
1

11

Lecture 3: Instruction Lecture 3: Instruction 
Set ArchitectureSet Architecture
ISA types, register usage, ISA types, register usage, 

memory addressing, memory addressing, endianendian
and alignment, quantitative and alignment, quantitative 

evaluationevaluation

22

What Is ISA?What Is ISA?
Instruction set architecture is the structure Instruction set architecture is the structure 

of a computer that a machine language of a computer that a machine language 
programmer (or a compiler) must programmer (or a compiler) must 
understand to write a correct (timing understand to write a correct (timing 
independent) program for that machine.independent) program for that machine.

For IBM System/360, 1964For IBM System/360, 1964

Class ISA types: Stack, Accumulator, and Class ISA types: Stack, Accumulator, and 
GeneralGeneral--purpose registerpurpose register
ISA is mature and stableISA is mature and stable
–– Why do we study it?Why do we study it?

33

StackStack

Implicit operands on stack
Ex. C = A + B
Push A
Push B
Add
Pop C
Good code density; used in 
60’s-70’s; now in Java VM

44

AccumulatorAccumulator

The accumulator provides an The accumulator provides an 
implicit input, and is the implicit input, and is the 
implicit place to store the implicit place to store the 
result.result.
Ex. C = A + BEx. C = A + B
Load R1, ALoad R1, A
Add R3, R1, BAdd R3, R1, B
Store R3, cStore R3, c
Used before 1980Used before 1980

55

GeneralGeneral--purpose Registerspurpose Registers
GeneralGeneral--purpose registers are preferred by purpose registers are preferred by 
compilerscompilers
–– Reduce memory traffic Reduce memory traffic 
–– Improve program speedImprove program speed
–– Improve code density Improve code density 

Usage of generalUsage of general--purpose registerspurpose registers
–– Holding temporal variables in expression evaluationHolding temporal variables in expression evaluation
–– Passing parametersPassing parameters
–– Holding variablesHolding variables

GPR and RISC and CISCGPR and RISC and CISC
–– RISC ISA is extensively used for desktop, server, and RISC ISA is extensively used for desktop, server, and 

embedded: MIPS, PowerPC, embedded: MIPS, PowerPC, UltraSPARCUltraSPARC, ARM, MIPS16, , ARM, MIPS16, 
ThumbThumb

–– CISC: IBM 360/370, VAX, and Intel 80x86CISC: IBM 360/370, VAX, and Intel 80x86

66

Variants of GRP ArchitectureVariants of GRP Architecture
Number of operands in ALU instructions: two or Number of operands in ALU instructions: two or 
threethree
Add R1, R2, R3Add R1, R2, R3 Add R1, R2Add R1, R2

Maximal number of memory operands in ALU Maximal number of memory operands in ALU 
instructions: zero, one, two, or threeinstructions: zero, one, two, or three
Load R1, ALoad R1, A Load R1, ALoad R1, A
Load R2, BLoad R2, B Add R3, R1, BAdd R3, R1, B
Add R3, R1, R2Add R3, R1, R2

Three popular combinationsThree popular combinations
–– registerregister--register (loadregister (load--store): 0 memory, 3 operandsstore): 0 memory, 3 operands
–– registerregister--memory: 1 memory, 2 operandsmemory: 1 memory, 2 operands
–– memorymemory--memory: 2 memories, 2 operands; or 3 memory: 2 memories, 2 operands; or 3 

memories, 3 operandsmemories, 3 operands



2

77

RegisterRegister--memorymemory

There is no implicit There is no implicit 
operandoperand
One input operand is One input operand is 
register, and one in register, and one in 
memorymemory
Ex. C = A + BEx. C = A + B
Load R1, ALoad R1, A
Add R3, R1, BAdd R3, R1, B
Store R3, CStore R3, C
Processors include VAX, Processors include VAX, 
80x8680x86

88

RegisterRegister--register (Loadregister (Load--store)store)

Both operands are registersBoth operands are registers
Values in memory must be Values in memory must be 
loaded into a register and loaded into a register and 
stored backstored back
Ex. C = A + BEx. C = A + B
Load R1, ALoad R1, A
Load R2, BLoad R2, B
Add R3, R1, R2Add R3, R1, R2
Store R3, CStore R3, C
Processors: MIPS, SPARCProcessors: MIPS, SPARC

99

How Many Registers?How Many Registers?
If the number of registers increase:If the number of registers increase:

Allocate more variables in registers (fast Allocate more variables in registers (fast 
accesses)accesses)
Reducing code spillReducing code spill
Reducing memory trafficReducing memory traffic

Longer register Longer register specifiersspecifiers (difficult encoding)(difficult encoding)
Increasing register access time (physical Increasing register access time (physical 
registers)registers)
More registers to save in context switchMore registers to save in context switch

MIPS64: 32 generalMIPS64: 32 general--purpose registerspurpose registers 1010

ISA and PerformanceISA and Performance
CPU time = #inst × CPI × cycle timeCPU time = #inst × CPI × cycle time

RISC with RegisterRISC with Register--Register instructionsRegister instructions
Simple, fixSimple, fix--length instruction encodinglength instruction encoding
Simple code generationSimple code generation
Regularity in CPIRegularity in CPI
Higher instruction countsHigher instruction counts
Lower instruction densityLower instruction density

CISC with RegisterCISC with Register--memory instructionsmemory instructions
No extra load in accessing data in memoryNo extra load in accessing data in memory
Easy encodingEasy encoding
Operands being not equivalentOperands being not equivalent
Restricted #registers due to encoding memory addressRestricted #registers due to encoding memory address
Irregularity in CPIIrregularity in CPI

1111

Memory AddressingMemory Addressing
Instructions see registers, constant values, and memoryInstructions see registers, constant values, and memory

Addressing modeAddressing mode decides how to specify an object to accessdecides how to specify an object to access
–– Object can be memory location, register, or a constantObject can be memory location, register, or a constant
–– Memory addressing is complicatedMemory addressing is complicated

Memory addressingMemory addressing involves many factorsinvolves many factors
–– Memory addressing modeMemory addressing mode
–– Object sizeObject size
–– byte orderingbyte ordering
–– alignmentalignment

For a memory location, its For a memory location, its effective addresseffective address is calculated in a is calculated in a 
certain form of register content, immediate address, and certain form of register content, immediate address, and 
PC, as specified by the addressing modePC, as specified by the addressing mode

1212

Little or Big: Where to Start?Little or Big: Where to Start?

Byte ordering:  Byte ordering:  
Where is the first Where is the first 
byte?byte?
BigBig--endianendian::IBMIBM, , 
SPARC, SPARC, MororolaMororola
LittleLittle--endian: Intel, endian: Intel, 
DECDEC
Supporting both: Supporting both: 
MIPS, PowerPCMIPS, PowerPC

5
6
7
8

8
7
6
500000000

Big-endianLittle-endian

Number 0x5678

00000001
00000002
00000003



3

1313

AlignmentAlignment

Align nAlign n--byte objects on nbyte objects on n--byte byte 
boundaries (n = 1, 2, 4, 8)boundaries (n = 1, 2, 4, 8)

One align position, nOne align position, n--1 misaligned 1 misaligned 
positionspositions
Misaligned access is Misaligned access is undiserableundiserable
–– Expensive logic, slow referencesExpensive logic, slow references

Aligning in registers may be Aligning in registers may be 
necessary for bytes and half wordsnecessary for bytes and half words

1414

MIPS Data Addressing ModesMIPS Data Addressing Modes

RegisterRegister
ADD $16, $7, $8ADD $16, $7, $8

ImmediateImmediate
ADDI $17, $7, ADDI $17, $7, 100100

DisplacementDisplacement
LW $18, 100($9)LW $18, 100($9)

Only the three are supported for data addressingOnly the three are supported for data addressing

1515

Storage Used by CompilersStorage Used by Compilers
Register storageRegister storage

–– Holding temporal variables in expression Holding temporal variables in expression 
evaluationevaluation

–– Passing parametersPassing parameters
–– Holding variablesHolding variables

Memory storages consists ofMemory storages consists of
–– Stack: to hold local variablesStack: to hold local variables
–– Global data area: to hold statically declared Global data area: to hold statically declared 

objectsobjects
–– Heap: to hold dynamic objectsHeap: to hold dynamic objects

1616

Memory Addressing Seen in Memory Addressing Seen in 
CISCCISC

Direct (absolute)Direct (absolute)

Register indirectRegister indirect
IndexedIndexed
ScaledScaled
AutoincrementAutoincrement
AutodecrementAutodecrement
Memory indirectMemory indirect

And more …And more …

ADD R1, (1001)ADD R1, (1001)
SUB R2, (R1)SUB R2, (R1)
ADD R1, (R2 + R3) ADD R1, (R2 + R3) 
SUB R2, SUB R2, 

100(R2)[R3]100(R2)[R3]
ADD R1, (R2)+ADD R1, (R2)+
SUB R2, SUB R2, --(R1)(R1)
ADD R1, @(R3)ADD R1, @(R3)
(see textbook p98)(see textbook p98)

1717

Choosing of Memory Addressing Choosing of Memory Addressing 
ModesModes

Choosing complex addressing modesChoosing complex addressing modes
Close to addressing in highClose to addressing in high--level languagelevel language
May reduce instruction counts (thus fast)May reduce instruction counts (thus fast)
Increase implementation complexity (may Increase implementation complexity (may 
increase cycle time)increase cycle time)
Increase CPIIncrease CPI

RISC ISA comes with simple memory RISC ISA comes with simple memory 
addressing, and CISC ISA with complex addressing, and CISC ISA with complex 
onesones

1818

How Often Are Those Address How Often Are Those Address 
Modes?Modes?

Usage of address modes, VAX machine, SPEC89



4

1919

Usage of Immediate Operands In Usage of Immediate Operands In 
RISCRISC

Alpha, SPEC CINT2000 & CFP2000

2020

Immediate Size in RISCImmediate Size in RISC

Alpha, SPEC CINT2000 & CFP2000

2121

Displacement Size in RISCDisplacement Size in RISC

Displacement bit size: Alpha ISA, SPEC 
CPU2000 Integer and FP

2222

Operands size, type and formatOperands size, type and format
In MIPS In MIPS OpcodeOpcode encodes operand sizeencodes operand size
–– Ex. ADD for signed integer, ADDU for unsigned integer, Ex. ADD for signed integer, ADDU for unsigned integer, 

ADD.D for doubleADD.D for double--precision FPprecision FP
Most common types includeMost common types include
–– Integer: complement binary numbersInteger: complement binary numbers
–– Character: ASCIICharacter: ASCII
–– Floating point: IEEE standard 754, singleFloating point: IEEE standard 754, single--precision or precision or 

doubledouble--precisionprecision
Decimal format Decimal format 
–– 44--bits for one decimal digit (0bits for one decimal digit (0--9), one byte for two 9), one byte for two 

decimal digitsdecimal digits
–– Necessary for business applicationsNecessary for business applications

Fixed Point format in DSP processors:Fixed Point format in DSP processors:
–– Representing fractions in (Representing fractions in (--1, +1)1, +1)
–– 1100010111000101fixed pointfixed point= = --0.10001010.100010122

2323

Dynamic Instruction Mix (MIPS)Dynamic Instruction Mix (MIPS)
SPEC2K SPEC2K IntInt SPEC2K FPSPEC2K FP

LoadLoad 26%26% 15%15%
StoreStore 10%10% 2%2%
AddAdd 19%19% 23%23%
CompareCompare 5%5% 2%2%
CondCond brbr 12%12% 4%4%
CondCond mvmv 2%2% 0%0%
JumpJump 1%1% 0%0%
LOGIC LOGIC 18%18% 4%4%
FP loadFP load 15%15%
FP storeFP store 7%7%
FP othersFP others 19%19%

2424

Compiler EffectsCompiler Effects

Architectures change for the needs of compilers
• How do compilers use registers? How many?
• How do compilers use addressing modes?
• Anything that compilers do not like?


