do address matching at 
store commits
1. Match found: memory 

dependence violation, flush 
pipeline; 

2. Otherwise: continue

Note: may still need load 
forwarding (not shown)

I-FU

D-cache

RS

I-FU

load-qstore-q

match



3

13

Alpha 21264 Pipeline

14

Alpha 21264 Load/Store Queues

Addr
ALU

Int
ALU

Int
ALU

Addr
ALU

Int issue queue fp issue queue

FP
ALU

FP
ALU

Int RF(80) Int RF(80) FP RF(72)

D-TLB L-Q S-Q AF

Dual D-Cache

32-entry load queue, 32-entry store queue

15

Load Bypassing, Forwarding, and RAW Detection

head

commit
match at commit

D-cache

If match: mark store-load trap
to flush pipeline (at commit)

If match: 
forward

load addr store addr committed

Load/store?ROB
Load: WAIT if 
LQ head not 
completed, then 
move LQ head
Store: mark SQ 
head as 
completed, then 
move SQ head

load-q store-q

16

Speculative Memory Disambiguation

To help predict memory dependence:
Whenever a load causes a violation, set stWait bit in the table
When the load is fetched, get its stWait from the table, send 
to issue queue with the load instruction
A load waits there if its swWait is set and any previous store 
exists
The tale is cleared periodically

1024 1-bit
entry table

PC

Renamed inst

int issue queue

1

17

Architectural Memory States

Memory request: search the hierarchy from top to 
bottom

L1-Cache
L2-Cache

Memory

Disk, Tape, etc.

L3-Cache (optional)

Completed 
entries

LQ
SQ Committed 

states

18

Summary of Superscalar Execution
Instruction flow techniques
Branch prediction, branch target prediction, and 

instruction prefetch

Register data flow techniques
Register renaming, instruction scheduling, in-order 

commit, mis-prediction recovery

Memory data flow techniques
Load/store units, memory consistency

Source: Shen & Lipasti reference book


